Skip to main content
Log in

A Sequence of Weighted Birman–Hardy–Rellich Inequalities with Logarithmic Refinements

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

The principal aim of this paper is to extend Birman’s sequence of integral inequalities originally obtained in Mat. Sb. (N.S.) 55(97), 125–174, (1961), and containing Hardy’s and Rellich’s inequality as special cases, to a sequence of inequalities that incorporates power weights \(x^{\alpha }\) for x varying in intervals \((0,\rho ), \rho \in (0,\infty ) \cup \{\infty \}\), on either side and logarithmic refinements on the right-hand side of the inequality as well. Employing a new technique of proof relying on a combination of transforms originally due to Hartman and Müller-Pfeiffer, the parameter \(\alpha \in {{\mathbb {R}}}\) in the power weights is now unrestricted, considerably improving on prior results in the literature. We also discuss optimality of the constants in these inequalities. This continues a tradition of logarithmic refinements in connection with Hardy’s inequality, going back to work in oscillation theory by Kneser (Math. Ann. 42, 409–435, (1893)), Hartman (Am. J. Math. 70, 764-779 (1948)), Hille (Trans. Am. Math. Soc. 64, 234-252 (1948)), and Rellich (Math. Ann. 122, 343–368 (1951)), resulting in a sequence of sharp statements of boundedness from below by zero of a class of homogeneous 2mth order differential operators on \(C_0^{\infty }((0,\rho ))\). We also prove the analogous inequalities on exterior intervals, that is, for \(f \in C_0^{\infty }((\rho ,\infty ))\). Finally, we also indicate a vector-valued version of these inequalities, replacing complex-valued \(f(\,\cdot \,)\) by \(f(\,\cdot \,) \in {{\mathcal {H}}}\), with \({{\mathcal {H}}}\) a complex, separable Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Chaudhuri, N., Ramaswami, M.: An improved Hardy-Sobolev inequality and its application. Proc. Am. Math. Soc. 130, 489–505 (2001)

  2. Adimurthi, Esteban, M.J.: An improved Hardy–Sobolev inequality in \(W^{1,p}\) and its application to Schrödinger operators. Nonlinear Differ. Equ. Appl. 12, 243–263 (2005)

  3. Adimurthi, Filippas, S., Tertikas, A.: On the best constant of Hardy–Sobolev inequalities. Nonlinear Anal. 70, 2826–2833 (2009)

  4. Adimurthi, Grossi, M., Santra, S.: Optimal Hardy–Rellich inequalities, maximum principle and related eigenvalue problem. J. Funct. Anal. 240, 36–83 (2006)

  5. Adimurthi, Sandeep, K.: Existence and non-existence of the first eigenvalue of the perturbed Hardy–Sobolev operator. Proc. R. Soc. Edinb. A 132, 1021–1043 (2002)

  6. Adimurthi, Santra, S.: Generalized Hardy–Rellich inequalities in critical dimension and its applications. Comm. Contemp. Math. 11, 367–394 (2009)

  7. Adimurthi, Sekar, A.: Role of the fundamental solution in Hardy–Sobolev-type inequalities. Proc. R. Soc. Edinb. Sect. A 136, 1111–1130 (2006)

  8. Allegretto, W.: Nonoscillation theory of elliptic equations of order \(2n\). Pac. J. Math. 64, 1–16 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alvino, A., Volpicelli, R., Volzone, B.: On Hardy inequalities with a remainder term. Ric. Mater. 59, 265–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ando, H., Horiuchi, T.: Missing terms in the weighted Hardy–Sobolev inequalities and its application. Kyoto J. Math. 52, 759–796 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arendt, W., Goldstein, G.R., Goldstein, J.A.: Outgrowths of Hardy’s inequality. In: Chernov, N., Karpeshina, Y., Knowles, I.W., Lewis, R.T., Weikard, R. (Eds.) Recent Advances in Differential Equations and Mathematical Physics. Contemporary Mathematics, vol. 412, pp. 51–68. American Mathematical Society, Providence (2006)

  12. Avkhadiev, F.G.: The generalized Davies problem for polyharmonic operators. Sib. Math. J. 58, 932–942 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Balinsky, A., Evans, W.D.: Spectral Analysis of Relativistic Operators. Imperial College Press, London (2011)

    MATH  Google Scholar 

  14. Balinsky, A.A., Evans, W.D., Lewis, R.T.: The Analysis and Geometry of Hardy’s Inequality. Universitext, Springer, Cham (2015)

  15. Barbatis, G.: Best constants for higher-order Rellich inequalities in \(L^{p}(\Omega )\). Math Z. 255, 877–896 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Barbatis, G., Fillipas, S., Tertikas, A.: Series expansion for \(L^p\) Hardy inequalities. Indiana Univ. Math. J. 52, 171–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Barbatis, G., Filippas, S., Tertikas, A.: Sharp Hardy and Hardy–Sobolev inequalities with point singularities on the boundary. J. Math. Pures Appl. 117, 146–184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bennett, D.M.: An extension of Rellich’s inequality. Proc. Am. Math. Soc. 106, 987–993 (1989)

  19. Birman, M.S.: The spectrum of singular boundary problems. Mat. Sb. (N.S.) 55(97), 125–174 (1961) (in Russian). Engl. transl. in Amer. Math. Soc. Transl., Ser. 2 53, 23–80 (1966)

  20. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(25), 217–237 (1997)

  21. Caldiroli, P., Musina, R.: Rellich inequalities with weights. Calc. Var. 45, 147–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chisholm, R.S., Everitt, W.N., Littlejohn, L.L.: An integral operator inequality with applications. J. Inequal. Appl. 3, 245–266 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Chuah, C.Y., Gesztesy, F., Littlejohn, L.L., Mei, T., Michael, I., Pang, M.M.H.: On weighted Hardy-type inequalities. Math. Ineqal. Appl. 23, 625–646 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Cowan, C.: Optimal Hardy inequalities for general elliptic operators with improvements. Commun. Pure Appl. Anal. 9, 109–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Davies, E.B.: Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  26. Davies, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in \(L_{p}(\Omega )\). Math. Z. 227, 511–523 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Detalla, A., Horiuchi, T., Ando, H.: Missing terms in Hardy–Sobolev inequalities and Its Application. Far East J. Math. Sci. 14, 333–359 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Detalla, A., Horiuchi, T., Ando, H.: Missing terms in Hardy–Sobolev inequalities. Proc. Jpn. Acad. A 80, 160–165 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Detalla, A., Horiuchi, T., Ando, H.: Sharp remainder terms of Hardy–Sobolev inequalities. Math. J. Ibaraki Univ. 37, 39–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Detalla, A., Horiuchi, T., Ando, H.: Sharp remainder terms of the Rellich inequality and its application. Bull. Malays. Math. Sci. Soc. 35(2A), 519–528 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Dimitrov, D.K., Gadjev, I., Nikolov, G., Uluchev, R.: Hardy’s inequalities in finite dimensional Hilbert spaces. Proc. Am. Math. Soc. 149, 2515–2529 (2021)

  32. Dubinskii, Yu.A.: Hardy inequalities with exceptional parameter values and applications. Doklady Math. 80, 558–562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dubinskii, Yu.A.: A Hardy-type inequality and its applications. Proc. Steklov Inst. Math. 269, 106–126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dubinskii, Yu.A.: Bilateral scales of Hardy inequalities and their applications to some problems in mathematical physics. J. Math. Sci. 201, 751–795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Duy, N.T., Lam, N., Triet, N.A.: Hardy–Rellich identities with Bessel pairs. Arch. Math. 113, 95–112 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Duy, N.T., Lam, N., Triet, N.A.: Improved Hardy and Hardy–Rellich type inequalities with Bessel pairs via factorization. J. Spect. Theory 10, 1277–1302 (2020)

