Skip to main content
Log in

Improving Semigroup Bounds with Resolvent Estimates

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

The purpose of this paper is to revisit the proof of the Gearhart–Prüss–Huang–Greiner theorem for a semigroup S(t), following the general idea of the proofs that we have seen in the literature and to get an explicit estimate on \(\Vert S(t) \Vert \) in terms of bounds on the resolvent of the generator. A first version of this paper was presented by the two authors in ArXiv (2010) together with applications in semi-classical analysis and some of these results has been subsequently published in two books written by the authors. Our aim is to present new improvements, partially motivated by a paper of D. Wei. On the way we discuss optimization problems confirming the optimality of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The definition will be given in Sect. 4.1.

  2. We say that \(u=[0,a]\mapsto {\mathbb {R}}\) is piecewise \(C^1\) if \(u\in C^0([0,a])\) and \(u'\) is piecewise continuous, i.e. with at most finitely many jump discontinuities. We denote by \(C^1_{pw} ([0,a])\) the space of piecewise \(C^1\) functions.

  3. Notice that by affine dilations in s, u we have the seemingly more general statement that if \({{\tilde{u}}}\) is a \(C^2\) Morse function on \([\sigma ,\tau ]\), where \(-\infty< \sigma< \tau < +\infty \), \({{\tilde{u}}} (\sigma ) < {{\tilde{u}}} (\tau )\), and \({{\tilde{u}}}(\sigma )\), \({{\tilde{u}}}(\tau )\) are not critical values, then there is a piecewise \(C^1\) function on \([\sigma ,\tau ]\), such that, \({{\tilde{v}}}' \ge 0\), \({{\tilde{v}}}(\sigma )={{\tilde{u}}} (\sigma )\), \({{\tilde{v}}}(\tau )={{\tilde{u}}}(\tau )\), and \(I_{]\sigma ,\tau [}({{\tilde{v}}}) \le I_{]\sigma ,\tau [} ({{\tilde{u}}})\).

  4. More precisely, there exist \(C,\epsilon _0>0\) such that, for \(|\sigma -\tau | < \epsilon _0\), the Dirichlet realization in \(]\sigma ,\tau [\) (also denoted by \(P_m\)) satisfies the lower bound \(m^{-2}P_m\ge \frac{1}{C}\).

  5. Here we use “neigh(AB)” as an abbreviation for “some neighborhood of A in B”.

  6. Here is our choice of normalization.

References

  1. Burq, N., Zworski, M.: Geometric control in the presence of a black box. J. Am. Math. Soc. 17(2), 443–471 (2004)

    Article  MathSciNet  Google Scholar 

  2. Chill, R., Seifert, D., Tomilov, Y.: Semi-uniform Stability of operator Semigroups and Energy Decay of Damped Waves. Philosophical Transactions A. The Royal Society Publishing (2020)

  3. Davies, E.B.: Linear Operators and Their Spectra, Cambridge Studies in Advanced Mathematics, vol. 106. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  4. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    MATH  Google Scholar 

  5. Engel, K.J., Nagel, R.: A Short Course on Operator Semigroups. Springer, Unitext (2005)

    MATH  Google Scholar 

  6. Gallagher, I., Gallay, T., Nier, F.: Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator. Int. Math. Res. Not. IMRN 12, 2147–2199 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Helffer, B.: Spectral Theory and its Applications. Cambridge University Press (2013)

  8. Helffer, B., Sjöstrand, J.: From resolvent bounds to semigroup bounds (2010). arXiv:1001.4171v1, math. FA

  9. Hitrik, M.: Eigenfunctions and expansions for damped wave equations. Meth. Appl. Anal. 10(4), 1–22 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Pazy, A.: Semigroups of linear operators and applications to partial differential operators. Appl. Math. Sci. vol. 44. Springer (1983)

  11. Schenk, E.: Systèmes quantiques ouverts et méthodes semi-classiques, thèse novembre (2009). http://www.lpthe.jussieu.fr/~schenck/thesis.pdf

