Skip to main content
Log in

Inclusion Theorems for the Moyal Multiplier Algebras of Generalized Gelfand–Shilov Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We prove that the Moyal multiplier algebras of the generalized Gelfand–Shilov spaces of type S contain Palamodov spaces of type \({\mathscr {E}}\) and the inclusion maps are continuous. We also give a direct proof that the Palamodov spaces are algebraically and topologically isomorphic to the strong duals of the spaces of convolutors for the corresponding spaces of type S. The obtained results provide a general and efficient way to describe the algebraic and continuity properties of pseudodifferential operators with symbols having an exponential or super-exponential growth at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the case where \(a_n\equiv 1\), the functions in \({\mathcal {E}}^{b,B}_{a,A}\) are defined only for \(|x|\le A\) and are regarded as zero if they are zero in this domain.

References

  1. Abdeljawad, A., Cappiello, M., Toft, J.: Pseudo-differential calculus in anisotropic Gelfand–Shilov setting. Integr. Equ. Oper. Theory 91(3), 26 (2019)

    Article  MathSciNet  Google Scholar 

  2. Albanese, A. A., Mele, C.: Multipliers on \({\cal{{S}}_\omega ({\mathbb{R}}}^N)\). arXiv:2011.03961v1 [math.FA]

  3. Antonets, M.A.: The classical limit for Weyl quantization. Lett. Math. Phys. 2, 241–245 (1978)

    Article  MathSciNet  Google Scholar 

  4. Cappiello, M., Pilipović, S., Prangoski, B.: Parametrices and hypoellipticity for pseudodifferential operators on spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 5(4), 491–506 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cappiello, M., Toft, J.: Pseudo-differential operators in a Gelfand–Shilov setting. Math. Nachr. 290(5–6), 738–755 (2017)

    Article  MathSciNet  Google Scholar 

  6. Carypis, E., Wahlberg, P.: Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians. J. Fourier Anal. Appl. 23(3), 530–571 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chaichian, M., Mnatsakanova, M., Tureanu, A., Vernov, Yu.: Test function space in noncommutative quantum field theory. JHEP 0809, 125 (2008)

    Article  MathSciNet  Google Scholar 

  8. Debrouwere, A., Neyt, L.: Weighted (PLB)-spaces of ultradifferentiable functions and multiplier spaces, arXiv:2010.02606v1 [math.FA]

  9. Debrouwere, A., Vindas, J.: Topological properties of convolutor spaces via the short-time Fourier transform, arXiv:1801.09246v3 [math.FA]

  10. Debrouwere, A., Vindas, J.: On weighted inductive limits of spaces of ultradifferentiable functions and their duals. Math. Nachr. 292, 573–602 (2019)

    Article  MathSciNet  Google Scholar 

  11. Dimovski, P., Prangoski, B., Velinov, D.: Multipliers and convolutors in the space of tempered ultradistributions. Novi Sad J. Math. 44, 1–18 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Dimovski, P., Pilipović, S., Prangoski, B., Vindas, J.: Convolution of ultradistributions and ultradistribution spaces associated to translation-invariant Banach spaces. Kyoto J. Math. 56, 401–440 (2016)

    Article  MathSciNet  Google Scholar 

  13. Fisher, A., Szabo, R.J.: Duality covariant quantum field theory on noncommutative Minkowski space. JHEP 0902, 031 (2009)

    Article  MathSciNet  Google Scholar 

  14. Fisher, A., Szabo, R.J.: Propagators and matrix basis on noncommutative Minkowski space. Phys. Rev. D 84, 125010 (2011)

    Article  Google Scholar 

  15. Folland, G.B.: Harmonic Analysis in Phase Space, Ann. of Math. Studies, vol. 122. Princeton University Press, Princeton, NJ (1989)

    Google Scholar 

  16. Gayral, V., Gracia-Bondía, J.M., Iochum, B., Schücker, T., Várilly, J.C.: Moyal planes are spectral triplets. Commun. Math. Phys. 246, 569–623 (2004)

    Article  Google Scholar 

  17. Gelfand, I.M., Shilov, G.E.: Generalized Functions, Spaces of Fundamental and Generalized Functions, vol. 2. Academic Press, New York-London (1968)

    Google Scholar 

  18. Gracia-Bondía, J.M., Lizzi, F., Marmo, G., Vitale, P.: Infinitely many star products to play with. JHEP 0204, 026 (2002)