  37. Filippas, S., Tertikas, A.: Optimizing improved Hardy inequalities. J. Funct. Anal. 192, 186–233 (2002). (Corrigendum: J. Funct. Anal. 255, 2095 (2008); see also [82])

  38. Folland, G.B.: Real Analysis. Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)

  39. Gazzola, F., Grunau, H.-C., Mitidieri, E.: Hardy inequalities with optimal constants and remainder terms. Trans. Am. Math. Soc. 356, 2149–2168 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gesztesy, F.: On non-degenerate ground states for Schrödinger operators. Rep. Math. Phys. 20, 93–109 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gesztesy, F., Littlejohn, L.L.: Factorizations and Hardy–Rellich-type inequalities. In: Gesztesy, F., Hanche-Olsen, H., Jakobsen, E., Lyubarskii, Y., Risebro, N., Seip, K. (Eds.) Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. A Volume in Honor of Helge Holden’s 60th Birthday. EMS Congress Reports, pp. 207–226 (2018)

  42. Gesztesy, F., Littlejohn, L.L., Michael, I., Pang, M.M.H.: Radial and logarithmic refinements of Hardy’s inequality. St. Petersb. Math. J. 30, 429–436 (2019)

  43. Gesztesy, F., Littlejohn, L.L., Michael, I., Wellman, R.: On Birman’s sequence of Hardy–Rellich-type inequalities. J. Differ. Eq. 264, 2761–2801 (2018)

  44. Gesztesy, F., Michael, I., Pang, M.M.H.: Optimality of Constants in Power-Weighted Birman–Hardy–Rellich Inequalities with Logarithmic Refinements “preprint” (2021)

  45. Gesztesy, F., Michael, I., Pang, M.M.H.: A Sequence of Multi-dimensional Weighted Birman–Hardy–Rellich Inequalities with Radial and Logarithmic Refinements “in preparation”

  46. Gesztesy, F., Ünal, M.: Perturbative oscillation criteria and Hardy-type inequalities. Math. Nachr. 189, 121–144 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gkikas, K.T., Psaradakis, G.: Optimal non-homogeneous improvements for the series expansion of Hardy’s inequality. arXiv:1805.10935

  48. Glazman, I.M.: Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, Jerusalem, 1965. Daniel Davey & Co., Inc., New York (1966)

    Google Scholar 

  49. Ghoussoub, N., Moradifam, A.: On the best possible remaining term in the Hardy inequality. Proc. Nat. Acad. Sci. 105(37), 13746–13751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ghoussoub, N., Moradifam, A.: Bessel pairs and optimal Hardy and Hardy–Rellich inequalities. Math. Ann. 349, 1–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ghoussoub, N., Moradifam, A.: Functional Inequalities: New Perspectives and New Applications, Math. Surveys Monographs, vol. 187. American Mathematics Society, Providence (2013)

  52. Goldstein, G.R., Goldstein, J.A., Mininni, R.M., Romanelli, S.: Scaling and variants of Hardy’s inequality. Proc. Am. Math. Soc. 147, 1165–1172 (2019)

  53. Grillo, G.: Hardy and Rellich-type inequalities for metrics defined by vector fields. Potential Anal. 18, 187–217 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hardy, G.H.: Notes on some points in the integral calculus, LX. An inequality between integrals. Messeng. Math. 54, 150–156 (1925)

    Google Scholar 

  55. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge “reprinted” (1988)

  56. Hartman, P.: On the linear logarithmic-exponential differential equation of the second-order. Am. J. Math. 70, 764–779 (1948)

    Article  MATH  Google Scholar 

  57. Hartman, P.: Ordinary Differential Equations, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  58. Herbst, I.W.: Spectral theory of the operator \((p^2 + m^2)^{1/2} - Ze^2/r\). Commun. Math. Phys. 53, 285–294 (1977)

    Article  MATH  Google Scholar 

  59. Hille, E.: Non-oscillation theorems. Trans. Am. Math. Soc. 64, 234–252 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  60. Hille, E.: Lectures on Ordinary Differential Equations. Addison–Wesley, Reading (1969)

  61. Hinz, A.M.: Topics from spectral theory of differential operators. In: del Rio, R., Villegas-Blas, C. (Eds.) Spectral Theory of Schrödinger Operators. Contemporary Mathematics, vol. 340, pp. 1–50. American Mathematics Society, Providence (2004)

  62. Ioku, N., Ishiwata, M.: A scale invariant form of a critical Hardy inequality. Int. Math. Res. Notes 2015(18), 8830–8846 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Kalf, H., Schmincke, U.-W., Walter, J., Wüst, R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. In: Everitt, W.N. (Ed.) Spectral Theory and Differential Equations. Lecture Notes in Mathematics, vol. 448, pp. 182–226. Springer, Berlin (1975)

  64. Kneser, A.: Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen. Math. Ann. 42, 409–435 (1893)

    Article  MathSciNet  MATH  Google Scholar 

  65. Kovalenko, V.F., Perelmuter, M.A., Semenov, Ya.. A.: Schrödinger operators with \(L^{1/2}_w({\mathbb{R}}^{\ell })\)-potentials. J. Math. Phys. 22, 1033–1044 (1981)

  66. Kufner, A.: Weighted Sobolev Spaces. A Wiley-Interscience Publication. Wiley (1985)

  67. Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality: About Its History and Some Related Results. Vydavatelský Servis, Pilsen (2007)

    MATH  Google Scholar 

  68. Kufner, A., Persson, L.-E., Samko, N.: Weighted Inequalities of Hardy Type, 2nd edn. World Scientific, Singapore (2017)

    Book  MATH  Google Scholar 

  69. Kufner, A., Wannebo, A.: Some remarks on the Hardy inequality for higher order derivatives. Int. Ser. Numer. Math. 103, 33–48 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  70. Kuroda, S.T.: An Introduction to Scattering Theory, Aarhus University Lecture Notes Series. No. 51 (1978)

  71. Landau, E.: A note on a theorem concerning series of positive terms: extract from a letter of Prof. E. Landau to Prof. I. Schur. J. Lond. Math. Soc. 1, 38–39 (1926)

  72. Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 181, 2nd edn. American Mathematics Society, Providence (2017)

  73. Machihara, S., Ozawa, T., Wadade, H.: Hardy type inequalities on balls. Tohoku Math. J. 65, 321–330 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  74. Machihara, S., Ozawa, T., Wadade, H.: Scaling invariant Hardy inequalities of multiple logarithmic type on the whole space. J. Inequal. Appl. 281, 1–13 (2015)

    MathSciNet  MATH  Google Scholar 

  75. Machihara, S., Ozawa, T., Wadade, H.: Remarks on the Hardy type inequalities with remainder terms in the framework of equalities. arXiv:1611.03580

  76. Machihara, S., Ozawa, T., Wadade, H.: Remarks on the Rellich inequality. Math. Z. 286, 1367–1373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  77. Metafune, G., Sobajima, M., Spina, C.: Weighted Calderón-Zygmund and Rellich inequalities in \(L^p\). Math. Ann. 361, 313–366 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  78. Mitidieri, E.: A simple approach to Hardy inequalities. Math. Notes 67, 479–486 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  79. Moradifam, A.: Optimal weighted Hardy–Rellich inequalities on \(H^{2} \cap H_{0}^{1}\). J. Lond. Math. Soc. 85, 22–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44, 31–38 (1972)

