Skip to main content
Log in

Feynman–Kac Formulas for Dirichlet–Pauli–Fierz Operators with Singular Coefficients

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We derive Feynman–Kac formulas for Dirichlet realizations of Pauli–Fierz operators generating the dynamics of nonrelativistic quantum mechanical matter particles, which are minimally coupled to both classical and quantized radiation fields and confined to an arbitrary open subset of the Euclidean space. Thanks to a suitable interpretation of the involved Stratonovich integrals, we are able to retain familiar formulas for the Feynman–Kac integrands merely assuming local square-integrability of the classical vector potential and the coupling function in the quantized vector potential. Allowing for fairly general coupling functions becomes relevant when the matter-radiation system is confined to cavities with inward pointing boundary singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A negative part will be subtracted from V only in Corollary 1.4 and Remark 1.5.

  2. Readers who are wondering about the signs in (1.11) should notice that the complex conjugate of \(S_t(\varvec{x})\) appears in our Feynman–Kac formula; see (1.16) and the first equality in (1.19).

References

  1. Broderix, K., Hundertmark, D., Leschke, H.: Continuity properties of Schrödinger semigroups with magnetic fields. Rev. Math. Phys. 12, 181–225 (2000)

    Article  MathSciNet  Google Scholar 

  2. Broderix, K., Leschke, H., Müller, P.: Continuous integral kernels for unbounded Schrödinger semigroups and their spectral projections. J. Funct. Anal. 212, 287–323 (2004)

    Article  MathSciNet  Google Scholar 

  3. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)

    Article  MathSciNet  Google Scholar 

  4. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Volume 152 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  5. Dutra, S.M.: Cavity Quantum Electrodynamics. The Strange Theory of Light in a Box. Wiley, Hoboken (2005)

    Google Scholar 

  6. Faris, W., Simon, B.: Degenerate and non-degenerate ground states for Schrödinger operators. Duke Math. J. 42, 559–581 (1975)

    Article  MathSciNet  Google Scholar 

  7. Güneysu, B.: Covariant Schrödinger Semigroups on Riemannian Manifolds. Volume 264 of Operator Theory: Advances and Applications. Springer, Cham (2017)

    Google Scholar 

  8. Güneysu, B., Matte, O., Møller, J.S.: Stochastic differential equations for models of non-relativistic matter interacting with quantized radiation fields. Probab. Theory Relat. Fields 167, 817–915 (2017)

    Article  MathSciNet  Google Scholar 

  9. Hackenbroch, W., Thalmaier, A.: Stochastische Analysis. Teubner, Stuttgart (1994)

    Book  Google Scholar 

  10. Haussmann, U.G., Pardoux, E.: Time reversal of diffusions. Ann. Probab. 14, 1188–1205 (1986)

    Article  MathSciNet  Google Scholar 

  11. Hinz, M.: Magnetic energies and Feynman–Kac–Itô formulas for symmetric Markov processes. Stoch. Anal. Appl. 33, 1020–1049 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hiroshima, F.: Diamagnetic inequalities for systems of nonrelativistic particles with a quantized field. Rev. Math. Phys. 8, 185–203 (1996)

    Article  MathSciNet  Google Scholar 

  13. Hiroshima, F.: Functional integral representation of a model in quantum electrodynamics. Rev. Math. Phys. 9, 489–530 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hiroshima, F., Lőrinczi, J.: Functional integral representations of the Pauli–Fierz model with spin \(1/2\). J. Funct. Anal. 254, 2127–2185 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hiroshima, F., Matte, O.: Ground states and associated path measures in the renormalized Nelson model. Rev. Math. Phys. 33, 2250002 (2022)

    Google Scholar 

  16. Hundertmark, D., Killip, R., Nakamura, S., Stollmann, P., Veselić, I.: Bounds on the spectral shift function and the density of states. Commun. Math. Phys. 262, 489–503 (2006)