    Article  MathSciNet  Google Scholar 

  19. Gracia-Bondía, J.M., Várilly, J.C.: Algebras of distributions suitable for phase-space quantum mechanics. I. J. Math. Phys 29(4), 869–879 (1988)

    Article  MathSciNet  Google Scholar 

  20. Gröchenig, K.: Foundations of time-frequency analysis. Birkhäuser Boston Inc, Boston, MA (2001)

    Book  Google Scholar 

  21. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955)

  22. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Springer, Berlin (1983)

    MATH  Google Scholar 

  23. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Pseudo-Differential Operators. Springer, Berlin (1985)

    MATH  Google Scholar 

  24. Komatsu, H.: Projective and inductive limits of weakly compact sequences of locally convex spaces. J. Math. Soc. Japan 19, 366–383 (1967)

    Article  MathSciNet  Google Scholar 

  25. Komatsu, H.: Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math 20(1), 26–105 (1973)

    MathSciNet  MATH  Google Scholar 

  26. Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)

    Book  Google Scholar 

  27. Maillard, J.M.: On the twisted convolution product and the Weyl transformation of tempered distributions. J. Geom. Phys. 3(2), 231–261 (1986)

    Article  MathSciNet  Google Scholar 

  28. Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon, Oxford (1997)

    MATH  Google Scholar 

  29. Palamodov, V.P.: Fourier transforms of infinitely differentiable functions of rapid growth. Tr. Mosk. Mat. Obs. 11, 309–350 (1962). [http://mi.mathnet.ru/eng/mmo136]

  30. Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 4(4), 495–549 (2013)

    Article  MathSciNet  Google Scholar 

  31. Schaefer, H.H.: Topological Vector Spaces. MacMillan, New York (1966)

    MATH  Google Scholar 

  32. Schwartz, L.: Théorie des distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  33. Soloviev, M.A.: Star product algebras of test functions. Theor. Math. Phys. 153(1), 1351–1363 (2007)

    Article  Google Scholar 

  34. Soloviev, M.A.: Noncommutativity and \(\theta \)-locality. J. Phys A: Math. Theor. 40(48), 14593–14604 (2007)

    Article  MathSciNet  Google Scholar 

  35. Soloviev, M.A.: Moyal multiplier algebras of the test function spaces of type S. J. Math. Phys. 52(6), 063502 (2011)

    Article  MathSciNet  Google Scholar 

  36. Soloviev, M.A.: Twisted convolution and Moyal star product of generalized functions. Theor. Math. Phys. 172(1), 885–900 (2012)

    Article  MathSciNet  Google Scholar 

  37. Soloviev, M.A.: Generalized Weyl correspondence and Moyal multiplier algebras. Theor. Math. Phys. 173(1), 1359–1376 (2012)

    Article  MathSciNet  Google Scholar 

  38. Soloviev, M.A.: Spaces of type \(S\) as topological algebras under the twisted convolution and star product. Proc. Steklov Inst. Math. 306, 220–241 (2019)

    Article  MathSciNet  Google Scholar 

  39. Soloviev, M.A.: Spaces of type S and deformation quantization. Theor. Math. Phys. 201(3), 1682–1700 (2019)

    Article  MathSciNet  Google Scholar 

  40. Soloviev, M.A.: Characterization of the Moyal multiplier algebras for the generalized spaces of type S. Proc. Steklov Inst. Math. 309, 271–283 (2020)

    Article  MathSciNet  Google Scholar 

  41. Várilly, J.C., Gracia-Bondía, J.M.: Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra. J. Math. Phys. 29(4), 880–887 (1988)

    Article  MathSciNet  Google Scholar 

  42. Zahn, J.: Divergences in quantum field theory on the noncommutative two-dimensional Minkowski space with Grosse-Wulkenhaar potential. Annales Henri Poincaré 12, 777–804 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Soloviev.

Ethics declarations

Conflicts of interest

The author has no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The arguments of the proof of Proposition 3.2 are easily adapted to show that the elements of \({\mathcal {E}}^{\{b\}\prime }_{\{a\}}\) are convolutors of \(S_{(a)}^{\{b\}}\). To analyse the mapping properties of pseudodifferential operators with symbols in \({\mathcal {E}}^{\{a\}}_{\{a\}}\) we use the isomorphism \(F\left[ S_{(a)}^{\{b\}}\right] =S^{(a)}_{\{b\}}\). As in the case of the spaces \(S_{\{a\}}^{\{b\}}\) and \(S_{(a)}^{(b)}\), this isomorphism is ensured by condition (2.3) and is easily proved by using the inequality

$$\begin{aligned} \int _{{{\mathbb {R}}}^d}|\partial ^\beta x^\alpha |\,|f(x)|\,dx\le \sqrt{2}\int _{{{\mathbb {R}}}^d}|x^\alpha |\, |\partial ^\beta f(x)|\,dx, \end{aligned}$$

which holds for any function f in the Schwartz space \(S({{\mathbb {R}}}^d)\) and for any multi-indices \(\alpha , \beta \in {{\mathbb {Z}}}^d_+\) (see Lemma A.1 in [38]).