  81. Müller-Pfeiffer, E.: Spectral Theory of Ordinary Differential Operators. Ellis Horwood Limited, West Sussex (1981)

    MATH  Google Scholar 

  82. Musina, R.: A note on the paper “Optimizing improved Hardy inequalities” by S. Filippas and A. Tertikas. J. Funct. Anal. 256, 2741–2745 (2009)

  83. Musina, R.: Weighted Sobolev spaces of radially symmetric functions. Ann. Mater. 193, 1629–1659 (2014)

    MathSciNet  MATH  Google Scholar 

  84. Musina, R.: Optimal Rellich–Sobolev constants and their extremals. Differ. Integr. Equ. 27, 570–600 (2014)

    MathSciNet  MATH  Google Scholar 

  85. Ngô, Q.A., Nguyen, V.N.: A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic problems. arXiv:1905.01864

  86. Noussair, E.S., Yoshida, N.: Nonoscillation criteria for elliptic equations of order \(2m\). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 59(1–2), 57–64 (1975) (1976)

  87. Okazawa, N., Tamura, H., Yokota, T.: Square Laplacian perturbed by inverse fourth-power potential. I Self-adjointness (real case). Proc. R. Soc. Edinb. 141A, 409–416 (2011)

  88. Opic, B., Kufner, A.: Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219. Longman Scientific & Technical, Harlow (1990)

    MATH  Google Scholar 

  89. Persson, L.-E., Samko, S.G.: A note on the best constants in some Hardy inequalities. J. Math. Inequal. 9, 437–447 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  90. Rellich, V.F.: Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. Math. Ann. 122, 343–368 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  91. Rellich, F.: Perturbation Theory of Eigenvalue Problems. Gordon and Breach (1969)

  92. Ruzhansky, M., Suragan, D.: Hardy and Rellich inequalities, and sharp remainders on homogeneous groups. Adv. Math. 317, 799–822 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  93. Ruzhansky, M., Yessirkegenov, N.: Factorizations and Hardy–Rellich inequalities on stratified groups. J. Spectral Theory “to appear”. arXiv:1706.05108

  94. Sano, M.: Extremal functions of generalized critical Hardy inequalities. J. Differ. Equ. 267, 2594–2615 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  95. Sano, M., Takahashi, F.: Sublinear eigenvalue problems with singular weights related to the critical Hardy inequality. Electron. J. Differ. Equ. 212, 1–12 (2016)

    MathSciNet  MATH  Google Scholar 

  96. Schmincke, U.-W.: Essential selfadjointness of a Schrödinger operator with strongly singular potential. Math. Z. 124, 47–50 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  97. Simon, B.: Hardy and Rellich inequalities in non-integral dimension. J. Oper. Theory 9, 143–146 (1983)

    MATH  Google Scholar 

  98. Solomyak, M.: A remark on the Hardy inequalities. Integr. Equ. Oper. Theory 19, 120–124 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  99. Takahashi, F.: A simple proof of Hardy’s inequality in a limiting case. Arch. Math. 104, 77–82 (2015)

  100. Tertikas, A., Zographopoulos, N.B.: Best constants in the Hardy–Rellich inequalities and related improvements. Adv. Math. 209, 407–459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  101. Yafaev, D.: Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168, 121–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with Marius Mitrea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Optimality of \(A(\ell ,\alpha )\), \(1 \le \ell \le m\)

In this appendix we demonstrate sharpness of the constants \(A(\ell ,\alpha )\), \(1 \le \ell \le m\).

Theorem A.1

The constants \(A(\ell ,\alpha )\), \(1 \le \ell \le m\), \(\alpha \in {{\mathbb {R}}}\backslash \{2j-1\}_{1 \le j \le \ell }\), in Theorems 3.1 and 3.5 are sharp.

Proof

For simplicity, we consider the interval \((0,\rho )\) (the case \((\rho ,\infty )\) being completely analogous).

To simplify notation we assume, without loss of generality, that \(\rho > 2\) for the remainder of this proof.

We first present the proof for the case \(\ell = m\) and near the end indicate the necessary changes to treat the analogous cases \(1 \le \ell \le m-1\), \(m \ge 2\). Introducing

$$\begin{aligned} y_0(x) = x^{(2\ell - 1 - \alpha )/2}, \quad x > 0, \; \ell \in {{\mathbb {N}}}, \; \alpha \in {{\mathbb {R}}}, \end{aligned}$$
(A.1)

one notes the facts

$$\begin{aligned}&y_0^{(\ell )}(x) = 2^{- \ell } (2\ell -1-\alpha )(2\ell -3-\alpha ) \cdots (3-\alpha )(1-\alpha ) x^{-(1+\alpha )/2},\qquad \end{aligned}$$
(A.2)
$$\begin{aligned}&x^{\alpha } \big [y_0^{(\ell )}\big ]^2 = A(\ell ,\alpha ) x^{\alpha -2\ell } [y_0(x)]^2 = A(\ell ,\alpha ) x^{-1}, \end{aligned}$$
(A.3)
$$\begin{aligned}&(- 1)^{\ell } \big (x^{\alpha } y_0^{(\ell )}(x)\big )^{(\ell )} - A(\ell ,\alpha ) x^{\alpha - 2 \ell } y_0(x) = 0. \end{aligned}$$
(A.4)

Next, we also introduce the cutoff functions

$$\begin{aligned}&\phi \in C^{\infty }({{\mathbb {R}}}), \quad 0 \le \phi (x) \le 1, \, x \in {{\mathbb {R}}}, \quad \phi (x) = {\left\{ \begin{array}{ll} 0, &{} x \le 1, \\ 1, &{} x \ge 2, \end{array}\right. } \qquad \end{aligned}$$
(A.5)
$$\begin{aligned}&\phi _{\varepsilon }(x) = \phi (x/\varepsilon ), \, x \in {{\mathbb {R}}}, \, 0 < \varepsilon \text { sufficiently small},\qquad \end{aligned}$$
(A.6)
$$\begin{aligned}&\psi \in C^{\infty }({{\mathbb {R}}}), \quad 0 \le \psi (x) \le 1, \, x \in {{\mathbb {R}}}, \quad \psi (x) = {\left\{ \begin{array}{ll} 1, &{} x \le \rho -2, \\ 0, &{} x \ge \rho -1, \end{array}\right. }\qquad \end{aligned}$$
(A.7)

and mollify \(y_0\) as follows,

$$\begin{aligned} y_{0,\varepsilon }(x) = y_0(x) \phi _{\varepsilon }(x) \psi (x), \; 0 \le x \le \rho , \quad y_{0,\varepsilon } \in C_0^{\infty }((0,\rho )). \end{aligned}$$
(A.8)

