Skip to main content
Log in

Asymptotic shallow water models with non smooth topographies

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We present new models to describe shallow water flows over non smooth topographies. The water waves problem is formulated as a system of two equations on surface quantities in which the topography is involved in a Dirichlet-Neumann operator. Starting from this formulation and using the joint analyticity of this operator with respect to the surface and the bottom parametrizations, we derive a nonlocal shallow water model which only includes smoothing contributions of the bottom. Under additional small amplitude assumptions, Boussinesq-type systems are also derived. Using these alternative shallow water models as references, we finally present numerical tests to assess the precision of the classical shallow water approximations over rough bottoms. In the case of a polygonal bottom, we show numerically that our new model is consistent with the approach developed by Nachbin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. These parameters are the steepness of the wave and the steepness of the bottom variations (see for instance [26, Sect. 1.5]).

  2. Denoting by \(d^n_\zeta {\mathcal G}_{\mu }[0,\beta b](\tilde{\varvec{\zeta }}) \psi \) the \(n\)-th derivative of \(\zeta \mapsto {\mathcal G}_{\mu }[\zeta ,\beta b] \psi \) at \(\zeta =0\) in the direction \(\tilde{\varvec{\zeta }}=(\tilde{\zeta },\dots ,\tilde{\zeta })\), the \(n\)-th term in the Taylor expansion (5) is related to this shape derivative by \( d^n_\zeta {\mathcal G}_{\mu }[0,\beta b](\tilde{\varvec{\zeta }}) \psi = n! {\mathcal G}_{\mu }^n[\tilde{\zeta },\epsilon _{\mathrm {b}}b] \psi . \)

  3. Denoting by \(d^n_b {\mathcal G}_{\mu }[0,0](\tilde{\mathbf { b}}) \psi \) the \(n\)-th derivative of \(b \mapsto {\mathcal G}_{\mu }[0,b] \psi \) at \(b=0\) in the direction \(\tilde{\mathbf { b}}=(\tilde{b},\dots ,\tilde{b})\), the \(n\)-th term in the Taylor expansion (10) is related to this shape derivative by \( d^n_b {\mathcal G}_{\mu }[0,0](\tilde{\mathbf { b}}) \psi = n! \sqrt{\mu }\left|D \right| {L}_{\mu }^n[\tilde{b}] \psi . \)

  4. The numerical experiment presented in the Appendix also indicates that, for a step bottom, the present approach is consistent with the approach developed by Nachbin [29].

References

  1. Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171, 485–541 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272, 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besse, C.: Schéma de relaxation pour l’équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. Comptes Rendus de l’Académie des Sciences Series I Mathematics 326, 1427–1432 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besse, C., Bruneau, C.H.: Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up. Math. Models Methods Appl. Sci. 8, 1363–1386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderón, A.-P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. USA 74, 1324–1327 (1977)

    Article  MATH  Google Scholar 

  7. Chazel, F.: On the Korteweg-de Vries approximation for uneven bottoms. Eur. J. Mech. B Fluids 28, 234–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chazel, F., Lannes, D., Marche, F.: Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model. J. Sci. Comput. 48, 105–116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cienfuegos, R., Barthélemy, E., Bonneton, P.: A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. I. Model development and analysis. Int. J. Numer. Methods Fluids 51, 1217–1253 (2006)

    Article  MATH  Google Scholar 

  10. Coifman, R., Meyer, Y.: Nonlinear harmonic analysis and analytic dependence. In: Pseudodifferential operators and applications (Notre Dame, Ind., 1984), vol. 43 of Proc. Sympos. Pure Math., Amer. Math. Soc. Providence, RI, pp. 71–78 (1985)