  12. Sjöstrand, J.: Resolvent estimates for non-self-adjoint operators via semigroups. In: Around the Research of Vladimir Maz’ya. III, Int. Math. Ser. (N. Y.), vol. 13, pp. 359–384. Springer, New York (2010)

  13. Sjöstrand, J.: Spectral properties for non self-adjoint differential operators. In: Proceedings of the Colloque sur les équations aux dérivées partielles, Évian (2009)

  14. Sjöstrand, J.: Non self-adjoint differential operators, spectral asymptotics and random perturbations. In: Pseudo-Differential Operators and Applications. Birkhäuser (2018)

  15. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton, NJ (2005)

    Book  Google Scholar 

  16. Wei, D.: Diffusion and mixing in fluid flow via the resolvent estimate. Sci. China Math. 64, 507–518 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The IMB receives support from the EIPHI Graduate School (contract ANR-17-EURE-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sjöstrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Optimization with \(\epsilon _1=\epsilon _2=+\)

Appendix A. Optimization with \(\epsilon _1=\epsilon _2=+\)

In this section we let \(\epsilon _1=\epsilon _2=+\) in Theorem 1.6 and assume that \(\mathrm {supp\,}(r(\omega )^2-\phi '^2)_-\subset [0,a]\), \(\mathrm {supp\,}(r(\omega )^2-\psi '^2)_-\subset [0,b]\) for some \(a,b>0\), where \(\Phi =e^\phi \), \(\Psi =e^\psi \). The results we get in this case seem less conclusive, but are perhaps still of some interest. Assuming, to start with, that \(\phi \) and \(\psi \) are given on [0, a] and [0, b] respectively, we shall discuss how to choose \(\phi \) on \(]a,+\infty [\) and \(\psi \) on \(]b,+\infty [\), for every given \(t>a+b\), in order to optimize the estimate on \(\Vert S(t)\Vert \). A later problem will be to choose ab with \(a+b<t\) and the restrictions of \(\phi \), \(\psi \) to [0, a] and [0, b] respectively.

From (1.8) we get with \(r=r(\omega )\),

$$\begin{aligned} \Vert S(t)\Vert \le e^{\omega t} \frac{\Vert (r^2-\phi '^2)_-^{1/2}m\Vert _{\phi -\omega \cdot } \Vert (r^2-\psi '^2)_-^{1/2}m\Vert _{\psi -\omega \cdot }}{I(\phi ,\psi )}, \end{aligned}$$
(5.1)

where

$$\begin{aligned} I(\phi ,\psi )=I_{a,b,t}(\phi ,\psi )=\int _a^{t-b} e^{\phi +\iota \psi }(r^2-\phi '^2)_+^{1/2}(r^2-\iota \psi '^2)_+^{1/2} ds. \end{aligned}$$
(5.2)

Here we put \(\iota _t \psi (s)=\psi (t-s)\), and write simply \(\iota \) when the choice of t is clear. We try to choose \(\phi (s) \) for \(s\ge a\) and \(\psi (s)\) for \(s\ge b\) so that \(I(\phi ,\psi )\) is as large as possible. Write

$$\begin{aligned} \phi (s)=\phi (a)+{\widetilde{\phi }}(s-a),\ \psi (s)=\psi (b)+{\widetilde{\psi }}(s-b). \end{aligned}$$