Then one verifies

$$\begin{aligned}&A(\ell ,\alpha ) \int _0^{\rho } dx \, x^{\alpha - 2 \ell } [y_{0,\varepsilon }(x)]^2\nonumber \\&\quad = A(\ell ,\alpha ) \int _0^{\rho } dx \, x^{-1} \phi (x/\varepsilon )^2 \psi (x)^2 \nonumber \\&\quad = A(\ell ,\alpha ) \int _{\varepsilon }^{\rho -2} dx \, x^{-1} \phi (x/\varepsilon )^2 + A(\ell ,\alpha ) \int _{\rho -2}^{\rho -1} dx \, x^{-1} \psi (x)^2 \nonumber \\&\quad = A(\ell ,\alpha ) \int _{2}^{(\rho - 2)/\varepsilon } d\xi \, \xi ^{-1} \phi (\xi )^2 + A(\ell ,\alpha ) \int _1^2 d\xi \, \xi ^{-1} \phi (\xi )^2 \nonumber \\&\qquad + A(\ell ,\alpha ) \int _{\rho -2}^{\rho -1} dx \, x^{-1} \psi (x)^2 \nonumber \\&\quad \underset{\varepsilon \downarrow 0}{=} A(\ell ,\alpha ) \ln (1/\varepsilon ) + O(1), \end{aligned}$$
(A.9)

and

$$\begin{aligned} \int _0^{\rho } dx \, x^{\alpha } \big [y_{0,\varepsilon }^{(\ell )}(x)\big ]^2= & {} \int _{\varepsilon }^{\rho -2} dx \, x^{\alpha } \big [y_{0,\varepsilon }^{(\ell )}(x)\big ]^2 + \int _{\rho -2}^{\rho -1} dx \, x^{\alpha } \big [y_{0,\varepsilon }^{(\ell )}(x)\big ]^2 \nonumber \\= & {} \int _{\varepsilon }^{\rho -2} dx \, x^{\alpha } \big \{[(y_0(x) \phi (x/\varepsilon )]^{(\ell )}\big \}^2 \nonumber \\&+ \int _{\rho -2}^{\rho -1} dx \, x^{\alpha } \big \{[y_0(x) \psi (x)]^{(\ell )}\big \}^2. \end{aligned}$$
(A.10)

Next, one employs

$$\begin{aligned}{}[y_0(x) \phi (x/\varepsilon )]^{(\ell )}= & {} \sum _{k=0}^{\ell } \begin{pmatrix} \ell \\ k \end{pmatrix} y_0^{(\ell -k)}(x) \frac{d^k}{dx^k} \phi (x/\varepsilon ) \nonumber \\= & {} x^{-(1 + \alpha )/2} \sum _{k=0}^{\ell } c_{\ell ,k,\alpha } (x/\varepsilon )^k \phi ^{(k)}(x/\varepsilon ), \end{aligned}$$
(A.11)

where

$$\begin{aligned} \begin{aligned} c_{\ell ,0,\alpha }&= 2^{- \ell } (2\ell -1-\alpha )(2\ell -3-\alpha ) \cdots (3-\alpha )(1-\alpha ), \\ c_{\ell ,0,\alpha }^2&= A(\ell ,\alpha ). \end{aligned} \end{aligned}$$
(A.12)

Thus, one can continue (A.10) as follows:

$$\begin{aligned} \,(A.10)= & {} \int _{\varepsilon }^{\rho -2} dx \, x^{-1} \Bigg [\sum _{k=0}^{\ell } c_{\ell ,k,\alpha } (x/\varepsilon )^k \phi ^{(k)}(x/\varepsilon )\Bigg ]^2 \nonumber \\&+ \int _{\rho -2}^{\rho -1} dx \, x^{\alpha } \big \{[y_0(x) \psi (x)]^{(\ell )}\big \}^2 \nonumber \\= & {} \int _{1}^{(\rho -2)/\varepsilon } d\xi \, \xi ^{-1} \Bigg [\sum _{k=0}^{\ell } c_{\ell ,k,\alpha } \xi ^k \phi ^{(k)}(\xi )\Bigg ]^2 \nonumber \\&+ \int _{\rho -2}^{\rho -1} dx \, x^{\alpha } \big \{[y_0(x) \psi (x)]^{(\ell )}\big \}^2 \nonumber \\= & {} \int _{1}^{(\rho -2)/\varepsilon } d\xi \, \xi ^{-1} \Bigg [c_{\ell ,0,\alpha } \phi (\xi ) + \sum _{k=1}^{\ell } c_{\ell ,k,\alpha } \xi ^k \phi ^{(k)}(\xi )\Bigg ]^2 \nonumber \\&+ \int _{\rho -2}^{\rho -1} dx \, x^{\alpha } \big \{[y_0(x) \psi (x)]^{(\ell )}\big \}^2 \nonumber \\= & {} A(\ell ,\alpha ) \int _{1}^{(\rho -2)/\varepsilon } d\xi \, \xi ^{-1} \phi (\xi )^2 \nonumber \\&+ \int _{1}^{2} d\xi \, \xi ^{-1} \Bigg \{2 c_{\ell ,0,\alpha } \phi (\xi ) \sum _{k=1}^{\ell } c_{\ell ,k,\alpha } \xi ^k \phi ^{(k)}(\xi ) \nonumber \\&+ \Bigg [\sum _{k=1}^{\ell } c_{\ell ,k,\alpha } \xi ^k \phi ^{(k)}(\xi )\Bigg ]^2 \Bigg \} + \int _{\rho -2}^{\rho -1} dx \, x^{\alpha } \big \{[y_0(x) \psi (x)]^{(\ell )}\big \}^2 \nonumber \\&\underset{\varepsilon \downarrow 0}{=} A(\ell ,\alpha ) \int _{1}^{(\rho -2)/\varepsilon } d\xi \, \xi ^{-1} \phi (\xi )^2 + O(1) \nonumber \\&\underset{\varepsilon \downarrow 0}{=} A(\ell ,\alpha ) \int _{2}^{(\rho -2)/\varepsilon } d\xi \, \xi ^{-1} + A(\ell ,\alpha ) \int _{1}^{2} d\xi \, \xi ^{-1} \phi (\xi )^2 + O(1) \nonumber \\&\underset{\varepsilon \downarrow 0}{=} A(\ell ,\alpha ) \ln (1/\varepsilon ) + O(1), \end{aligned}$$
(A.13)

employing the fact that \({{\,\mathrm{supp}\,}}\big (\phi ^{(k)}\big ) \subseteq [1,2]\), \(k \ge 1\). Thus, (A.9) and (A.13) yield

$$\begin{aligned} \frac{ \int _0^{\rho } dx \, x^{\alpha } \big [y_{0,\varepsilon }^{(\ell )}(x)\big ]^2}{A(\ell ,\alpha ) \int _0^{\rho } dx \, x^{\alpha - 2 \ell } [y_{0,\varepsilon }(x)]^2 } \underset{\varepsilon \downarrow 0}{=} 1 + O(1/\ln (1/\varepsilon )), \end{aligned}$$
(A.14)

proving sharpness of \(A(\ell ,\alpha )\) for \(\ell \in {{\mathbb {N}}}\) and \(\alpha \in {{\mathbb {R}}}\backslash \{2j-1\}_{1 \le j \le \ell }\) on the function space \(C_0^{\infty }((0,\rho ))\).

For \(1 \le \ell \le m-1\), \(m \ge 2\), one replaces \(y_0\) by

$$\begin{aligned} \begin{aligned}&f_0(x) = [\widetilde{A}(\ell ,\alpha )/ \widetilde{A}(m,\alpha )] x^{(2m - \alpha - 1)/2}, \quad x >0, \; \alpha \in {{\mathbb {R}}}, \\&\widetilde{A}(\ell ,\alpha ) = 2^{-\ell } (2 \ell - 1 - \alpha )(2 \ell - 3 - \alpha ) \cdots (3-\alpha ) (1 - \alpha ), \quad \alpha \in {{\mathbb {R}}}, \end{aligned}\qquad \end{aligned}$$
(A.15)

and observes the facts,

$$\begin{aligned} f_0^{(m - \ell )}(x)= & {} x^{(2\ell - 1 - \alpha )/2}, \end{aligned}$$
(A.16)
$$\begin{aligned} f_0^{(m)}(x)= & {} \widetilde{A}(\ell ,\alpha ) x^{- (\alpha + 1)/2}, \end{aligned}$$
(A.17)
$$\begin{aligned} x^{\alpha } \big [f_0^{(m)}(x)\big ]^2= & {} A(\ell ,\alpha ) x^{\alpha - 2 \ell } \big [f_0^{(m-\ell )}(x)\big ]^2 = A(\ell ,\alpha ) x^{-1}, \end{aligned}$$
(A.18)

and then mollifies \(f_0\) as before via

$$\begin{aligned} f_{0,\varepsilon }(x) = f_0(x) \phi _{\varepsilon }(x) \psi (x), \; 0 \le x \le \rho , \quad f_{0,\varepsilon } \in C^{\infty }_0((0, \rho )). \end{aligned}$$
(A.19)