Lemma A.1

If the space \(S^{(a)}_{\{a\}}({{\mathbb {R}}})=\bigcap _{B\rightarrow 0}\bigcup _{A\rightarrow \infty }S_{a,A}^{a,B}({{\mathbb {R}}})\) is nontrivial, then there is a nonnegative even function \(\varphi \in S^{(a)}_{\{a\}}({{\mathbb {R}}})\) satisfying

$$\begin{aligned} \varphi (s)\ge 1/w_a(|s|), \qquad s\in {{\mathbb {R}}}. \end{aligned}$$
(A.1)

Proof

It is readily seen that \(S^{(a)}_{\{a\}}\) is an algebra under multiplication and is invariant under translations. Therefore, there is a nonnegative even function \(\omega \in S^{(a)}_{\{a\}}({{\mathbb {R}}})\) such that \(\int _0^1\omega (s)ds=1\). We set

$$\begin{aligned} \varphi (s)= \int \limits _{-\infty }^\infty \frac{\omega (s-t)}{w_a(|t|/2)}dt. \end{aligned}$$

The norm \(\Vert \omega \Vert _{A,B}\) is finite for any \(B>0\) and some A depending on B. Applying (2.13) and (2.11) gives

$$\begin{aligned} \begin{aligned} |\partial ^n\varphi (s)|&\le \int \limits _{-\infty }^\infty \frac{\Vert \omega \Vert _{A,B}B^na_n}{w_a(|t|/2)w_a(|s-t|/A)} dt \\&\le \int \limits _{-\infty }^\infty \frac{K\Vert \omega \Vert _{A,B}B^na_n}{w_a(|t|/2H)^2\,w_a(|s-t|/A)} dt\le \frac{C\Vert \omega \Vert _{A,B}B^na_n}{w_a(|s|/(2H+A))}, \end{aligned} \end{aligned}$$

where \(C=2K\int \limits _0^{\infty }w_a(t/2H)^{-1}dt\). Hence, \(\varphi \in S^{(a)}_{\{a\}}\). Using (2.12), we obtain

$$\begin{aligned} \varphi (s)\ge \int \limits _0^1\frac{\omega (t)}{w_a(|s-t|/2)}dt\ge \int \limits _0^1\frac{\omega (t)}{w_a((|s|+1)/2)}dt\ge \frac{1}{w_a(|s|)w_a(1)}=\frac{1}{w_a(|s|)}, \end{aligned}$$

as claimed.

\(\square \)

Proposition A.2

The space \(S_{(a)}^{\{a\}}({{\mathbb {R}}}^{2d})\) is not closed under the Weyl–Moyal product.

Proof

It suffices to consider the case where \(d=1\) and \(\hbar =2\). Let \(f(q,p)=f_1(q)f_2(p)\) and \(f_1,f_2\in S_{(a)}^{\{a\}}({{\mathbb {R}}})\). By the definition (1.1) we have

$$\begin{aligned} \begin{aligned}&(f\star f)(q,p)\\&\quad = (2\pi )^{-2}\! \int \limits _{{{\mathbb {R}}}^4} \!f_1(q-q')f_2(p-p')f_1(q-q'') f_2(p-p'')e^{i(q'p''-q''p')}dq'dq''dp'dp''\\&\quad =(2\pi )^{-1}\!\int \limits _{{{\mathbb {R}}}^2}{\widehat{f}}_1(p'')f_2(p-p'){\widehat{f}}_1(-p')f_2(p-p'')e^{i(qp''-qp')}dp'dp''. \end{aligned} \end{aligned}$$

If \(f_1\) and \(f_2\) are even, then

$$\begin{aligned} (f\star f)(q,0)=\left[ {\mathcal {F}}^{-1}\left( {\widehat{f}}_1\cdot f_2\right) (q)\right] ^2=(2\pi )^{-1}\left[ \left( f_1*{\widehat{f}}_2\right) (q)\right] ^2. \end{aligned}$$