  11. Craig, W., Guyenne, P., Nicholls, D.P., Sulem, C.: Hamiltonian long-wave expansions for water waves over a rough bottom. Proc. R. Soc. Lond. Ser. A Math. Phys Eng. Sci. 461, 839–873 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Craig, W., Lannes, D., Sulem, C.: Water waves over a rough bottom in the shallow water regime. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 233–259 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Craig, W., Nicholls, D.P.: Travelling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32, 323–359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Craig, W., Schanz, U., Sulem, C.: The modulational regime of three-dimensional water waves and the Davey-Stewartson system. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 615–667 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Craig, W., Sulem, C., Sulem, P.-L.: Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 5, 497–522 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Driscoll, T.A., Trefethen, L.N.: Schwarz-Christoffel Mapping, vol. 8 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  18. Duchêne, V.: Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation. ESAIM Math. Model. Numer. Anal. 46, 145–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duruflé, M., Israwi, S.: A numerical study of variable depth KdV equations and generalizations of Camassa-Holm-like equations. J. Comput. Appl. Math. 236, 4149–4165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fokas, A.S., Nachbin, A.: Water waves over a variable bottom: a non-local formulation and conformal mappings. J. Fluid Mech. 695, 288–309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guyenne, P., Nicholls, D.P.: A high-order spectral method for nonlinear water waves over moving bottom topography. SIAM J. Sci. Comput. 30, 81–101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamilton, J.: Differential equations for long-period gravity waves on fluid of rapidly varying depth. J. Fluid Mech. 83, 289–310 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, B., Nicholls, D.P.: Analyticity of Dirichlet-Neumann operators on Hölder and Lipschitz domains. SIAM J. Math. Anal. 37, 302–320 (2008)

    Article  MathSciNet  Google Scholar 

  24. Iguchi, T.: A shallow water approximation for water waves. J. Math. Kyoto Univ. 49, 13–55 (2009)

    MathSciNet  Google Scholar 

  25. Kano, T., Nishida, T.: Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde. J. Math. Kyoto Univ. 19, 335–370 (1979)

    MathSciNet  MATH  Google Scholar 

  26. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics. American Mathematical Society (AMS), Providence, RI (2013)

    Book  Google Scholar 

  27. Lannes, D., Bonneton, P.: Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21, 016601 (2009)

    Article  Google Scholar 

  28. Li, Y.A.: A shallow-water approximation to the full water wave problem. Comm. Pure Appl. Math. 59, 1225–1285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nachbin, A.: A terrain-following Boussinesq system. SIAM J. Appl. Math. 63, 905–922 (2003)

  30. Nachbin, A., Sølna, K.: Apparent diffusion due to topographic microstructure in shallow waters. Phys. Fluids 15, 66–77 (2003)

    Article  MathSciNet  Google Scholar 

  31. Nehari, Z.: Conformal Mapping. McGraw-Hill Book Co. Inc., New York, Toronto, London (1952)

    MATH  Google Scholar 

  32. Nicholls, D.P.: Traveling water waves: spectral continuation methods with parallel implementation. J. Comput. Phys. 143, 224–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nicholls, D.P., Taber, M.: Joint analyticity and analytic continuation of Dirichlet-Neumann operators on doubly perturbed domains. J. Math. Fluid Mech. 10, 238–271 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nwogu, O.: Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterway. Port Coast. Ocean Eng. 119, 618–638 (1993)

    Article  Google Scholar 

  35. Ovsjannikov, L.V.: To the shallow water theory foundation. Arch. Mech. (Arch. Mech. Stos.) 26, 407–422, (1974). Papers presented at the Eleventh Symposium on Advanced Problems and Methods in Fluid Mechanics, Kamienny Potok (1973)

  36. Ovsjannikov, L.V.: Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification. In: Applications of Methods of Functional Analysis to Problems in Mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975), Lecture Notes in Math., vol. 503, pp. 426–437. Springer, Berlin (1976)

  37. Peregrine, D.H.: Long waves on a beach. J. Fluid Mech. 27, 815–827 (1967)

    Article  MATH  Google Scholar 

  38. Rosales, R., Papanicolaou, G.: Gravity waves in a channel with a rough bottom. Stud. Appl. Math. 68, 89–102 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R.: A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zakharov, V.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank André Nachbin for helpful comments and for kindly providing material on the Schwarz-Christoffel mapping. The author would also like to thank David Lannes precious advices and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Cathala.

