Skip to main content
Log in

Two dimensional solitary waves in shear flows

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study existence and asymptotic behavior of solitary-wave solutions for the generalized Shrira equation, a two-dimensional model appearing in shear flows. The method used to show the existence of such special solutions is based on the mountain pass theorem. One of the main difficulties consists in showing the compact embedding of the energy space in the Lebesgue spaces; this is dealt with interpolation theory. Regularity and decay properties of the solitary waves are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramyan, L.A., Stepanyants, YuA, Shrira, V.I.: Multidimensional solitons in shear flows of the boundary-layer type. Sov. Phys. Dokl. 37, 575–578 (1992)

    Google Scholar 

  2. Angulo, J., Bona, J.L., Linares, F., Scialom, M.: Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case. Nonlinearity 15, 759–786 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 49–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bona, J.L., Li, Y.A.: Decay and analyticity of solitary waves. J. Math. Pures Appl. 76, 377–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces: An introduction. Springer, New York (1979)

    MATH  Google Scholar 

  6. Chandler-Wilde, S., Hewett, D.P., Moiola, A.: Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples. Mathematika 61, 414–443 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cunha, A., Pastor, A.: The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in weighted Sobolev spaces. J. Math. Anal. Appl. 417, 660–693 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cunha, A., Pastor, A.: The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in low regularity Sobolev spaces. J. Differ. Equ. 261, 2041–2067 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Bouard, A., Saut, J.-C.: Solitary waves of generalized Kadomtsev–Petviashvili equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 211–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Bouard, A., Saut, J.-C.: Symmetries and decay of the generalized Kadomtsev–Petviasvili solitary waves. SIAM J. Math. Anal. 28, 1064–1085 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duoandikoetxea, J.: Fourier Analysis, Translated and revised from the 1995 Spanish original by D. Cruz-Uribe, Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  12. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. I. McGraw-Hill Book Company, New York (1954)

    MATH  Google Scholar 

  13. Esfahani, A.: Decay properties of the traveling waves of the rotation-generalized Kadomtsev–Petviashvili equation. J. Phys. A Math. Theor. 43, 395201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esfahani, A., Pastor, A.: Ill-posedness results for the (generalized) Benjamin–Ono–Zakharov–Kuznetsov equation. Proc. Am. Math. Soc. 139, 943–956 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esfahani, A., Pastor, A.: Instability of solitary wave solutions for the generalized BO–ZK equation. J. Differ. Equ. 247, 3181–3201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Esfahani, A., Pastor, A.: On the unique continuation property for Kadomtsev–Petviashvili-I and Benjamin–Ono–Zakharov–Kuznetsov equations. Bull. Lond. Math. Soc. 43, 1130–1140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Esfahani, A., Pastor, A., Bona, J.L.: Stability and decay properties of solitary-wave solutions to the generalized BO–ZK equation. Adv. Differ. Equ. 20, 801–834 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Gaidashev, D.G., Zhdanov, S.K.: On the transverse instability of the two-dimensional Benjamin–Ono solitons. Phys. Fluid 16, 1915–1921 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized boson equations. In: Harmonic Analysis and Nonlinear Partial Differential Equations, in: RIMS Kôkyûroku Bessatsu, vol. B26, Res. Inst. Math. Sci. (RIMS), Kyoto, 159–175 (2011)

  20. Kato, K., Pipolo, P.N.: Analyticity of solitary wave solutions to generalized Kadomtsev–Petviashvili equations. Proc. R. Soc. Edinburgh 131A, 391–424 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Latorre, J.C., Minzoni, A.A., Smyth, N.F., Vargas, C.A.: Evolution of Benjamin–Ono solitons in the presence of weak Zakharov–Kuznetsov lateral dispersion. Chaos 16, 043103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lizorkin, P.I.: Multipliers of Fourier integrals. Proc. Steklov Inst. Math. 89, 269–290 (1967)

    MATH  Google Scholar 

  24. López, G.P., Soriano, F.H.: On the existence and analyticity of solitary waves solutions to a two-dimensional Benjamin–Ono equation. arXiv:1503.04291

  25. Mariş, M.: On the existence, regularity and decay of solitary waves to a generalized Benjamin–Ono equation. Nonlinear Anal. 51, 1073–1085 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pelinovsky, D.E., Shrira, V.I.: Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows. Phys. Lett. A 206, 195–202 (1995)