At this point one can follow the above proof step by step arriving at

$$\begin{aligned} \frac{ \int _0^{\rho } dx \, x^{\alpha } \big [f_{0,\varepsilon }^{(m)}(x)\big ]^2}{A(\ell ,\alpha ) \int _0^{\rho } dx \, x^{\alpha - 2 \ell } \big [f_{0,\varepsilon }^{(m-\ell )}(x)\big ]^2 } \underset{\varepsilon \downarrow 0}{=} 1 + O(1/\ln (1/\varepsilon )), \end{aligned}$$
(A.20)

once more proving sharpness of \(A(\ell ,\alpha )\) for \(\ell \in {{\mathbb {N}}}\) and \(\alpha \in {{\mathbb {R}}}\backslash \{2j-1\}_{1 \le j \le \ell }\).

Since Theorem 3.5 exhibits the same constant \(A(\ell ,\alpha )\), the latter is sharp also for the larger function space \(H_0^m((0,\rho ); x^{\alpha }dx)\). \(\square \)

Remark A.2

(i) Once more we recall that \(A(\ell ,\alpha ) = 0\) if and only if \(\alpha \in \{2j-1\}_{1 \le j \le \ell }\). Thus, the inequality

$$\begin{aligned} \int _0^{\rho } dx \, x^{\alpha } \big | f^{(m )}(x) \big |^{2} \ge A(\ell , \alpha ) \int _0^{\rho } dx \, x^{\alpha - 2\ell } \big |f^{(m - \ell )}(x)\big |^{2}, \quad f \in C_0^{\infty }((0,\rho )), \nonumber \\ \end{aligned}$$
(A.21)

is rendered trivial if \(\alpha \in \{2j-1\}_{1 \le j \le \ell }\), with the right-hand side of (A.21) being zero. The same observation applies of course to the remaining three cases (i), (ii), and (iv) in Theorem 3.1. However, we emphasize that inequalities (3.1)–(3.4) remain valid and nontrivial with just the first terms on their right-hand sides removed.

(ii) For \(\alpha \in {{\mathbb {R}}}\backslash \{2j-1\}_{1 \le j \le \ell }\), inequality (A.21) extends to \(\rho = \infty \), again with \(A(\ell , \alpha )\) being the sharp constant for \(f \in C_0^{\infty }((0,\infty ))\). In particular, the proof of Theorem A.1, suitably adapted, extends to the case \(\rho = \infty \). (This observation applies of course to cases (i), (ii) (if \(\rho = 0\)), and (iii), (iv) (if \(\rho = \infty \)) in Theorem 3.1.) This is of course in accordance with the fact that \(C_0^{\infty }((0,\rho ))\)-functions extended by zero beyond \(\rho \), \(\rho \in (0,\infty )\), can be viewed as a subset of \(C_0^{\infty }((0,\infty ))\). \(\diamond \)

Remark A.3

Regarding sharpness (optimality) of constants, we first note that the smaller the underlying function space, the larger the efforts needed to prove optimality. In particular, in connection with the proof presented in Theorem A.1, assuming \(f \in C_0^{\infty }((0,\rho ))\) requires mollification of \(y_0\) in (A.1) near \(x=0\) and \(x=\rho \) and of course analogously in the case \(f \in C_0^{\infty }((\rho ,\infty ))\). Many of the results cited in the remainder of this remark, under particular restrictions on the weight parameter \(\alpha \), establish sharpness for larger classes of functions f which do not automatically continue to hold in the \(C_0^{\infty }((0,\rho ))\)-context (the issue of dependence of optimal constants on the underlying function space is nicely illustrated in [31]). It is this simple observation that adds considerable complexity to sharpness proofs for the space \(C_0^{\infty }((0,\rho ))\). (By the same token, optimality proofs obtained for \(C_0^{\infty }\) function spaces automatically hold for larger function spaces as long as the inequalities have already been established for the larger function spaces with the same constants \(A(m,\alpha ), B(m,\alpha )\).) This comment applies, in particular, to many papers that prove sharpness results in multi-dimensional situations for larger function spaces such as \(C_0^{\infty }(B(0;\rho ))\) or (homogeneous, weighted) Sobolev spaces rather than \(C_0^{\infty }(B(0;\rho ) \backslash \{0\})\), \(B(0;\rho ) \subseteq {{\mathbb {R}}}^n\) the open ball in \({{\mathbb {R}}}^n\), \(n \ge 2\), with center at the origin \(x=0\) and radius \(\rho > 0\). Unless \(C_0^{\infty }(B(0;\rho ) \backslash \{0\})\) is dense in the appropriate norm (cf. the discussion preceding Theorem 3.5 in the one-dimensional context), one cannot a priori assume that the optimal constants \(A(m, \widetilde{\alpha })\) and \(B(m, \widetilde{\alpha })\) (with \(\widetilde{\alpha }\) appropriately depending on n, e.g., \(\widetilde{\alpha }= \alpha + n - 1\)) remain the same for \(C_0^{\infty }(B(0;\rho ))\) and \(C_0^{\infty }(B(0;\rho ) \backslash \{0\})\), say. At least in principle, they could actually increase for the space \(C_0^{\infty }(B(0;\rho ) \backslash \{0\})\). In this context we emphasize that the multi-dimensional results then naturally lead to one-dimensional results for \(C_0^{\infty }((0,\rho ))\) upon specializing to radially symmetric functions in \(C_0^{\infty } (B(0;\rho ) \backslash \{0\})\).

Sharpness of the constant A(m, 0), \(m \in {{\mathbb {N}}}\) (i.e., in the unweighted case, \(\alpha = 0\)), in connection with the space \(C_0^{\infty }((0,\infty ))\) has been shown by Yafaev [101]. In fact, he also established this result for fractional m (in this context we also refer to appropriate norm bounds in \(L^p({{\mathbb {R}}}^n; d^nx)\) of operators of the form \(|x|^{-\beta } |-i \nabla |^{-\beta }\), \(1< p < n/\beta \), see [13, Sect. 1.7], [14, Sects. 1.7, 4.2], [58, 63, 65, 87, 96, 97]). Sharpness of A(2, 0) (i.e., in the unweighted Rellich case) was shown by Rellich [91, p. 91–101] in connection with the space \(C_0^{\infty }((0,\infty ))\); his multi-dimensional results also yield sharpness of \(A(2,n-1)\) for \(n \in {{\mathbb {N}}}\), \(n \ge 3\), again for \(C_0^{\infty }((0,\infty ))\); in this context see also [14, Corollary 6.3.5]. An exhaustive study of optimality of \(A(2, \widetilde{\alpha })\) (i.e., Rellich inequalities with power weights) for the space \(C_0^{\infty }(\Omega \backslash \{0\})\) for cones \(\Omega \subseteq {{\mathbb {R}}}^n\), \(n \ge 2\), appeared in Caldiroli and Musina [21]. The authors, in particular, describe situations where \(A(2, \widetilde{\alpha })\) has to be replaced by other constants and also treat the special case of radially symmetric functions in detail. Additional results for power weighted Rellich inequalities appeared in [83, 84]; further extensions of power weighted Rellich inequalities with sharp constants on \(C_0^{\infty }({{\mathbb {R}}}^n \backslash \{0\})\) were obtained in [77]; for optimal power weighted Hardy, Rellich, and higher-order inequalities on homogeneous groups, see [92, 93]. Many of these references also discuss sharp (power weighted) Hardy inequalities, implying optimality for \(A(1, \widetilde{\alpha })\). Moreover, replacing f(x) by \(F(x) = \int _0^x dt \, f(t)\) (or \(F(x) = \int _x^{\infty } dt \, f(t)\)), optimality of the Hardy constant A(1, 0) for larger, \(L^p\)-based function spaces, can already be found in [55, Sect. 9.8] (see also [14, Theorem 1.2.1], [67, Ch. 3], [68, p. 5–11], [71, 80, 89], in connection with \(A(1, \alpha )\)).