For \(s\in [a,t-b]\), set \(s=a+{\widetilde{s}}\), \(0\le {\widetilde{s}}\le t-a-b\). Then with \({\widetilde{t}}=t-a-b\),

$$\begin{aligned} \phi (s)+\iota \psi (s)= & {} \phi (s)+\psi (t-s)=\phi (a+{\widetilde{s}})+\psi (t-a-{\widetilde{s}})\\= & {} \phi (a){+}\psi (b){+}(\phi (a{+}{\widetilde{s}}){-}\phi (a)){+}(\psi (b+(t-a-b)-{\widetilde{s}})-\psi (b)\\= & {} \phi (a)+\psi (b)+{\widetilde{\phi }}({\widetilde{s}})+{\widetilde{\psi }} (t-a-b-{\widetilde{s}})\\= & {} \phi (a)+\psi (b)+{\widetilde{\phi }}({\widetilde{s}})+\iota _{{\widetilde{t}}}{\widetilde{\psi }}({\widetilde{s}}) \end{aligned}$$

and we get with \({\widetilde{\iota }} =\iota _{{\widetilde{t}}}\),

$$\begin{aligned} \begin{aligned} I(\phi ,\psi )&=e^{\phi (a)+\psi (b)}\int _0^{{\widetilde{t}}} e^{{\widetilde{\phi }}({\widetilde{s}})+{\widetilde{\iota }} {\widetilde{\psi }}({\widetilde{s}})} (r^2-{\widetilde{\phi }}'^2)_+^{1/2} (r^2-{\widetilde{\iota }} \widetilde{\psi } '^2)_+^{1/2}d{\widetilde{s}}\\&= e^{\phi (a)+\psi (b)}I_{0,0,{\widetilde{t}}}(\widetilde{\phi },{\widetilde{\psi }}). \end{aligned} \end{aligned}$$
(5.3)

We wish to choose \({\widetilde{\phi }}\), \({\widetilde{\psi }}\) with \({\widetilde{\phi }}(0)={\widetilde{\psi }}(0)=0\) such that \({\widetilde{I}}({\widetilde{\phi }} ,\widetilde{\psi })=I_{0,0,{\widetilde{t}}}({\widetilde{\phi }},{\widetilde{\psi }})\) is as large as possible.

We temporarily drop the tildes. The problem is then to choose \(\phi \), \(\psi \) with \(\phi (0)=\psi (0)=0\) such that

$$\begin{aligned} I(\phi ,\psi )=\int _0^t e^{\phi +\iota \psi }(r^2-\phi '^2)_+^{1/2} (r^2-\iota \psi '^2)_+^{1/2} ds \end{aligned}$$
(5.4)

is as large as possible.

At this moment we do not know how to solve this general problem, so we restrict the class of functions (satisfying \(\phi (0)=\psi (0)=0\)) by requiring that

$$\begin{aligned} \phi +\iota \psi =\mathrm {Const.}\hbox { on }[0,t]. \end{aligned}$$
(5.5)

In other words, we require that \((\iota \psi )'=-\phi '\). The constant in (5.5) is then equal to \(\phi (t)=\int _0^t \phi '(s)ds\). With \(\Vert \cdot \Vert \) denoting the \(L^2([0,t])\)-norm, we get

$$\begin{aligned} I(\phi ,\psi )=\exp \left( \int _0^t \phi '(s)ds\right) \int _0^t (r^2-\phi '(s)^2)ds\le \exp (\sqrt{t}\Vert \phi '\Vert )(tr^2-\Vert \phi '\Vert ^2),\nonumber \\ \end{aligned}$$
(5.6)

requiring also that \(|\phi '|\le r\). Here we have equality precisely when \(\phi '\) is equal to some constant \(\alpha \in [0,r]\), so for any given value \(\beta \in [0,r\sqrt{t}]\) of \(\Vert \phi '\Vert \), we should choose

$$\begin{aligned} \phi '=\alpha , \ \ \phi (s)=\psi (s)=\alpha s,\hbox { with } \sqrt{t}\alpha =\beta \,. \end{aligned}$$
(5.7)

The corresponding maximal value of \(I(\phi ,\psi )\) is given by

$$\begin{aligned} J(\alpha , t)=te^{\alpha t}(r^2-\alpha ^2). \end{aligned}$$
(5.8)

We look for the maximum of this function of \(\alpha \):

$$\begin{aligned} \partial _\alpha J(\alpha ,t)=-t^2e^{\alpha t}\left( \alpha ^2+\frac{2}{t}\alpha -r^2 \right) . \end{aligned}$$

