Skip to main content
Log in

Inequalities for Determinants and Characterization of the Trace

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let tr be the canonical trace on the full matrix algebra \({{\cal M}_n}\) with unit I. We prove that if some analog of classical inequalities for the determinant and trace (or the permanent and trace) of matrices holds for a positive functional φ on \({{\cal M}_n}\) with φ(I) = n, then φ = tr. Also, we generalize Fischer’s inequality for determinants and establish a new inequality for the trace of the matrix exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bikchentaev A. M. and Tikhonov O. E., “Characterization of the trace by Young’s inequality,” J. Inequal. Pure Appl. Math., vol. 6, no. 2, Article 49 (2005).

  2. Cho K. and Sano T., “Young’s inequality and trace,” Linear Algebra Appl., vol. 431, no. 8, 1218–1222 (2009).

    Article  MathSciNet  Google Scholar 

  3. Bikchentaev A. M., “Commutation of projections and trace characterization on von Neumann algebras. II,” Math. Notes, vol. 89, no. 4, 461–471 (2011).

    Article  MathSciNet  Google Scholar 

  4. Bikchentaev A. M., “The Peierls-Bogoliubov inequality in C*-algebras and characterization of tracial functionals,” Lobachevskii J. Math., vol. 32, no. 3, 175–179 (2011).

    Article  MathSciNet  Google Scholar 

  5. Marcus M. and Mink H., A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston (1964).

    Google Scholar 

  6. Zhang F., Matrix Theory. Basic Results and Techniques, Springer-Verlag, New York (1999 (Universitext).

    Book  Google Scholar 

  7. Murphy G., C*-Algebras and Operator Theory, Academic Press, Boston (1990).

    MATH  Google Scholar 

  8. Gokhberg I. Ts. and Krein M. G., An Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Amer. Math. Soc., Providence (1969).

    Book  Google Scholar 

  9. Chilin V. I., Krygin A. V., and Sukochev Ph. A., “Extreme points of convex fully symmetric sets of measurable operators,” Integral Equations Operator Theory, vol. 15, no. 2, 186–226 (1992).

    Article  MathSciNet  Google Scholar 

  10. Bikchentaev A. M., “Block projection operators in normed solid spaces of measurable operators,” Russian Math. (Iz. VUZ), vol. 56, no. 2, 75–79 (2012).

    Article  MathSciNet  Google Scholar 

  11. Koliha J. J., “Range projections of idempotents in C*-algebras,” Demonstratio Math., vol. 24, no. 1, 91–103 (2001).

    MathSciNet  MATH  Google Scholar 

  12. Bikchentaev A. M., “On representation of elements of a von Neumann algebra in the form of finite sums of products of projections,” Sib. Math. J., vol. 46, no. 1, 24–34 (2005).

    Article  MathSciNet  Google Scholar 

  13. Bellman R., “Notes on Matrix Theory. II,” Amer. Math. Monthly, vol. 60, no. 3, 173–175 (1953).

    MathSciNet  MATH  Google Scholar 

  14. Mirsky L., “An inequality for positive definite matrices,” Amer. Math. Monthly, vol. 62, no. 6, 428–430 (1955).

    MathSciNet  MATH  Google Scholar 

  15. Lax P. D., Linear Algebra and Its Applications. 2nd ed., Wiley-Interscience, Hoboken, NJ (2007) (Pure Appl. Math.).

    MATH  Google Scholar 

  16. Bhatia R., Matrix Analysis, Springer-Verlag, New York (1997) (Grad. Texts Math.; Vol. 169).

    Book  Google Scholar 

  17. Hansen F. and Pedersen K. G., “Jensen’s inequality for operators and Löwner’s theorem,” Math. Ann., vol. 258, no. 3, 229–241 (1982).

    Article  MathSciNet  Google Scholar 

  18. Bellman R., Introduction to Matrix Analysis. 2nd ed., SIAM, Philadelphia (1997) (Class. Appl. Math.).

    MATH  Google Scholar 

  19. Hardy G. H., Littlewood J. E., and Pólya G., Inequalities, Cambridge University Press, Cambridge etc. (1988).

    MATH  Google Scholar 

  20. Bikchentaev A. M. and Tikhonov O. E., “Characterization of the trace by monotonicity inequalities,” Linear Algebra Appl., vol. 422, no. 1, 274–278 (2007).

    Article  MathSciNet  Google Scholar 

  21. Beckenbach E. F. and Bellman R., Inequalities [Russian translation], Mir, Moscow (1965).

    Book  Google Scholar 

  22. Bikchentaev A. M., “Commutativity of projections and characterization of traces on von Neumann algebras,” Sib. Math. J., vol. 51, no. 6, 971–977 (2010).

    Article  MathSciNet  Google Scholar 

  23. Bikchentaev A. M., “Commutation of projections and characterization of traces on von Neumann algebras. III,” Int. J. Theor. Phys., vol. 54, no. 12, 4482–4493 (2015).

    Article  MathSciNet  Google Scholar 

  24. Bikchentaev A. M., “Trace and differences of idempotents in C*-algebras,” Math. Notes, vol. 105, no. 5, 641–648 (2019).

    Article  MathSciNet  Google Scholar 

  25. Bikchentaev A. M., “Metrics on projections of the von Neumann algebra associated with tracial functionals,” Sib. Math. J., vol. 60, no. 6, 952–956 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bikchentaev.

Additional information

Russian Text © The Author(s), 2020, published in Sibirskii Matematicheskii Zhurnal, 2020, Vol. 61, No. 2, pp. 314–321.

The research was funded by the subsidy allocated to Kazan Federal University for the State Assignment in the Sphere of Scientific Activities, Project 1.13556.2019/13.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikchentaev, A.M. Inequalities for Determinants and Characterization of the Trace. Sib Math J 61, 248–254 (2020). https://doi.org/10.1134/S0037446620020068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620020068

Keywords

Navigation