Additional information

Communicated by A. Constantin.

Appendix: The case of polygonal topographies

Appendix: The case of polygonal topographies

In the case of two dimensional motions, Hamilton [22] and Nachbin [29] used a conformal mapping technique to derive long wave models. This conformal mapping technique can be adapted to derive shallow water models with polygonal topography. The idea is to use Schwarz-Christoffel mapping theory (see e.g. [31]) to find a conformal map from a strip to the fluid domain at rest (see [20, 29]). From a numerical point of view, the main interest of this technique is that such a mapping can be efficiently computed using, for instance, the Schwarz-Christoffel Toolbox [17] (see [20, Appendix A] for an application to the conformal mapping of a fluid domain with polygonal bottom). This particular conformal mapping can then be used to approximate the Dirichlet-Neumann operator. Broadly speaking, the derivation of this approximation proceeds via the following steps:

  1. 1.

    Transform the Laplace Eq. (1) into an elliptic boundary value problem defined on the flat strip.

  2. 2.

    Express the Dirichlet-Neumann operator in terms of the solution of this new problem (the so-called transformed potential).

  3. 3.

    Approximate the transformed potential using a BKW procedure.

  4. 4.

    Use this approximate solution in the expression of () to deduce an approximation of \({\mathcal G}_{\mu }[\varepsilon \zeta ,\beta b]\psi \).

Denoting by \(\Sigma \) the Schwarz-Christoffel mapping function and setting \((\sigma (x),\rho (x))=\Sigma ^{-1}(x,\varepsilon \zeta (x))\) (the transformed free surface), the resulting approximation is

$$\begin{aligned} {\mathcal G}_{\mu }[\varepsilon \zeta ,\beta b]\psi =-\partial _{x} \biggl (\frac{1+\rho }{ \frac{\mathop {}\mathopen {}\mathrm {d}\sigma }{\mathop {}\mathopen {}\mathrm {d}x}} \partial _{x} \psi \biggr ) + O(\mu ), \end{aligned}$$

giving rise to the following nonlinear shallow water system with polygonal topography

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _{t} \zeta + \partial _{x} \biggl (\frac{1+\rho }{ \frac{\mathop {}\mathopen {}\mathrm {d}\sigma }{\mathop {}\mathopen {}\mathrm {d}x}} v_\mathrm{s} \biggr ) =0, \\ \partial _{t} v_\mathrm{s} + \partial _{x} \zeta + \varepsilon v_\mathrm{s} \partial _{x} v_\mathrm{s} =0. \end{array}\right. } \end{aligned}$$
(46)

To evaluate the behavior of the nonlocal shallow water model (27) when the bottom has polygonal shape, we compare the solutions produced by both systems (40) and (46) in the particular case of a rectangular bottom: \(b=0\) on (0, 30) and \(b=1\) on (30, 60).

The initial condition, defined in (44), generates a unidirectional wave propagating to the right and the amplitude parameters are set to \(\varepsilon =0.1\) and \(\beta =0.6\). Time histories of the surface elevation computed by both models are shown in Fig. 10. The simulation was performed using \(N=\) 1,024 points and \(\Delta t=10^{-1}\). As the wave passes over the step, both models produce similar results.

Fig. 10
figure 10

Elevation for a wave passing over a rectangular hump: conformal mapping approach (dashed line) and nonlocal model (solid line)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cathala, M. Asymptotic shallow water models with non smooth topographies. Monatsh Math 179, 325–353 (2016). https://doi.org/10.1007/s00605-014-0729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0729-9

Keywords

Mathematics Subject Classification

Navigation