The two critical points are given by a local maximum at

$$\begin{aligned} \alpha _+=\alpha _+(t)=\frac{1}{t}(\sqrt{1+(rt)^2}-1)\in \, ]0,r[ \end{aligned}$$
(5.9)

and a local minimum at

$$\begin{aligned} \alpha _-=\alpha _-(t)=-\frac{1}{t}(\sqrt{1+(rt)^2}+1)<0. \end{aligned}$$

We see that \(\alpha _+\) is a global maximum. The corresponding maximal value is given by

$$\begin{aligned} J_{\mathrm {max}}(t)=J(\alpha _+,t)=e^{\sqrt{1+(rt)^2}-1}\frac{2}{t}(\sqrt{1+(rt)^2}-1). \end{aligned}$$
(5.10)

Let us compute the asymptotic behaviour of \(J_{\mathrm {max}}(t)\) when \(t\rightarrow +\infty \). We get

$$\begin{aligned} \sqrt{1+(rt)^2}= & {} rt+{{\mathcal {O}}}\left( \frac{1}{rt} \right) ,\ \alpha _+=r-\frac{1}{t}+{{\mathcal {O}}}\left( \frac{1}{trt} \right) ,\nonumber \\ J_{\mathrm {max}}(t)= & {} \left( 1+{{\mathcal {O}}}\left( \frac{1}{rt} \right) \right) \frac{2}{e}e^{rt}r,\ rt\rightarrow +\infty . \end{aligned}$$
(5.11)

Here we recall that the new \(t={\widetilde{t}}\) is equal to \(t-a-b\) for the original t. Returning to the original \(I(\phi ,\psi )=I_{a,b,t}(\phi ,\psi )\) (cf. (5.3)) with \({{\phi }_\vert }_{[0,a]}\), \({{\psi }_\vert }_{[0,b]}\) prescribed, we get with the choice

$$\begin{aligned}&{\left\{ \begin{array}{ll} \phi (s)-\phi (a)=\alpha _+(s-a),\ s\ge a,\\ \psi (s)-\psi (b)=\alpha _+(s-b),\ s\ge b, \end{array}\right. }\end{aligned}$$
(5.12)
$$\begin{aligned}&\alpha _+=\alpha _+({\widetilde{t}}),\ \ {\widetilde{t}}=t-a-b, \end{aligned}$$
(5.13)

that

$$\begin{aligned} \begin{aligned} I(\phi ,\psi )&=J_{\mathrm {max}}(t-a-b)e^{\phi (a)+\psi (b)}\\&=\left( 1+{{\mathcal {O}}}\left( \frac{1}{t-a-b} \right) \right) \frac{2}{e} e^{\phi (a)+\psi (b)} \, r \, e^{r(t-a-b)},\ \ t-a-b\rightarrow +\infty , \end{aligned} \end{aligned}$$
(5.14)

when \(r=r(\omega )>0\) is fixed.

Summing up the discussion so far, we get from (5.1), (5.14):

Proposition 5.1

Let \(a,b>0\) and let \(\Phi \in C([0,a]; {\mathbb {R}})\), \(\Psi \in C([0,b])\) be increasing, piecewise \(C^1\) with \(\Phi (0)=\Psi (0)=0\),

$$\begin{aligned} {\left\{ \begin{array}{ll} r(\omega )^2\Phi ^2-\Phi '^2\le 0,\hbox { on }[0,a],\\ r(\omega )^2\Psi ^2-\Psi '^2\le 0,\hbox { on }[0,b]. \end{array}\right. } \end{aligned}$$