The function \(f_1\) can be taken nonnegative and such that \(\int _0^{1}f_1(q)dq=1\). We set \({\widehat{f}}_2(q)=\varphi (q/2)\), where \(\varphi \) is the function constructed in Lemma A.1. Then

$$\begin{aligned} \left| \left( f_1*{\widehat{f}}_2\right) (q)\right| \ge \frac{1}{w_a(|q|)} \end{aligned}$$
(A.2)

by the same argument as in deriving (A.1). Assume that \(f\star f\in S_{(a)}^{\{a\}}({{\mathbb {R}}}^2)\). Then we have

$$\begin{aligned} |(f\star f)(q)|\le \frac{C_A}{w_a(|q|/A)} \end{aligned}$$

for any \(A>0\) and therefore, in view of (2.13),

$$\begin{aligned} \left| \left( f_1*{\widehat{f}}_2\right) (q)\right| \le \frac{C'_A}{w_a(|q|/HA)}. \end{aligned}$$

But this contradicts (A.2) for \(H^2A\le 1\) since \(w_a(t)/w_a(t/HA)\le K/w_a(t)\rightarrow 0\) as \(t\rightarrow \infty \). \(\square \)

We now turn to the mapping properties of the operators with Weyl symbols in \({\mathcal {E}}^{\{a\}}_{\{a\}}({{\mathbb {R}}}^{2d})\). The symbol class \(\Gamma ^\infty _{1,s}\), which coincides with \({\mathcal {E}}^{\{a\}}_{\{a\}}\) for \(a_n=n^{sn}\), was studied in [5] using the technique of short time Fourier transform and modulation spaces and the authors came to the conclusion that if \(u\in \Gamma ^\infty _{1,s}({\mathbf {R}}^{2d})\), then \(\mathop {\mathrm {Op}}\nolimits (u)\) is continuous from \(\Sigma _s({\mathbf {R}}^d)\) to \({\mathcal {S}}_s({\mathbf {R}}^d)\), which are respectively \(S_{(a)}^{(a)}({{\mathbb {R}}}^d)\) and \(S_{\{a\}}^{\{a\}}({{\mathbb {R}}}^d)\) with \(a_n=n^{sn}\) in our notation. A similar conclusion was made in [1] for a more general case of anisotropic Gelfand–Shilov spaces. Here we show that these conclusions are incorrect. We use the standard representation of the Weyl system

$$\begin{aligned} \left( T_\zeta ^\hbar \psi \right) (x)= e^{(i\hbar /2)\eta \xi }e^{i\eta x}\psi (x+\hbar \xi ),\quad \psi \in L^2({{\mathbb {R}}}^d), \qquad \zeta =(\eta ,\xi ), \end{aligned}$$

and assume that \(S_{(a)}^{(a)}({{\mathbb {R}}}^{2d})\) is nontrivial. If \(u\in S_{(a)}^{(a)\prime }({{\mathbb {R}}}^{2d})\), then applying the operator \(\mathop {\mathrm {Op}}\nolimits (u)\) to \(f\in S_{(a)}^{(a)}({{\mathbb {R}}}^d)\) yields an element of \(S_{(a)}^{(a)\prime }({{\mathbb {R}}}^d)\) such that

$$\begin{aligned} \langle \mathop {\mathrm {Op}}\nolimits (u)\,f,g\rangle = (2\pi )^{-d}\bigl \langle {\widehat{u}}, \bigl ({\bar{g}},T^\hbar _{(\cdot )}f\bigr )_{L^2} \bigr \rangle ,\quad g\in S_{(a)}^{(a)}({{\mathbb {R}}}^d). \end{aligned}$$

Explicitly

$$\begin{aligned} \langle \mathop {\mathrm {Op}}\nolimits (u)\,f,g\rangle = (2\pi )^{-d}\Bigl \langle u,\int _{{{\mathbb {R}}}^d} g(q-\hbar \xi /2)\,f(q+\hbar \xi /2) e^{-ip\xi }d\xi \Bigr \rangle . \end{aligned}$$

Setting \(\hbar =1\), this can also be expressed by saying that the kernel of \(\mathop {\mathrm {Op}}\nolimits (u)\) is given by

$$\begin{aligned} {\mathcal {K}}(x,y)= (2\pi )^{-d/2}\left( F_2^{-1} u\right) \bigl ( (x+y)/2, x-y\bigr ), \end{aligned}$$

which is taken as a starting definition in [1, 5].

Proposition A.3 provides a counterexample to Theorem 4.12 in [5] and to Theorem 3.16 in [1].

