Skip to main content
Log in

Random Data Cauchy Theory for the Generalized Incompressible Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider the generalized Navier–Stokes equations where the space domain is \({\mathbb{T}^N}\) or \({\mathbb{R}^N, N\geq3}\) . The generalized Navier–Stokes equations here refer to the equations obtained by replacing the Laplacian in the classical Navier–Stokes equations by the more general operator (−Δ)α with \({\alpha\in (\frac{1}{2},\frac{N+2}{4})}\) . After a suitable randomization, we obtain the existence and uniqueness of the local mild solution for a large set of the initial data in \({H^s, s\in[-\alpha,0]}\) , if \({1 < \alpha < \frac{N+2}{4}, s\in(1-2\alpha,0]}\) , if \({\frac{1}{2} < \alpha\leq 1}\) . Furthermore, we obtain the probability for the global existence and uniqueness of the solution. Specially, our result shows that, in some sense, the Cauchy problem of the classical Navier–Stokes equation is local well-posed for a large set of the initial data in H −1+, exhibiting a gain of \({\frac{N}{2}-}\) derivatives with respect to the critical Hilbert space \({H^{\frac{N}{2}-1}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ayache A., Tzvetkov N.: L p properties of Gaussian random series. Trans. Am. Math. Soc. 360, 4425–4439 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burq N., Tzvetkov N.: Random data Cauchy theory for supercritical wave equations I. Local Theory Invent. Math. 173, 449–475 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Burq N., Tzvetkov N.: Random data Cauchy theory for supercritical wave equations II. A global existence result.. Invent. Math. 173, 477–496 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Cannone, M., Meyer, Y., Planchon, F.: Solutions autosimilaires des équations de Navier–Stokes. Séminaire “Équations aux Dérivées Partielles” de l’École Polytechnique, Exposé VIII (1993–1994)

  6. Chemin J.-Y.: Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel. J. Anal. Math. 77, 27–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farwig R., Sohr H.: Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations. Math. Ann. 345, 631–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujita H., Kato T.: On the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopf E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1950–51), 213–231

    Google Scholar 

  11. Khinchin A.Y.: Ueber dyadische Brüche. Math. Z. 18, 109–116 (1923)

    Article  MathSciNet  Google Scholar 

  12. Kiselev A.A., Ladyzenskaya O.A.: On the existence of uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids. Am. Math. Soc. Trans. Ser. 2(24), 79–106 (1963)

    Google Scholar 

  13. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lions J.-L. (1969) Quelques méthodes de ŕesolution des problèmes aux limites non linéaires. (French) Dunod/Gauthier-Villars, Paris

  15. Paley, R.E.A.C., Zygmund, A.: On some series of functions (1) (2) (3). Proc. Cambridge Philos. Soc. 26 (1930), 337–357, 458–474, 28 (1932), 190–205

  16. Wu J.H.: Generalized MHD equations. J. Differ. Equ. 195, 284–312 (2003)

    Article  MATH  Google Scholar 

  17. Wu J.H.: Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces. Comm. Math. Phys. 263(3), 803–831 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Zhang T., Fang D.Y.: Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations. Proc. Amer. Math. Soc. in press 139, 2827–2837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoyuan Fang.

Additional information

Communicated by M. Hieber

The authors were supported in part by the NSFC of China (10871175, 10931007, 10901137), Zhejiang Provincial Natural Science Foundation of China Z6100217, and SRFDP No. 20090101120005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Fang, D. Random Data Cauchy Theory for the Generalized Incompressible Navier–Stokes Equations. J. Math. Fluid Mech. 14, 311–324 (2012). https://doi.org/10.1007/s00021-011-0069-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-011-0069-7

Mathematics Subject Classification (2010)

Keywords

Navigation