Skip to main content
Log in

Minimal Realizations and Determinantal Representations in the Indefinite Setting

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

For a signature matrix J, we show that a rational matrix function M(z) that is strictly J-contractive on the unit circle \({{\mathbb {T}}}\), has a strict \({\tilde{J}}\oplus J\)-contractive realization \(\begin{bmatrix} A &{} B \\ C &{} D \end{bmatrix}\) for an appropriate signature matrix \({\tilde{J}}\); that is, \( M(z) = D +zC (I -zA)^{-1} B \). As an application, we use this result to show that a two variable polynomial \(p(z_1,z_2)\) of degree \((n_1,n_2)\), \(n_2=1\), without roots on \(\{ (0,0) \} \cup ({{\mathbb {T}}} \times \{ 0 \} ) \cup {{\mathbb {T}}}^2\) allows a determinantal representation

$$\begin{aligned} p(z_1, z_2) = p(0,0) \det (I_{n_1+1} - K Z), \ \ Z = z_1 I_{n_1} \oplus z_2 I_{n_2} , \end{aligned}$$
(1)

where K is a strict \({\tilde{J}}\oplus J\)-contraction. This provides first evidence of a new conjecture that a two variable polynomial \(p(z_1,z_2)\) of degree \((n_1,n_2)\) has a determinantal representation (1) with K a strict \({\tilde{J}}\oplus J\)-contraction if and only if \(p(z_1,z_2)\) has no roots in \(\{ (0,0) \} \cup {{\mathbb {T}}}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay, D., Bolotnikov, V., Dijksma, A., de Snoo, H.: On some operator colligations and associated reproducing kernel Pontryagin spaces. J. Funct. Anal. 136(1), 39–80 (1996)

    Article  MathSciNet  Google Scholar 

  2. Alpay, D., Dijksma, A., Rovnyak, J., de Snoo, H. S. V..: Realization and factorization in reproducing kernel Pontryagin spaces. In Operator theory, system theory and related topics (Beer-Sheva/Rehovot, 1997), volume 123 of Oper. Theory Adv. Appl., pages 43–65. Birkhäuser, Basel, 2001

  3. Alpay, D.: The Schur algorithm, reproducing kernel spaces and system theory, volume 5 of SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, (2001). Translated from the 1998 French original by Stephen S. Wilson

  4. Alpay, D., Azizov, T., Dijksma, A., Langer, H.: The Schur algorithm for generalized Schur functions. I. Coisometric realizations. In Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), volume 129 of Oper. Theory Adv. Appl., pages 1–36. Birkhäuser, Basel, (2001)

  5. Alpay, D., Dijksma, A., Rovnyak, J., de Snoo, H.: Schur functions, operator colligations, and reproducing kernel Pontryagin spaces. Oper. Theor.: Adv. Appli., 96. Birkhäuser Verlag, Basel (1997)

  6. Alpay, D., Dijksma, A., Rovnyak, J., de Snoo, H. S.: Reproducing kernel Pontryagin spaces. In Holomorphic spaces (Berkeley, CA, 1995), volume 33 of Math. Sci. Res. Inst. Publ., pages 425–444. Cambridge Univ. Press, Cambridge, (1998)

  7. Arov, D.Z.: Passive linear steady-state dynamical systems. Sibirsk. Mat. Zh 20(2), 211–228 (1979)

    MathSciNet  MATH  Google Scholar 

  8. Bart, H., Gohberg, I., Kaashoek, M. A.: Minimal factorization of matrix and operator functions, volume 1 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel-Boston, Mass., (1979)

  9. Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17, 413–415 (1966)

    Article  MathSciNet  Google Scholar 

  10. Dritschel, M.A., Rovnyak, J.: Operators on indefinite inner product spaces. Lectures on operator theory and its applications (Waterloo, ON, 1994), 141–232, Fields Inst. Monogr. 3, Amer. Math. Soc., Providence, RI, (1996)

  11. Geronimo, J.S., Iliev, P., Knese, G.: Polynomials with no zeros on a face of the bidisk. J. Funct. Anal. 270(9), 3505–3558 (2016)

    Article  MathSciNet  Google Scholar 

  12. Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V., Woerdeman, H.J.: Stable and real-zero polynomials in two variables. Multidimens. Syst. Signal Process. 27(1), 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  13. Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D.S., Woerdeman, H.J.: Norm-constrained determinantal representations of multivariable polynomials. Complex Anal. Oper. Theory 7(3), 635–654 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jackson, J. D.: Minimal Realizations and Determinantal Representations in the Indefinite Setting. Thesis (Ph.D.)–Drexel University, (2020)

  15. Knese, Greg: Determinantal representations of semihyperbolic polynomials. Michigan Math. J. 65(3), 473–487 (2016)

    Article  MathSciNet  Google Scholar 

  16. Knese, Greg: Kummert’s approach to realization on the bidisk. Indiana Univ. Math. J. 70(6), 2369–2403 (2021)

    Article  MathSciNet  Google Scholar 

  17. Kummert, Anton: Synthesis of two-dimensional lossless m-ports with prescribed scattering matrix. Circ. Syst. Sign. Process. 8(1), 97–119 (1989)

    Article  MathSciNet  Google Scholar 

  18. Lancaster, P., Tismenetsky, M.: The theory of matrices, 2nd edn. In: Computer Science and Applied Mathematics. Academic Press Inc, Orlando, FL (1985)

  19. Lilleberg, L.: Minimal passive realizations of generalized Schur functions in Pontryagin spaces. Complex Anal. Oper. Theory 14, 35 (2020)

    Article  MathSciNet  Google Scholar 

  20. Woerdeman, Hugo J.: Determinantal representations of stable polynomials. Oper. Theory Adv. Appl. 237, 241–246 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank John McCarthy for posing the question of what happens to Kummert’s determinantal representation result when p is allowed roots inside the bidisk, Greg Knese for sharing his notes from previous related work, and Dmitry Kaliuzhnyi-Verbovetskyi, Joseph Ball, Daniel Alpay and André Ran for their email correspondence and conversations about J-contractive realizations. Finally, we thank the referee for a careful reading of our manuscript and making us aware of publication [19].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo J. Woerdeman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

HJW is partially supported by Simons Foundation Grant 355645 and National Science Foundation Grant DMS 2000037.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, J.D., Woerdeman, H.J. Minimal Realizations and Determinantal Representations in the Indefinite Setting. Integr. Equ. Oper. Theory 94, 18 (2022). https://doi.org/10.1007/s00020-022-02697-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-022-02697-1

Keywords

Mathematics Subject Classification

Navigation