Skip to main content
Log in

Mate–Nevai–Totik Theorem for Krein Systems

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We prove the Cesàro boundedness of eigenfunctions of the Dirac operator on the half-line with a square-summable potential. The proof is based on the theory of Krein systems and, in particular, on the continuous version of a theorem by A. Máté, P. Nevai and V. Totik from 1991.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aptekarev, A., Denisov, S., Tulyakov, D.: V. A. Steklov’s problem of estimating the growth of orthogonal polynomials. Proc. Steklov Inst. Math. 289(1):72–95. Translation of Tr. Mat. Inst. Steklova 289(2015), 83–106 (2015)

  2. Bessonov, R.: Szegö condition and scattering for one-dimensional Dirac operators. Constr. Approx. 51(2), 273–302 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bessonov, R., Denisov, S.: A spectral Szegö theorem on the real line. Adv. Math. 359, 106851 (2020)

    Article  MathSciNet  Google Scholar 

  4. Christ, M., Kiselev, A.: Maximal functions associated to filtrations. J. Funct. Anal. 179(2), 409–425 (2001)

    Article  MathSciNet  Google Scholar 

  5. Christ, M., Kiselev, A.: WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials. J. Funct. Anal. 179(2), 426–447 (2001)

    Article  MathSciNet  Google Scholar 

  6. Christ, M., Kiselev, A.: Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials. Geom. Funct. Anal. 12(6), 1174–1234 (2002)

    Article  MathSciNet  Google Scholar 

  7. Deift, P., Killip, R.: On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203(2), 341–347 (1999)

    Article  Google Scholar 

  8. Denisov, S.: To the spectral theory of Krein systems. Integr. Equ. Oper. Theory 42(2), 166–173 (2002)

    Article  MathSciNet  Google Scholar 

  9. Denisov, S.: On the existence of wave operators for some Dirac operators with square summable potential. Geom. Funct. Anal. 14(3), 529–534 (2004)

    Article  MathSciNet  Google Scholar 

  10. Denisov, S.: Continuous analogs of polynomials orthogonal on the unit circle and Krein systems. IMRS Int. Math. Res. Surv. 148, 54517 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Denisov, S.: On the growth of polynomials orthogonal on the unit circle with a weight \(w\) that satisfies \(w, w^{-1}\in L^\infty (\mathbb{T})\). Mat. Sb. 209(7), 71–105 (2018)

    Article  MathSciNet  Google Scholar 

  12. Denisov, S., Rush, K.: Orthogonal polynomials on the circle for the weight \(w\) satisfying conditions \(w, w^{-1}\in {\rm BMO}\). Constr. Approx. 46(2), 285–303 (2017)

    Article  MathSciNet  Google Scholar 

  13. Folland, G.: Real Analysis. Pure and Applied Mathematics (New York), 2nd edn. Wiley, New York (1999). Modern techniques and their applications, A Wiley-Interscience Publication

  14. Garnett, J.: Bounded Analytic Functions. Pure and Applied Mathematics, vol. 96. Academic Press. [Harcourt Brace Jovanovich, Publishers], New York-London (1981)

  15. Koosis, P.: Introduction to \(H_p\) spaces. Cambridge Tracts in Mathematics, vol. 115, 2nd edn. Cambridge University Press, Cambridge (1998). With two appendices by V. P. Havin [Viktor Petrovich Khavin]

  16. Krein, M.: Continuous analogues of propositions on polynomials orthogonal on the unit circle. Dokl. Akad. Nauk SSSR (N.S.) 105, 637–640 (1955)

    MathSciNet  Google Scholar 

  17. Levin, B.: Lectures on entire functions. Translations of Mathematical Monographs, vol. 150. American Mathematical Society, Providence, RI (1996). In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko

  18. Máté, A., Nevai, P., Totik, V.: Szegö’s extremum problem on the unit circle. Ann. Math. (2) 134(2), 433–453 (1991)

    Article  MathSciNet  Google Scholar 

  19. Muscalu, C., Tao, T., Thiele, C.: A Carleson theorem for a Cantor group model of the scattering transform. Nonlinearity 16(1), 219–246 (2003)