Sharpness results for \(A(m, \alpha )\) and \(B(m, \alpha )\) together are much less frequently discussed in the literature, even under suitable restrictions on m and \(\alpha \). The results we found primarily follow upon specializing multi-dimensional results for function spaces such as \(C_0^{\infty }(\Omega \backslash \{0\})\), or \(C_0^{\infty }(\Omega )\), \(\Omega \subseteq {{\mathbb {R}}}^n\) open, and appropriate restrictions on m, \(\alpha \), and \(n\ge 2\), for radially symmetric functions to the one-dimensional case at hand (cf. the previous paragraph). In this context we mention that the Hardy case \(m=1\), without a weight function, is studied in [1, 2, 5, 9, 20, 24, 27, 37, 53, 62, 73, 95, 99] (all for \(N=1\)), and in [10, 29, 49] (all for \(N \in {{\mathbb {N}}}\)); the case with power weight functions is discussed in [17, 50, 51, Ch. 6] (for \(N \in {{\mathbb {N}}}\)); see also [74]. The Rellich case \(m=2\) with a general power weight on \(C_0^{\infty }(\Omega \backslash \{0\})\) is discussed in [21] (for \(N=1\)); the Rellich case \(m=2\), without weight function on \(C_0^{\infty }(\Omega )\), is studied in [27, 28, 30] (all for \(N=1\)), the case \(N \in {{\mathbb {N}}}\) is studied in [4]; the case of additional power weights is treated in [50, 51, Ch. 6], [79]. The general case \(m \in {{\mathbb {N}}}\) is discussed in [6] (for \(N=1\)) and in [15, 50, 51, Ch. 6], [100] (all for \(N \in {{\mathbb {N}}}\) and including power weights, but with additional restrictions). Employing oscillation theory, sharpness of the unweighted Hardy case \(A(1,0) = B(1,0) = 1/4\), with \(N \in {{\mathbb {N}}}\), was proved in [46].

The special results available on sharpness of \(B(m,\alpha )\) are all saddled with enormous complexity, especially, for larger values of \(N \in {{\mathbb {N}}}\). In fact, a careful proof for general N will rival the length of this paper and hence has not been attempted here as briefly discussed in the following remark. \(\diamond \)

Remark A.4

The proof of optimality of \(A(\ell , \alpha )\) in Theorem A.1 consists of two principal steps:

(i) Identify a function \(y_0\) (see (A.1)) which is not in \(C^{\infty }_0((\rho , \infty ))\), but which satisfies (see (A.4)),

$$\begin{aligned} \frac{\int _{\rho }^{\infty } dx \, x^{\alpha } \big |y_0^{(m)}(x)\big |^2}{\int _{\rho }^{\infty } dx \, x^{\alpha - 2\ell } \big |y_0^{(m - \ell )}(x)\big |^2} = A(\ell , \alpha ). \end{aligned}$$
(A.22)

(ii) Exhibit a family \(\{y_{0, \varepsilon }\}_{\varepsilon > 0} \subset C^{\infty }_0((\rho , \infty ))\) of multiplicative mollifications of \(y_0\) (see (A.8)) that approaches \(y_0\) as \(\varepsilon \downarrow 0\) and for which (see (A.14))

$$\begin{aligned} \lim _{\varepsilon \downarrow 0} \frac{\int _{\rho }^{\infty } dx \, x^{\alpha } \big |y_{0, \varepsilon }^{(m)}(x)\big |^2}{\int _{\rho }^{\infty } dx \, x^{\alpha - 2\ell } dx \big |y_{0, \varepsilon }^{(m - \ell )}(x)\big |^2} = A(\ell , \alpha ). \end{aligned}$$
(A.23)

Unfortunately, due to the ensuing complexity when having to apply the product rule of differentiation again and again, this approach in connection with \(A(\ell ,\alpha )\) cannot naturally be adapted to a proof of optimality of \(B(\ell , \alpha )\). The proof of optimality of \(B(\ell , \alpha )\) we are currently working out requires substantial modification to steps (i) and (ii) above. We sketch the new approach in the special case \(\ell = m\) in inequality (3.1). We abbreviate

$$\begin{aligned} W_{m, \alpha , N}(x) = A(m,\alpha ) + B(m,\alpha ) \sum _{k=1}^{N-1} \prod _{p=1}^{k} [\ln _{p}(\gamma /x)]^{-2}. \end{aligned}$$
(A.24)

Instead of identifying one explicit functon \(y_0\) which satisfies (A.22), we use a modification of the proof of [15, Theorem 2] to identify a family \(\{f_{0, \varepsilon } :(\rho , \infty ) \rightarrow {\mathbb {C}}\}_{\varepsilon > 0}\) of functions which are not in \(C^{\infty }_0((\rho , \infty ))\) but for which

$$\begin{aligned} \lim _{\varepsilon \downarrow 0}\frac{\int _{\rho }^{\infty } dx \, x^{\alpha } \big | f_{0, \varepsilon }^{(m )}(x) \big |^{2} - \int _{\rho }^{\infty } dx \, x^{\alpha -2m} W_{m, \alpha , N}(x) | f_{0, \varepsilon } (x)|^2}{\int _{\rho }^{\infty } dx \, x^{\alpha - 2m} \prod _{p=1}^{N} [\ln _{p}(\gamma /x)]^{-2} | f_{0, \varepsilon } (x)|^2}= B(m, \alpha ). \nonumber \\ \end{aligned}$$
(A.25)

Instead of a family of multiplicative mollifications as in (A.8), for each \(\varepsilon >0\) we employ a family \(\{f_{0, \varepsilon , \nu }\}_{\nu >0} \subset C^{\infty }_0((\rho , \infty ))\) of mollifications of \(f_{0, \varepsilon }\) using convolution with an approximate identity which has the properties:

$$\begin{aligned} \lim _{\nu \downarrow 0} \int _{\rho }^{\infty } dx\, x^{\alpha } \big | f_{0, \varepsilon , \nu }^{(m)}(x)\big |^2 = \int _{\rho }^{\infty } dx\, x^{\alpha } \big |f_{0, \varepsilon }^{(m)}(x)\big |^2, \end{aligned}$$
(A.26)

and for \(k = 0, 1, \cdot \cdot \cdot , N\),

$$\begin{aligned} \begin{aligned}&\lim _{\nu \downarrow 0} \int _{\rho }^{\infty } dx \, x^{\alpha -2m} \prod _{p=1}^{k} [\ln _{p}(\gamma /x)]^{-2} | f_{0, \varepsilon , \nu } (x)|^2 \\&\quad = \int _{\rho }^{\infty } dx \, x^{\alpha -2m} \prod _{p=1}^{k} [\ln _{p}(\gamma /x)]^{-2} \big | f_{0, \varepsilon } (x)\big |^2. \end{aligned} \end{aligned}$$
(A.27)