Write \(\Phi = e^\phi \), \(\Psi =e^\psi \), with \(\phi \), \(\psi \) real. Then for \(t>a+b\), with \(r=r(\omega )\),

$$\begin{aligned} e^{-\omega t}\Vert S(t)\Vert \le \frac{\Vert (r^2\Phi ^2-\Phi '^2)^{\frac{1}{2}}_-m\Vert _{e^{\omega \cdot }L^2([0,a])}\Vert (r^2\Psi ^2-\Psi '^2) ^{\frac{1}{2}}_-m\Vert _{e^{\omega \cdot }L^2([0,b])}}{J_{\mathrm {max}}(t-a-b)\Phi (a)\Psi (b)},\nonumber \\ \end{aligned}$$
(5.15)

where \(J_{\mathrm {max}}({\widetilde{t}})\) is given in (5.10) and has the asymptotics (5.11). In particular for large values of \(t-a-b\),

$$\begin{aligned} \begin{aligned} e^{-\omega t}\Vert S(t)\Vert&\le \left( 1+{\mathcal O}\left( \frac{1}{r(t-a-b)} \right) \right) \frac{e}{2r}e^{-r(t-a-b)}\\&\quad \times \frac{\Vert (r^2\Phi ^2-\Phi '^2) ^{\frac{1}{2}}_-m\Vert _{e^{\omega \cdot }L^2([0,a])}\Vert (r^2\Psi ^2-\Psi '^2) ^{\frac{1}{2}}_-m\Vert _{e^{\omega \cdot }L^2([0,b])}}{\Phi (a)\Psi (b)}. \end{aligned} \end{aligned}$$
(5.16)

Here we meet the same quantities as in the previous section. Hence we obtain (cf Theorem 1.9), if \(a^{*} (m)\) is bounded, \(r=1\), \(\omega =0\) and \(a, b \le a^{*} (m)\), \(t> a+b\),

$$\begin{aligned} || e^t S(t)|| \le \left( 1+{\mathcal O}\left( \frac{1}{(t-a-b)} \right) \right) \frac{e}{2} m(a) m(b) e^{a+b} \psi _0(a)^\frac{1}{2} \psi _0 (b)^\frac{1}{2}. \end{aligned}$$
(5.17)

As \(t\rightarrow +\infty \), we have lost a factor (e/2) in comparison with the statement of Theorem 1.9. Nevertheless it is conceivable that for some t the estimate obtained by this approach is better.

Non optimality. Possible improvements? We have solved the optimization problem for \(I(\phi ,\psi )\) in (5.4) for \((\phi ,\psi )\) varying in a restricted class. The purpose of this remark is to show that the solution \((\phi ,\psi )\) in (5.7) with \(\alpha =\alpha _+\) is not a critical point for \(I(\phi ,\psi )\) when \((\phi ,\psi )\) varies more freely and hence we can perturb our special solution slightly (leaving the restricted class) and find an even larger value of \(I(\phi ,\psi )\).

Write \(f=\iota \psi \) for simplicity. We then want to find \(\phi ,f\in C^2([0,1])\) with

$$\begin{aligned} \phi (0)=f(t)=0, \end{aligned}$$
(5.18)

\(\phi \) increasing, f decreasing (i.e. \(\phi '\ge 0\), \(f'\le 0\)) with

$$\begin{aligned} r^2-\phi '^2>0,\ \ r^2-f'^2>0, \end{aligned}$$
(5.19)

such that \(I(\phi ,\iota f)\) is as large as possible and in particular such that \((\phi ,f)\) is a critical point for I. We make a variational calculation considering infinitessimal variations \((\phi +\delta \phi ,f+\delta f)\) with \(\delta \phi (0)=\delta f(t)=0\). Then

$$\begin{aligned} \delta I(\phi ,\iota f)=\mathrm {I}+\mathrm {II}+\mathrm {III}, \end{aligned}$$

where with \( K(\phi ,f)(s):=e^{\phi +f}(r^2-\phi '^2)^{\frac{1}{2}}(r^2-f '^2)^{\frac{1}{2}}: \)

$$\begin{aligned} \mathrm {I}= & {} \int _0^t K(\phi ,f)(s)(\delta \phi (s)+\delta f(s))ds,\\ \mathrm {II}= & {} \int _0^t K(\phi ,f)(s) \frac{\delta \left( (r^2-\phi '^2)^{1/2} \right) }{(r^2-\phi '^2)^{1/2}} ds,\\ \mathrm {III}= & {} \int _0^t K(\phi ,f)(s) \frac{\delta \left( (r^2-f '^2)^{1/2} \right) }{(r^2-f'^2)^{1/2}} ds. \end{aligned}$$