    Article  MathSciNet  Google Scholar 

  17. Hundertmark, D., Simon, B.: A diamagnetic inequality for semigroup differences. J. Reine Angew. Math. 571, 107–130 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Kato, T.: Remarks on Schrödinger operators with vector potentials. Integr. Equ. Oper. Theory 1, 103–113 (1978)

    Article  Google Scholar 

  19. Kato, T.: Perturbation theory of Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

  20. Könenberg, M., Matte, O., Stockmeyer, E.: Hydrogen-like atoms in relativistic QED. In: Siedentop, H. (ed.) Complex Quantum Systems: Theory of Large Coulomb Systems (Singapore, February 2010), Volume 24 of Lecture Note Series, Institute for Mathematical Sciences, National University of Singapore, pp. 219–290. World Scientific, Singapore (2013)

    Chapter  Google Scholar 

  21. Leinfelder, H.: Gauge invariance of Schrödinger operators and related spectral properties. J. Oper. Theory 9, 163–179 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Leinfelder, H., Simader, C.G.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)

    Article  MathSciNet  Google Scholar 

  23. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)

    Google Scholar 

  24. Liskevich, V., Manavi, A.: Dominated semigroups with singular complex potentials. J. Funct. Anal. 151, 281–305 (1997)

    Article  MathSciNet  Google Scholar 

  25. Lőrinczi, J., Hiroshima, F., Betz, V.: Feynman-Kac-Type Theorems and Gibbs Measures on Path Space. Volume 34 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (2011)

    Book  Google Scholar 

  26. Matte, O.: Continuity properties of the semi-group and its integral kernel in non-relativistic QED. Rev. Math. Phys. 28, 1650011 (2016)

    Article  MathSciNet  Google Scholar 

  27. Matte, O.: Pauli–Fierz type operators with singular electromagnetic potentials on general domains. Math. Phys. Anal. Geom. 20, Art. 18, 41 pp (2017)

  28. Matte, O., Møller, J.S.: Feynman–Kac formulas for the ultra-violet renormalized Nelson model. Astérisque 404, vi+110 pp (2018)

  29. Métivier, M.: Semimartingales. A Course on Stochastic Processes. Volume 2 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1982)

    Book  Google Scholar 

  30. Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MathSciNet  Google Scholar 

  31. Pardoux, E.: Grossissement d’une filtration et retournement du temps d’une diffusion. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XX, 1984/85. Volume 1204 of Lecture Notes in Mathematics, pp. 48–55. Springer, Berlin (1986)

  32. Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Volume 85 of Monographs in Mathematics. Birkhäuser, Basel (1992)

    Book  Google Scholar 

  33. Perelmuter, M.A., Semenov, Y.A.: On decoupling of finite singularities in the scattering theory for the Schrödinger operator with a magnetic field. J. Math. Phys. 22, 521–533 (1981)

    Article  MathSciNet  Google Scholar 

  34. Simon, B.: A canonical decomposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal. 28, 377–385 (1978)

    Article  MathSciNet  Google Scholar 

  35. Simon, B.: Classical boundary conditions as a technical tool in modern mathematical physics. Adv. Math. 30, 268–281 (1978)

    Article  MathSciNet  Google Scholar 

  36. Simon, B.: Maximal and minimal Schrödinger forms. J. Oper. Theory 1, 37–47 (1979)

    MATH  Google Scholar 

  37. Voigt, J.: Absorption semigroups, their generators, and Schrödinger semigroups. J. Funct. Anal. 67, 167–205 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful for support by the Independent Research Fund Denmark via the project grant “Mathematical Aspects of Ultraviolet Renormalization” (8021-00242B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Matte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. A useful rule for vector-valued conditional expectations

Appendix A. A useful rule for vector-valued conditional expectations

The following lemma should be well-known, also in the infinite dimensional setting, but we could not find an appropriate reference. Therefore, we prove it for the convenience of the reader.