Thus, roughly speaking, one gets

$$\begin{aligned} \lim _{\varepsilon , \nu \downarrow 0} \frac{\int _{\rho }^{\infty } dx \, x^{\alpha } \big | f_{0, \varepsilon , \nu }^{(m )}(x) \big |^{2} - \int _{\rho }^{\infty } dx \, x^{\alpha - 2m} W_{m, \alpha , N}(x) |f_{0, \varepsilon , \nu }(x)|^2}{\int _{\rho }^{\infty } dx \, x^{\alpha - 2m} \prod _{p=1}^{N} [\ln _{p}(\gamma /x)]^{-2} | f_{0, \varepsilon , \nu } (x)|^2}= B(m, \alpha ). \nonumber \\ \end{aligned}$$
(A.28)

This approach is that much longer than the proof of Theorem A.1, that we felt we had no choice but to write a separate paper [44] for the proof of optimality of \(B(\ell , \alpha )\). \(\diamond \)

Appendix B: The Interval Case \((\rho ,\infty )\) in Theorem 3.5

We recall the space

$$\begin{aligned} H_{m,\alpha }([\rho ,\infty ))= & {} \big \{f: [\rho ,\infty ) \rightarrow {{\mathbb {C}}}\, \big | \, \text {for all }R > \rho , \, f^{(k)} \in AC([\rho ,R]), \nonumber \\&f^{(k)}(\rho ) = 0, \, 0 \le k \le m-1; \, f^{(m)} \in L^2\big ((\rho ,\infty ); x^{\alpha }dx\big )\big \},\nonumber \\ \end{aligned}$$
(B.1)

and introduce the bilinear form \(\langle \, \cdot \,,\, \cdot \, \rangle _{m,\alpha }\) on \(H_{m,\alpha }([\rho ,\infty ))\) by

$$\begin{aligned} \langle f,g \rangle _{m,\alpha } = \int _{\rho }^{\infty } x^{\alpha } dx \, \overline{f^{(m)}(x)} g^{(m)}(x), \quad f, g \in H_{m,\alpha }([\rho ,\infty )). \end{aligned}$$
(B.2)

Proposition B.1

The bilinear form \(\langle \, \cdot \,,\, \cdot \, \rangle _{m,\alpha }\) is an inner product on the space \(H_{m,\alpha }([\rho ,\infty ))\), in fact, \((H_{m,\alpha }([\rho ,\infty )), \langle \, \cdot \,,\, \cdot \, \rangle _{m,\alpha })\) is a Hilbert space.

Proof

Assuming \(\langle f,f \rangle _{m,\alpha } = 0\), \(f \in H_{m,\alpha }([\rho ,\infty ))\), one obtains

$$\begin{aligned} \int _{\rho }^{\infty } x^{\alpha } dx \, \big |f^{(m)}(x)\big |^2 = 0, \end{aligned}$$
(B.3)

and hence \(f^{(m)}=0\) a.e. on \((\rho ,\infty )\). Thus, employing \(f^{(m-1)}(\rho ) = 0\), one concludes that

$$\begin{aligned} f^{(m-1)}(x) = \int _{\rho }^x dt \, f^{(m)}(t) = 0, \quad x \ge \rho . \end{aligned}$$
(B.4)

Similarly, as \(f^{(m-2)}(\rho ) = 0\),

$$\begin{aligned} f^{(m-2)}(x) = \int _{\rho }^x dt \, f^{(m-1)}(t) =0, \quad x \ge \rho , \end{aligned}$$
(B.5)

and hence inductively,

$$\begin{aligned} f^{(k)}(x) = 0, \quad 0 \le k \le m - 1, \; x \ge \rho . \end{aligned}$$
(B.6)

Thus, \(\langle \, \cdot \,,\, \cdot \, \rangle _{m,\alpha }\) is an inner product on \(H_{m,\alpha }([\rho ,\infty ))\).

To prove completeness of \((H_{m,\alpha }([\rho ,\infty )), \langle \, \cdot \,,\, \cdot \, \rangle _{m,\alpha })\), one assumes that \(\{f_n\}_{n \in {{\mathbb {N}}}}\) is a Cauchy sequence in \(H_{m,\alpha }([\rho ,\infty ))\). Then \(\big \{f_n^{(m)}\big \}_{n \in {{\mathbb {N}}}}\) is a Cauchy sequence in \(L^2\big ((\rho ,\infty ); x^{\alpha }dx\big )\). Hence, there exists \(g \in L^2\big ((\rho ,\infty ); x^{\alpha }dx\big )\) such that

$$\begin{aligned} \lim _{n \rightarrow \infty } \big \Vert f_n^{(m)} - g\big \Vert _{L^2((\rho ,\infty ); x^{\alpha }dx)} = 0. \end{aligned}$$
(B.7)

Introducing \(f: [\rho ,\infty ) \rightarrow {{\mathbb {C}}}\) by

$$\begin{aligned} f(x) = \int _{\rho }^x \int _{\rho }^{t_1} \cdots \int _{\rho }^{t_{m-1}} dt_1 \cdots dt_{m-1} d u \, g(u), \quad x \ge \rho , \end{aligned}$$
(B.8)

then \(f^{(k)} \in AC([\rho ,R])\) for all \(R > \rho \) and \(f^{(k)} (\rho ) = 0\), \(0 \le k \le m-1\), and \(f^{(m)} = g \in L^2\big ((\rho ,\infty ); x^{\alpha }dx\big )\), and hence \(f \in H_{m,\alpha }([\rho ,\infty ))\). In addition,

$$\begin{aligned} \begin{aligned} |||f_n - f|||_{H_{m,\alpha }([\rho ,\infty ))}&= \big \Vert f_n^{(m)} - f^{(m)}\big \Vert _{L^2((\rho ,\infty ); x^{\alpha }dx)} \\&= \big \Vert f_n^{(m)} - g\big \Vert _{L^2((\rho ,\infty ); x^{\alpha }dx)} \underset{n \rightarrow \infty }{\longrightarrow } 0, \end{aligned} \end{aligned}$$
(B.9)

completing the proof. \(\square \)

We recall that the norm in Hilbert space \(H_{m,\alpha }([\rho ,\infty ))\) is denoted by \(|||\, \cdot \,|||_{m,\alpha }\). The fact that \(C_0^{\infty }((\rho ,\infty )) \subset H_{m,\alpha }([\rho ,\infty ))\) then leads to the introduction of the homogeneous weighted Sobolev space

$$\begin{aligned} \dot{H_0^{m}} \big ((\rho ,\infty ); x^{\alpha } dx\big ) = \overline{C_0^{\infty }((\rho ,\infty ))}^{|||\, \cdot \,|||_{m,\alpha }}, \end{aligned}$$
(B.10)

that is, the closure of \(C_0^{\infty }((\rho ,\infty ))\) in \(H_{m,\alpha }([\rho ,\infty ))\). Proposition B.1 then yields the following result.

