Skip to main content
Log in

On the Small-Amplitude Long Waves in Linear Shear Flows and the Camassa–Holm Equation

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We compare two linearizations used in the study of small-amplitude long waves on a constant vorticity flow. For the propagation of such waves, we derive, by a variational approach in the Lagrangian formalism, the nonlinear Camassa–Holm equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin T.B.: The solitary wave on a stream with an arbitrary distribution of vorticity. J. Fluid Mech. 12, 97–116 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Biesel F.: Etude théorique de la houle en eau courante. Houille Blanche 5, 279–285 (1950)

    Article  MathSciNet  Google Scholar 

  3. Boutetde Monvel A., Kostenko A., Shepelsky D., Teschl G.: Long-time asymptotics for the Camassa–Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)

    Article  MathSciNet  Google Scholar 

  4. Burns J.C.: Long waves in running water. Proc. Camb. Philos. Soc. 49, 695–706 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Choi W.: Strongly nonlinear long gravity waves in uniform shear flows. Phys. Rev. E 68, 1–7 (2003)

    Article  Google Scholar 

  7. Constantin A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Constantin A.: Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train. Eur. J. Mech. B Fluids 30, 12–16 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Constantin, A.: Nonlinear water waves with applications to wave-current interactions and tsunamis. In: CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

  10. Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin A., Kappeler T., Kolev B., Topalov P.: On geodesic exponential maps of the Virasoro group. Ann. Glob. Anal. Geom. 31, 155–180 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin A., Kolev B., Lenells J.: Integrability of invariant metrics on the Virasoro group. Phys. Lett. A 350, 75–80 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Constantin A., Lannes D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Constantin A., McKean H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  15. Constantin A., Strauss W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Constantin A., Strauss W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57, 481–527 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Da Silva T.A., Peregrine D.H.: Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid. Mech. 195, 281–302 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dubreil-Jacotin M.-L.: Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl. 13, 217–291 (1934)

    Google Scholar 

  19. Ehrnström M., Villari G.: Linear water waves with vorticity: rotational features and particle paths. J. Differ. Equ. 244, 1888–1909 (2008)

    Article  ADS  MATH  Google Scholar 

  20. Ehrnström M., Escher J., Villari G.: Steady water waves with multiple critical layers: interior dynamics. J. Math. Fluid Mech. 14, 407–419 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Freeman N.C., Johnson R.S.: Shallow water waves on shear flows. J. Fluid Mech. 42, 401–409 (1970)

    Article  ADS  MATH  Google Scholar 

  22. Ionescu-Kruse D.: Variational derivation of the Camassa–Holm shallow water equation. J. Nonlinear Math. Phys. 14, 303–312 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ionescu-Kruse D.: Variational derivation of the Camassa–Holm shallow water equation with non-zero vorticity. Disc. Cont. Dyn. Syst.-A 19, 531–543 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ionescu-Kruse D.: Particle trajectories beneath small amplitude shallow water waves in constant vorticity flows. Nonlinear Anal.-Theor. 71, 3779–3793 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ionescu-Kruse D.: Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Commun. Pure Appl. Anal. 11, 1475–1496 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Johnson R.S.: On solutions of the Burns condition (which determines the speed of propagation of linear long waves on a shear flow with or without a critical layer). Geophys. Astrophys. Fluid. Dyn. 57, 115–133 (1991)

    Article  ADS  Google Scholar 

  27. Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  28. Johnson R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Johnson R.S.: The Camassa–Holm equation for water waves moving over a shear flow. Fluid Dyn. Res. 33, 97–111 (2003)

    Article  ADS  MATH  Google Scholar 

  30. Lamb H.: Hydrodynamics. Cambridge University Press, Cambridge (1953)

    Google Scholar 

  31. Misiolek G.: A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Thompson P.D.: The propagation of small surface disturbances through rotational flow. Ann. NY Acad. Sci. 51, 463–474 (1949)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Ionescu-Kruse.

Additional information

Communicated by A. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionescu-Kruse, D. On the Small-Amplitude Long Waves in Linear Shear Flows and the Camassa–Holm Equation. J. Math. Fluid Mech. 16, 365–374 (2014). https://doi.org/10.1007/s00021-013-0156-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0156-z

Keywords

Navigation