    Article  Google Scholar 

  27. Pelinovsky, D.E., Stepanyants, YuA: Self-focusing instability of nonlinear plane waves in shear flows. Sov. Phys. JETP 78, 883–891 (1994)

    Google Scholar 

  28. Ribaud, F., Vento, S.: Local and global well-posedness results for the Benjamin–Ono–Zakharov–Kuznetsov equation. Discrete Contin. Dyn. Syst. 37, 449–483 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Riesz, M.: Sur les fonctions conjuguées. Math. Z. 27, 218–244 (1927)

    Article  MATH  Google Scholar 

  30. Shrira, V.I.: On surface waves in the upper quasi-uniform ocean layer. Dokl. Akad. Nauk SSSR 308, 732–736 (1989)

    Google Scholar 

  31. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  32. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

  33. Zaiter, I.: Solitary waves of the two-dimensional Benjamin equation. Adv. Differ. Equ. 14, 835–874 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author is partially supported by CNPq-Brazil and FAPESP-Brazil. The authors would like to thank F.H. Soriano for the helpful discussion concerning the construction of the extension operator and the referee for the careful reading and suggestions which improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademir Pastor.

Additional information

Communicated by A. Malchiodi.

Appendix

Appendix

An important question concerning traveling-wave solutions one can ask is about their positivity. In this short appendix we verify that under suitable vanishing conditions at infinity, positive solitary waves do not exist. The numerical result also confirms this fact (see Figure 1).

Fig. 1
figure 1

The solitary wave of (1.6) and its projection curves for \(f(u)=u^2\)

Proposition 4.1

(Nonexistence of positive solitary waves) Suppose that f does not change the sign. Then there is no positive solitary-wave solution \(\varphi \) of (1.5) satisfying

$$\begin{aligned}&\varphi \rightarrow 0, \quad \hbox {as}\; |(x,y)|\rightarrow +\,\infty , \end{aligned}$$
(4.1)
$$\begin{aligned}&\mathscr {H}\varphi _x\rightarrow 0,\quad \hbox {as}\; |x|\rightarrow +\,\infty , \end{aligned}$$
(4.2)
$$\begin{aligned}&\mathscr {H}\varphi \rightarrow 0, \quad \hbox {as}\; |y|\rightarrow +\,\infty . \end{aligned}$$
(4.3)

Proof

It is straightforward to see that if \(\varphi \) is a nontrivial solution of (1.5) satisfying (4.1)–(4.3), then

$$\begin{aligned} \int _{\mathbb {R}}\mathscr {H}\varphi (x,y)\;{d}x=0. \end{aligned}$$
(4.4)

On the other hand, \(\mathscr {H}\varphi =\mathscr {H}k*f(\varphi )\), where

$$\begin{aligned} \widehat{\mathscr {H}k}(\xi ,\eta )=-\mathrm{i}\frac{\xi }{|\xi |+\xi ^2+\eta ^2}. \end{aligned}$$

By an argument similar to Lemma 3.8, there holds

$$\begin{aligned} \mathscr {H}k(x,y)=\sqrt{\pi }\int _0^{+\,\infty }t^{5/2}\mathrm{e}^{-t} \left( t^2x^2+\left( t^2+y^2\right) ^2\right) ^{-\frac{3}{2}} \sin \left( \frac{3}{2}\arctan \left( \frac{t|x|}{t^2+y^2}\right) \right) \;{d}t. \end{aligned}$$

The function \(\mathscr {H}k\) does not change the sign, since

$$\begin{aligned} \sin \left( \frac{3}{2}\arctan (x)\right) =\frac{\sqrt{2}}{2}\frac{(1+(1+x^2)^{1/2})^{1/2}}{(1+x^2)^{3/4}}\left( 2+(1+x^2)^{1/2}\right) >0. \end{aligned}$$

The proof then follows because if \(\varphi \) is positive, \(\mathscr {H}\varphi =\mathscr {H}k*f(\varphi )\) has a definite sign, contradicting (4.4). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfahani, A., Pastor, A. Two dimensional solitary waves in shear flows. Calc. Var. 57, 102 (2018). https://doi.org/10.1007/s00526-018-1383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1383-1

Mathematics Subject Classification

Navigation