Corollary B.2

Assume that \(f \in \dot{H_0^{m}} \big ((\rho ,\infty ); x^{\alpha } dx\big )\), \(\alpha \in {{\mathbb {R}}}\). Then there exists a sequence \(\{f_n\}_{n \in {{\mathbb {N}}}} \subset C_0^{\infty }((\rho ,\infty ))\) such that for \(0 \le k \le m\),

$$\begin{aligned} \lim _{n \rightarrow \infty } f_n^{(k)} (x) = f^{(k)} (x) \, \text { for a.e. }x > \rho . \end{aligned}$$
(B.11)

Proof

Since \(f \in \dot{H_0^{m}} \big ((\rho ,\infty ); x^{\alpha } dx\big )\), there exists a sequence \(\{f_n\}_{n \in {{\mathbb {N}}}} \subset C_0^{\infty }((\rho ,\infty ))\) such that

$$\begin{aligned} \lim _{n \rightarrow \infty } \big \Vert f_n^{(m)} - f^{(m)}\big \Vert _{L^2((\rho ,\infty ); x^{\alpha }dx)} = 0. \end{aligned}$$
(B.12)

By taking a subsequence, if necessary, one can assume that

$$\begin{aligned} \lim _{n \rightarrow \infty } f_n^{(m)} (x) = f^{(m)} (x) \, \text { for a.e. }x > \rho . \end{aligned}$$
(B.13)

Since \(f^{(k)}(\rho ) = 0\), \(0 \le k \le m-1\),

$$\begin{aligned}&\big |f_n^{(m-1)} (x) - f^{(m-1)} (x)\big | \nonumber \\&\quad = \bigg |\int _{\rho }^x dt \, f_n^{(m)} (t) - \int _{\rho }^x dt \, f^{(m)} (t)\bigg | \nonumber \\&\quad \le \int _{\rho }^x dt \, \big |f_n^{(m)} (t) - f^{(m)} (t)\big | \nonumber \\&\quad \le \bigg [\int _{\rho }^x dt \, \big |f_n^{(m)} (t) - f^{(m)} (t) \big |^2\bigg ]^{1/2} (x - \rho )^{1/2} \nonumber \\&\quad \le \max \big (\rho ^{-\alpha /2}, x^{-\alpha /2}\big ) \bigg [\int _{\rho }^x dt \, t^{\alpha } \big |f_n^{(m)} (t) - f^{(m)} (t) \big |^2\bigg ]^{1/2} (x - \rho )^{1/2} \nonumber \\&\quad \underset{n \rightarrow \infty }{\longrightarrow } 0,\quad x \ge \rho . \end{aligned}$$
(B.14)

Next, fix \(R > \rho \). Then for all \(n \in {{\mathbb {N}}}\) sufficiently large, and for all \(x \in [\rho ,R]\), there exists \(C(\rho , \alpha , R) \in (0,\infty )\) such that

$$\begin{aligned} \big |f_n^{(m-1)} (x)\big |\le & {} \int _{\rho }^x dt \, \big |f_n^{(m)} (t)\big | \nonumber \\\le & {} \bigg [\int _{\rho }^x dt \, \big |f_n^{(m)} (t)\big |^2\bigg ]^{1/2} (x - \rho )^{1/2} \nonumber \\\le & {} \max \big (\rho ^{- \alpha /2}, x^{-\alpha /2}\big ) \bigg [\int _{\rho }^x dt \, t^{\alpha } \big |\big [f_n^{(m)} (t) - f^{(m)}(t)\big ] + f^{(m)}(t)\big |^2\bigg ]^{1/2} \nonumber \\&\times (x - \rho )^{1/2} \nonumber \\\le & {} \max \big (\rho ^{- \alpha /2}, x^{-\alpha /2}\big ) \bigg [2\int _{\rho }^x dt \, t^{\alpha } \big |f_n^{(m)} (t) - f^{(m)}(t)\big |^2 \nonumber \\&+ 2 \int _{\rho }^x dt \, t^{\alpha } \big |f^{(m)}(t)\big |^2\bigg ]^{1/2} (x - \rho )^{1/2} \nonumber \\\le & {} \max \big (\rho ^{- \alpha /2}, x^{-\alpha /2}\big ) \bigg [o(1) + 2 \int _{\rho }^x dt \, t^{\alpha } \big |f^{(m)}(t)\big |^2\bigg ]^{1/2} (x - \rho )^{1/2} \nonumber \\\le & {} C(\rho , \alpha , R) \big \Vert f^{(m)}\big \Vert _{L^2((\rho ,\infty ); x^{\alpha } dx)}, \quad x \in [\rho ,R]. \end{aligned}$$
(B.15)

Thus, (B.14), (B.15), and an application of Lebesgue’s dominated convergence theorem implies

$$\begin{aligned} \lim _{n \rightarrow \infty } \Big \Vert f_n^{(m-1)}\big |_{[\rho ,R]} - f^{(m-1)}\big |_{[\rho ,R]}\Big \Vert _{L^1((\rho ,R); dt)} = 0. \end{aligned}$$
(B.16)

Next, one infers that

$$\begin{aligned} \big |f_n^{(m-2)}(x) - f^{(m-2)}(x)\big |= & {} \bigg |\int _{\rho }^x dt \, \big [f_n^{(m-1)}(t) - f^{(m-1)}(t)\big ]\bigg | \nonumber \\\le & {} \int _{\rho }^x dt \, \big |f_n^{(m-1)}(t) - f^{(m-1)}(t)\big | \nonumber \\\le & {} \int _{\rho }^R dt \, \big |f_n^{(m-1)}(t) - f^{(m-1)}(t)\big | \nonumber \\= & {} \Big \Vert f_n^{(m-1)}\big |_{[\rho ,R]} - f^{(m-1)}\big |_{[\rho ,R]}\Big \Vert _{L^1((\rho ,R); dt)} \nonumber \\&\underset{n \rightarrow \infty }{\longrightarrow } 0,\quad x \in [\rho ,R], \end{aligned}$$
(B.17)

by (B.16). Similarly, for all \(n \in {{\mathbb {N}}}\) sufficiently large, and for all \(x \in [\rho ,R]\), one has

$$\begin{aligned} \big |f_n^{(m-2)}(x)\big |\le & {} \int _{\rho }^x dt \, \big |f_n^{(m - 1)}(t)| \le \int _{\rho }^R dt \, \big |f_n^{(m - 1)}(t)| \nonumber \\= & {} \Big \Vert \big [f_n^{(m-1)} - f^{(m-1)}\big ] + f^{(m-1)}\big |_{[\rho ,R]}\Big \Vert _{L^1((\rho ,R); dt)} \nonumber \\\le & {} o(1) + \Big \Vert f^{(m-1)}\big |_{[\rho ,R]}\Big \Vert _{L^1((\rho ,R); dt)} \nonumber \\\le & {} 2 \Big \Vert f^{(m-1)}\big |_{[\rho ,R]}\Big \Vert _{L^1((\rho ,R); dt)}, \quad x \in [\rho ,R]. \end{aligned}$$
(B.18)

Thus, (B.17), (B.18), and an application of Lebesgue’s dominated convergence theorem yields

$$\begin{aligned} \lim _{n \rightarrow \infty } \Big \Vert f_n^{(m-2)}\big |_{[\rho ,R]} - f^{(m-2)}\big |_{[\rho ,R]}\Big \Vert _{L^1((\rho ,R); dt)} = 0. \end{aligned}$$
(B.19)

Iterating these arguments proves that for all \(0 \le k \le m-1\),

$$\begin{aligned} \lim _{n \rightarrow \infty } f_n^{(k)} (x) = f^{(k)} (x) \, \text { for a.e. }x \in [\rho ,R]. \end{aligned}$$
(B.20)

Since \(R > \rho \) was arbitrary, this concludes the proof of Corollary B.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gesztesy, F., Littlejohn, L.L., Michael, I. et al. A Sequence of Weighted Birman–Hardy–Rellich Inequalities with Logarithmic Refinements. Integr. Equ. Oper. Theory 94, 13 (2022). https://doi.org/10.1007/s00020-021-02682-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02682-0

Keywords

Mathematics Subject Classification

Navigation