Here,

$$\begin{aligned} \delta \left( (r^2-\phi '^2)^{1/2} \right) =-(r^2-\phi '^2)^{-1/2}\phi '\delta \phi ' \end{aligned}$$

and similarly for f, so

$$\begin{aligned} \mathrm {II}= & {} -\int _0^t K(\phi ,f)(s)(r^2-\phi '^2)^{-1}\phi '\delta \phi ' ds,\\ \mathrm {III}= & {} -\int _0^t K(\phi ,f)(s)(r^2-f '^2)^{-1}f '\delta f ' ds. \end{aligned}$$

Here we integrate by parts, using that \(\delta \phi (0)=\delta f(t)=0\):

$$\begin{aligned} \mathrm {II}= & {} \int _0^t \left( \partial _s\circ K(\phi ,f)(r^2-\phi '^2)^{-1}\circ \partial _s\phi \right) \delta \phi ds -K(\phi ,f)(r^2-\phi '^2)\phi '\delta \phi (t),\\ \mathrm {III}= & {} \int _0^t \left( \partial _s\circ K(\phi ,f)(r^2-f '^2)^{-1}\circ \partial _sf \right) \delta f ds +K(\phi ,f)(r^2-f '^2)f '\delta f (0). \end{aligned}$$

This gives,

$$\begin{aligned} \begin{aligned} \delta (\phi ,\iota f)&=\int _0^t\left( K(\phi ,f)+\partial _s\circ K(\phi ,f)(r^2-\phi '^2)^{-1}\circ \partial _s\phi \right) \delta \phi ds\\&\quad -K(\phi ,f)(r^2-\phi '^2)\phi '\delta \phi (t)\\&\quad +\int _0^t\left( K(\phi ,f)+\partial _s\circ K(\phi ,f)(r^2-f '^2)^{-1}\circ \partial _sf \right) \delta f ds\\&\quad +K(\phi ,f)(r^2-f '^2)f'\delta f (0). \end{aligned} \end{aligned}$$

Assumption (5.19) implies that \(K(\phi ,f)(r^2-\phi '^2)>0\), \(K(\phi ,f)(r^2-f '^2)>0\) and we see that \((\phi ,f)\) is a critical point precisely when

$$\begin{aligned} \phi '(t)=0,\ \ f'(0)=0, \end{aligned}$$
(5.20)

(in addition to (5.18)) and

$$\begin{aligned} {\left\{ \begin{array}{ll} K(\phi ,f)+\partial _s\circ K(\phi ,f)(r^2-\phi '^2)^{-1}\circ \partial _s\phi =0\\ K(\phi ,f)+\partial _s\circ K(\phi ,f)(r^2-f '^2)^{-1}\circ \partial _sf=0 \end{array}\right. } \hbox { on }[0,t]. \end{aligned}$$
(5.21)

We conclude that \((\phi ,\psi )\) in (5.7) with \(\alpha =\alpha _+\), is not a critical point for \(I(\cdot , \cdot )\), since it does not satisfy (5.19). Hence by modifying \(\phi \) slightly near \(s=t\), we can increase \(I(\phi ,\psi )\) further.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helffer, B., Sjöstrand, J. Improving Semigroup Bounds with Resolvent Estimates. Integr. Equ. Oper. Theory 93, 36 (2021). https://doi.org/10.1007/s00020-021-02652-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02652-6

Keywords

Mathematics Subject Classification

Navigation