    Article  MathSciNet  Google Scholar 

  20. Muscalu, C., Tao, T., Thiele, C.: A counterexample to a multilinear endpoint question of Christ and Kiselev. Math. Res. Lett. 10(2–3), 237–246 (2003)

    Article  MathSciNet  Google Scholar 

  21. Rybalko, A.: On the theory of continual analogues of orthogonal polynomials. Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 3, 42–60 (1966)

  22. Sakhnovich, L.: On the spectral theory of a class of canonical differential systems. Funktsional. Anal. i Prilozhen. 34(2), 50–62 (2000)

    Article  MathSciNet  Google Scholar 

  23. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    Article  Google Scholar 

  24. Simon, B.: Orthogonal polynomials on the unit circle. Part 1. American Mathematical Society Colloquium Publications, vol. 54. American Mathematical Society, Providence, RI (2005). Classical theory

  25. Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence, RI (1975). American Mathematical Society, Colloquium Publications, Vol. XXIII

  26. Teplyaev, A.: A note on the theorems of M. G. Krein and L. A. Sakhnovich on continuous analogs of orthogonal polynomials on the circle. J. Funct. Anal. 226(2), 257–280 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Roman Bessonov for helpful discussions and constant attention to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Gubkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by Ministry of Science and Higher Education of the Russian Federation, agreement \({{\mathcal {{N}}}}\underline{\mathbf{o }}\) 075-15-2019-1619.

Appendix

Appendix

1.1 Proof of Theorem F

Recall that \(\Phi \) is an even function such that \(|\Phi (x)(1 + x^2)|\) is bounded and \(\sigma \) is a measure satisfying (1.5). We need to prove that

$$\begin{aligned} \left( \Phi _r * \sigma \right) (x)\rightarrow \sigma '(x)\int _{{\mathbb {R}}}\Phi (t)dt, \quad r\rightarrow \infty , \end{aligned}$$
(6.1)

for almost every \(x\in {\mathbb {R}}\), where \(\Phi _r(t) = r\Phi (rt)\). By a restriction of \(\sigma \) to some interval one can assume that \(\sigma \) is finite. Now to prove (6.1) one can deal with the density and the singular part of \(\sigma \) individually: (6.1) for the density follows from the basic property of the approximate identity, see Theorem 8.15 in [13]; for the singular part one can adapt the proof of Lemma 5.4 in [14].

1.2 Proof of Lemma 3

We need to prove that

$$\begin{aligned} \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{f_r(x)D(x)}{x - z}\,dx&= f_r(z)D(z), \nonumber \\ \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{f_r(x)D(x)}{x + z}\,dx&= 0. \end{aligned}$$
(6.2)

We will need the following

Lemma 7

For every point \(z\in {\mathbb {C}}_+\) the following inequality holds:

$$\begin{aligned} |f_r(z)D(z)|\leqslant K_r(0,0)^{-\frac{1}{2}}(4\pi \mathop {\mathrm {Im}}\nolimits (z))^{-\frac{1}{2}}, \end{aligned}$$

in particular, for any \(c > 0\) the function \(f_rD\) is bounded in the half-plane \(\{z:\mathop {\mathrm {Im}}\nolimits (z) > c\}\).

Proof

$$\begin{aligned}&| f_r(z)| = \left| \frac{K_r(0,z)}{K_r(0,0)}\right| = \left| \frac{\int _0^r \overline{P(s,0)}P(s,z) \,ds}{\int _0^r \left| P(s,0)\right| ^2 ds}\right| \\&\quad \leqslant \frac{\left( \int _0^r \left| P(s,0)\right| ^2 ds\right) ^{\frac{1}{2}}\left( \int _0^r \left| P(s,z)\right| ^2 ds\right) ^{\frac{1}{2}}}{\int _0^r \left| P(s,0)\right| ^2 ds} \leqslant K_r(0,0)^{-\frac{1}{2}}\left( \frac{|\Pi (z)|^2}{2\mathop {\mathrm {Im}}\nolimits (z)} \right) ^{\frac{1}{2}} \\&\quad {\mathop {=}\limits ^{(2.9)}} K_r(0,0)^{-\frac{1}{2}}\left( \frac{1}{2\mathop {\mathrm {Im}}\nolimits (z)\cdot 2\pi |D(z)|^2} \right) ^{\frac{1}{2}}\\&\quad = K_r(0,0)^{-\frac{1}{2}}\left( 4\pi \mathop {\mathrm {Im}}\nolimits (z) \right) ^{-\frac{1}{2}} |D(z)|^{-1}. \end{aligned}$$