Lemma A.1

Let \((X,{\mathfrak {A}},P)\) be a probability space, \({\mathfrak {C}}\) be a sub-\(\sigma \)-algebra of \({\mathfrak {A}}\), and Y and Z separable Banach spaces equipped with their Borel \(\sigma \)-algebras \({\mathfrak {B}}(Y)\) and \({\mathfrak {B}}(Z)\), respectively. Let \(f:X\times Y\rightarrow Z\) be a function such that \(f(\cdot ,y):X\rightarrow Z\) is Bochner-Lebesgue integrable (in particular \({\mathfrak {A}}\)-\({\mathfrak {B}}(Z)\)-measurable) and \({\mathfrak {C}}\)-independent for every \(y\in Y\), and such that \(f(x,\cdot ):Y\rightarrow Z\) is continuous for every \(x\in X\). (This implies that f is \(({\mathfrak {A}}\otimes {\mathfrak {B}}(Y))\)-\({\mathfrak {B}}(Z)\)-measurable.) Define

$$\begin{aligned} \phi (y):=E[f(\cdot ,y)]:=\int _X f(x,y)\mathrm{d}P(x),\quad y\in Y. \end{aligned}$$

(Then \(\phi :Y\rightarrow Z\) is in any case Borel measurable.) Finally, let \(g:X\rightarrow Y\) be \({\mathfrak {C}}\)-\({\mathfrak {B}}(Y)\)-measurable and assume that

$$\begin{aligned} X\ni x\longmapsto h(x):=f(x,g(x))\in Z \end{aligned}$$

is Bochner-Lebesgue integrable. Then

$$\begin{aligned} E^{{\mathfrak {C}}}[h]=\phi (g),\quad P\text {-a.s.,} \end{aligned}$$

where \(E^{{\mathfrak {C}}}\) denotes a version of the Z-valued conditional expectation with respect to P given the hypothesis \({\mathfrak {C}}\).

Proof

Let \(\chi \in C({\mathbb {R}},{\mathbb {R}})\) be such that \(0\leqslant \chi \leqslant 1\) on \({\mathbb {R}}\), \(\chi =1\) on \((-\infty ,1]\), and \(\chi =0\) on \([2,\infty )\). Put \(f_n:=\chi (\Vert f\Vert _Z/n)f\), \(n\in {\mathbb {N}}\), so that each \(f_n\) enjoys all properties of f mentioned in the statement as well, and so that \(\Vert f_n\Vert _Z\leqslant 2n\) and \(f_n\rightarrow f\), \(n\rightarrow \infty \), pointwise on \(X\times Y\). Set \(h_n(x):=f_n(x,g(x))\), \(x\in X\), and \(\phi _n(y):=E[f_n(\cdot ,y)]\), \(y\in Y\). Then we have the dominations \(\Vert f_n(\cdot ,y)\Vert \leqslant \Vert f(\cdot ,y)\Vert \) and \(\Vert h_n\Vert _Z\leqslant \Vert h\Vert _Z\) on X, for every \(n\in {\mathbb {N}}\). Hence, the dominated convergence theorem for the Bochner-Lebesgue integral implies that \(\phi _n(y)\rightarrow \phi (y)\), \(n\rightarrow \infty \), for every \(y\in Y\), while the dominated convergence theorem for Z-valued conditional expectations implies that \({\mathbb {E}}^{{\mathfrak {C}}}[h_n]\rightarrow {\mathbb {E}}^{{\mathfrak {C}}}[h]\), \(n\rightarrow \infty \), P-a.s. Therefore, it only remains to show that \({\mathbb {E}}^{{\mathfrak {C}}}[h_n]=\phi _n(g)\) holds P-a.s., for each fixed \(n\in {\mathbb {N}}\). Or, put differently, we may assume without loss of generality that f is bounded, which we shall do in the rest of this proof.