Proposition A.3

There is a function \(u\in {\mathcal {E}}^{\{a\}}_{\{a\}}({{\mathbb {R}}}^{2d})\) such that the image of \(S_{(a)}^{(a)}({{\mathbb {R}}}^d)\) under \(\mathop {\mathrm {Op}}\nolimits (u)\) is not contained in \(L^2({{\mathbb {R}}}^d)\).

Proof

We set \(d=1\), \(\hbar =1\), and \(u(q,p)=u_1(q)u_2(p)\). Let \(\omega _1\) be a nonnegative even function in \(S_{(a)}^{(a)}({{\mathbb {R}}})\) with \(\int _0^\infty \omega _1(t)dt=1\), and let

$$\begin{aligned} u_1(q)=\int \limits _{-\infty }^\infty \omega _1(q-t)\, w_a(|t|)dt. \end{aligned}$$

The function \(u_1\) belongs to \({\mathcal {E}}^{\{a\}}_{\{a\}}({{\mathbb {R}}})\) because \(\Vert \omega _1\Vert _{A,B}<\infty \) for any \(A,B>0\) and taking \(A\le 1/(2H)\) and using (2.13) and (2.12) we obtain

$$\begin{aligned} |\partial ^nu_1(q)|\le & {} \Vert \omega _1\Vert _{A,B}B^na_n \int \limits _{-\infty }^\infty \frac{w_a(|t|)}{w_a(|q-t|/A)} dt \\\le & {} K\Vert \omega _1\Vert _{A,B}B^na_n \int \limits _{-\infty }^\infty \frac{w_a(|q-t|)}{w_a(2|t|)^2} dt\le C\Vert \omega _1\Vert _{A,B}B^na_n w_a(2|q|), \end{aligned}$$

where \(C=2K\int _0^\infty w_a(2t)^{-1}dt\). Furthermore,

$$\begin{aligned} u_1(q)\ge w_a(|q|)\qquad \text {for all }q\in {{\mathbb {R}}}. \end{aligned}$$
(A.3)

Indeed, this function is even and for \(q\ge 0\), we have

$$\begin{aligned} u_1(q)\ge \int \limits _q^\infty \omega _1(t-q)w_a(t)dt\ge w_a(q)\int \limits _0^\infty \omega _1(t)dt=w_a(q). \end{aligned}$$

Next, let \({\widehat{u}}_2(s)=\varphi (s/\Lambda )\), where \(\varphi \) is the function constructed in Lemma A.1 and \(\Lambda \) is a positive parameter. Clearly, \(u(q,p)=u_1(q)u_2(p)\) belongs to \({\mathcal {E}}^{\{a\}}_{\{a\}}({{\mathbb {R}}}^2)\) and

$$\begin{aligned} (\mathop {\mathrm {Op}}\nolimits (u)\,f)(x)= \frac{1}{\sqrt{2\pi }}\int \limits _{-\infty }^\infty u_1((x+y)/2)\varphi ((x-y)/\Lambda ) f(y)dy. \end{aligned}$$

Let f be an arbitrary nonzero nonnegative function in \(S_{(a)}^{(a)}({{\mathbb {R}}})\). From (A.1), (A.3), and (2.12), we obtain

$$\begin{aligned} \begin{aligned} (\mathop {\mathrm {Op}}\nolimits (u)\,f)(x)&\ge \frac{1}{\sqrt{2\pi }}\int \limits _{-\infty }^\infty \frac{w_a(|x+y|/2)f(y)}{w_a(|x-y|/\Lambda )}dy\\&\ge \frac{1}{\sqrt{2\pi }}\frac{w_a(|x|/4)}{w_a(2|x|/\Lambda )}\int \limits _{-\infty }^\infty \frac{f(y)}{w_a(|y|/2)w_a(2|y|/\Lambda )}dy. \end{aligned} \end{aligned}$$

If \(\Lambda \ge 8H\), then (2.13) implies \(w_a(t/4)/w_a(2t/\Lambda )\ge K^{-1}w_a(t/4H)\), and we conclude that \(\mathop {\mathrm {Op}}\nolimits (u)\,f\notin L^2({{\mathbb {R}}})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, M. Inclusion Theorems for the Moyal Multiplier Algebras of Generalized Gelfand–Shilov Spaces. Integr. Equ. Oper. Theory 93, 52 (2021). https://doi.org/10.1007/s00020-021-02664-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02664-2

Keywords

Mathematics Subject Classification

Navigation