Skip to main content
Log in

A Trace Inequality for Commuting d-Tuples of Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

For a commuting d-tuple of operators \(\varvec{T}\) defined on a complex separable Hilbert space \(\mathcal H\), let \(\big [ \!\!\big [ \varvec{T}^*, \varvec{T} \big ]\!\!\big ]\) be the \(d\times d\) block operator \(\big (\!\!\big (\big [ T_j^* , T_i\big ]\big )\!\!\big )\) of the commutators \([T^*_j , T_i] := T^*_j T_i - T_iT_j^*\). We define the determinant of \(\big [ \!\!\big [ \varvec{T}^*, \varvec{T} \big ]\!\!\big ]\) by symmetrizing the products in the Laplace formula for the determinant of a scalar matrix. We prove that the determinant of \(\big [ \!\!\big [ \varvec{T}^*, \varvec{T} \big ]\!\!\big ]\) equals the generalized commutator of the 2d - tuple of operators, \((T_1,T_1^*, \ldots , T_d,T_d^*)\) introduced earlier by Helton and Howe. We then apply the Amitsur–Levitzki theorem to conclude that for any commuting d-tuple of d-normal operators, the determinant of \(\big [ \!\!\big [ \varvec{T}^*, \varvec{T} \big ]\!\!\big ]\) must be 0. We show that if the d-tuple \(\varvec{T}\) is cyclic, the determinant of \(\big [ \!\!\big [ \varvec{T}^*, \varvec{T} \big ]\!\!\big ]\) is non-negative and the compression of a fixed set of words in \(T_j^* \) and \(T_i\)—to a nested sequence of finite dimensional subspaces increasing to \(\mathcal H\)—does not grow very rapidly, then the trace of the determinant of the operator \(\big [\!\! \big [ \varvec{T}^* , \varvec{T}\big ] \!\!\big ]\) is finite. Moreover, an upper bound for this trace is given. This upper bound is shown to be sharp for a class of commuting d-tuples. We make a conjecture of what might be a sharp bound in much greater generality and verify it in many examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amitsur, A.S., Levitski, J.: Minimal identities for algebras. Proc. Am. Math. Soc. 1, 449–463 (1950)

    Article  MathSciNet  Google Scholar 

  2. Athavale, A.: On joint hyponormality of operators. Proc. Am. Math. Soc. 103, 417–423 (1988)

    Article  MathSciNet  Google Scholar 

  3. Berger, C.A., Shaw, B.L.: Self-commutators of multicyclic hyponormal operators are always trace class. Bull. Am. Math. Soc. 79, 1193–1199 (1973)

    Article  Google Scholar 

  4. Biswas, S., Ghosh, G., Misra, G., Shyam Roy, S.: On reducing submodules of Hilbert modules with Sn-invariant kernels. J. Funct. Anal. 276, 751–784 (2019)

    Article  MathSciNet  Google Scholar 

  5. Brown, A.: The unitary equivalence of binormal operators. Am. J. Math. 76, 414–434 (1954)

    Article  MathSciNet  Google Scholar 

  6. Ceauşescu, Z., Vasilescu, F.-H.: Tensor products and the joint spectrum in Hilbert spaces. Proc. Am. Math. Soc. 72, 505–508 (1978)

    Article  MathSciNet  Google Scholar 

  7. Chavan, S., Yakubovich, D.: Spherical tuples of Hilbert space operators. Indiana Univ. Math. J. 64, 577–612 (2015)

    Article  MathSciNet  Google Scholar 

  8. Curto, R.: Applications of several complex variables to multiparameter spectral theory, Surveys of some recent results in operator theory. Vol. II, Longman Sci. Tech., Harlow 192, 25–90 (1988)

  9. Curto, R.E., Salinas, N.: Spectral properties of cyclic subnormal \(m\)-tuples. Am. J. Math. Soc 107, 113–138 (1985)

    Article  MathSciNet  Google Scholar 

  10. Douglas, R.G., Yan, K.: A multi-variable Berger–Shaw theorem. J. Oper. Theory 27, 205–217 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Eschmeier, J., Putinar, M.: Spectral Decompositions and Analytic Sheaves. Oxford University Press (1989)

  12. Guo, K., Wang, Y.: A survey on the Arveson–Douglas conjecture. In: Curto, R., Helton, W., Lin, W., Tang, X., Yang, R., Yu, G. (eds.) Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology Ronald G. Douglas Memorial Volume, pp. 289–311. Birkhauser (2020)

  13. Helton, J.W., Howe, R.E.: Traces of commutators of integral operators. Acta Math. 135, 271–305 (1975)

    Article  MathSciNet  Google Scholar 

  14. Jewell, N.P., Lubin, A.R.: Commuting weighted shifts and analytic function theory in several variables. J. Oper. Theory 1, 207–223 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Misra, G., Shyam Roy, S., Zhang, G.: Reproducing kernel for a class of weighted Bergman spaces on the symmetrized polydisc. Proc. Am. Math. Soc. 141, 2361–2370 (2013)

    Article  MathSciNet  Google Scholar 

  16. Hadwin, D.W., Nordgren, E.A.: Extensions of the Berger–Shaw theorem. Proc. Am. Math. Soc. 102, 517–525 (1988)

    Article  MathSciNet  Google Scholar 

  17. Procesi, C.: On the theorem of Amitsur–Levitzki. Israel J. Math. 207, 151–154 (2015)

    Article  MathSciNet  Google Scholar 

  18. Salinas, N.: A classification problem for essentially n-normal operators. Hilbert space operators. In: Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977, Lecture Notes in Math., vol. 693, pp. 145–156. Springer, Berlin (1978)

  19. Salinas, N.: Extensions of C*-algebras and essentially n-normal operators. Bull Am. Math. Soc. 82, 143–146 (1976)

    Article  MathSciNet  Google Scholar 

  20. Simon, B.: Operator Theory, A Comprehensive Course in Analysis, Part 4. American Mathematical Society, Providence, pp. xviii+749 (2015)

  21. Stampfli, J.G.: Hyponormal operators. Pac. J. Math. 12, 1453–1458 (1962)

    Article  MathSciNet  Google Scholar 

  22. Voiculescu, D.: A note on quasitrianguliarity and trace-class self commutators. Acta Sei. Math. (Szeged) 42, 195–199 (1980)

    MATH  Google Scholar 

  23. Yang, R.: The Berger–Shaw theorem in the Hardy module over the bidisk. J. Oper. Theory 42, 379–404 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Cherian Varughese for several hours of fruitful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadadhar Misra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Misra would like to acknowledge funding through the J C Bose National Fellowship and the MATRICS Grant of SERB. P. Pramanick was supported by a Research Fellowship of the National Board for Higher Mathematics, DAE. K. B. Sinha would like to acknowledge the funding he has received through the Senior Scientist program of INSA. A number of the results presented in this paper are from the PhD thesis of the second named author submitted to the Indian Institute of Science, Bangalore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, G., Pramanick, P. & Sinha, K.B. A Trace Inequality for Commuting d-Tuples of Operators. Integr. Equ. Oper. Theory 94, 16 (2022). https://doi.org/10.1007/s00020-022-02693-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-022-02693-5

Keywords

Mathematics Subject Classification

Navigation