There exists a sequence of \({\mathfrak {C}}\)-\({\mathfrak {B}}(Y)\)-measurable functions \((g_n)_{n\in {\mathbb {N}}}\) such that the image \(g_n(X)\) is finite, for every \(n\in {\mathbb {N}}\), and such that \(g_n\rightarrow g\), \(n\rightarrow \infty \), pointwise on X. Let \(n\in {\mathbb {N}}\). Then \(g_n\) has a standard representation \(g_n=\sum _{i=1}^{k_n}1_{A^n_i}y_i^n\) for suitable \(k_n\in {\mathbb {N}}\), \(y_1^n,\ldots ,y_{k_n}^n\in Y\), and suitable disjoint \(A_1^n,\ldots ,A_{k_n}^n\in {\mathfrak {C}}\) such that \(A_1^n\cup \dots \cup A_{k_n}^n=X\). Then

$$\begin{aligned} \tilde{h}_n(x):=f(x,g_n(x))=\sum _{i=1}^{k_n}1_{A_i^n}(x)f(x,y_i^n), \quad x\in X. \end{aligned}$$

Since \(A_i^n\in {\mathfrak {C}}\) and since \(f(\cdot ,y_i^n):X\rightarrow Z\) is \({\mathfrak {C}}\)-independent, well-known computation rules for the conditional expectation now imply

$$\begin{aligned} E^{{\mathfrak {C}}}[\tilde{h}_n]=\sum _{i=1}^{k_n}1_{A_i^n}\phi (y_i^n)=\phi (g_n), \quad P\text {-a.s.,} \end{aligned}$$

where we again used that \(y_i^n=g_n\) on \(A_i^n\) in the second equality. Furthermore, by our present assumptions on f, the functions \(\tilde{h}_n\), \({n\in {\mathbb {N}}}\), are uniformly bounded, and thanks to the continuity of \(y\mapsto f(x,y)\) for each x, we know that \(\tilde{h}_n\rightarrow h\), \(n\rightarrow \infty \), pointwise on X. Hence, \(E^{{\mathfrak {C}}}[\tilde{h}_n]\rightarrow E^{{\mathfrak {C}}}[h]\), \(n\rightarrow \infty \), P-a.s., by the dominated convergence theorem for Z-valued conditional expectations. Finally, we observe that \(\phi :Y\rightarrow Z\) is continuous by the boundedness of f and dominated convergence. Thus, \(\phi (g_n)\rightarrow \phi (g)\), \(n\rightarrow \infty \), pointwise on X. \(\square \)

Example A.2

Let \((X,{\mathfrak {A}},P)\) and \({\mathfrak {C}}\) be as in Lemma A.1. Let Z be a separable Hilbert space, \(A(\varvec{y}):X\rightarrow {\mathcal {B}}(Z)\) be measurable and separably valued, for every \(\varvec{y}\in {\mathbb {R}}^\nu \), such that \({\mathbb {R}}^\nu \ni \varvec{y}\mapsto (A(\varvec{y}))(x)\) is strongly continuous for all \(x\in X\). Suppose that \(A(\varvec{y})\) is \({\mathfrak {C}}\)-independent and let \(g:=(\varvec{q},\Psi ):X\rightarrow {\mathbb {R}}^\nu \times Z\) be \({\mathfrak {C}}\)-measurable with \(\int _X\Vert \Psi \Vert _{Z}\mathrm{d}P<\infty \). Finally, assume there exists \(C>0\) such that \(\Vert A(y)\Vert \leqslant C\), \({\mathbb {P}}\)-a.s., for every \(y\in {\mathbb {R}}^\nu \). Then we can apply Lemma A.1 to the function f given by \(f(x,\varvec{y},\psi ):=A(y)\psi \), \((\varvec{y},\psi )={\mathbb {R}}^\nu \times Z(=:Y)\) with \(\phi (\varvec{y},\psi )=E[f(\cdot ,\varvec{y},\psi )]=E[A(\varvec{y})]\psi \). That is,

$$\begin{aligned} E^{{\mathfrak {C}}}[A(\varvec{q})\Psi ]&=E[A(\varvec{y})]\big |_{\varvec{y}=\varvec{q}}\Psi . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matte, O. Feynman–Kac Formulas for Dirichlet–Pauli–Fierz Operators with Singular Coefficients. Integr. Equ. Oper. Theory 93, 62 (2021). https://doi.org/10.1007/s00020-021-02677-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02677-x

Mathematics Subject Classification

Keywords

Navigation