The second inequality on the second line follows from Corollary 3. Multiplying the last inequality by |D(z)|, we obtain the required. \(\square \)

Remark

If the case when \(f_r D\in H^p({\mathbb {C}}_+)\) for some \(p\geqslant 1\), the conclusion of Lemma 3 is known (see p. 116 in [15]). It is not our case but function \(f_rD\) satisfies a “boundedness” condition from Lemma 7.

Proof of Lemma 3

We have already mentioned that the function

$$\begin{aligned} \frac{\sqrt{2\pi }^{-1}\Pi ^{-1}}{\lambda + i} = \frac{D}{\lambda + i} \end{aligned}$$

is in the Hardy space \(H^2({\mathbb {C}}_+)\). Hence, for a fixed \(z\in {\mathbb {C}}_+\) the function \(\frac{D}{\lambda + z}\) also belongs to \(H^2({\mathbb {C}}_+)\). The function \(f_r\) belongs to the Paley-Wiener space and consequently to \(H^2({\mathbb {C}}_+)\). Therefore both integrals in the lemma are absolutely convergent and define analytic functions in \({\mathbb {C}}_+\). Moreover, \(f_r\frac{D}{\lambda + z}\) is a multiplication of two functions from \(H^2({\mathbb {C}}_+)\) and consequently it belongs to \(H^1({\mathbb {C}}_+)\). Integral of an \(H^1({\mathbb {C}}_+)\) function over the real line equals 0 (see p. 122 in [15] or Lemma 3.7 in [14]). Thus, the second equality in lemma is proved.

By Lemma 7, the function \(G_{\varepsilon }(\lambda ) = f_r(\lambda + \varepsilon i)D(\lambda + \varepsilon i)\) is bounded in the upper half-plane \({\mathbb {C}}_+\). Proceeding as above, we deduce that for all \(z\in {\mathbb {C}}_+\)

$$\begin{aligned} \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{G_{\varepsilon }(x)}{x + z}\,dx&= 0. \end{aligned}$$

Next, the following chain of equalities holds:

$$\begin{aligned} \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{f_r(x + \varepsilon i)D(x + \varepsilon i)}{x - z}\,dx&= \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{G_{\varepsilon }(x)}{x - z}\,dx\nonumber \\ =\frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{G_{\varepsilon }(x)}{x - z}\,dx&- \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{G_{\varepsilon }(x)}{x + z}\,dx = \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{2zG_{\varepsilon }(x)}{x^2 -z^2}\,dx.\nonumber \\ \end{aligned}$$
(6.3)

The latter integral can be calculated by the calculus of residues. Take a large positive number R and consider a contour \(C_R\) consisting of the segment \([-R, R]\) and the half-circle \(\Gamma _R\) connecting points R and \(-R\) in the upper half-plane.

$$\begin{aligned} G_{\varepsilon }(z)&= \text {Res}_z\left( \frac{2zG_{\varepsilon }(x)}{x^2 -z^2}\right) = \frac{1}{2\pi i}\int \limits _{C_R}\frac{2zG_{\varepsilon }(x)}{x^2 -z^2}dx\nonumber \\&=\frac{1}{2\pi i}\int \limits _{[-R, R]}\frac{2zG_{\varepsilon }(x)}{x^2 -z^2}dx + \frac{1}{2\pi i}\int \limits _{\Gamma _R}\frac{2zG_{\varepsilon }(x)}{x^2 -z^2}dx. \end{aligned}$$
(6.4)

The first term in the latter sum has a limit as \(R\rightarrow \infty \).

$$\begin{aligned} \lim _{R\rightarrow \infty } \frac{1}{2\pi i}\int \limits _{[-R, R]}\frac{2zG_{\varepsilon }(x)}{x^2 -z^2}\,dx = \frac{1}{2\pi i}\int \limits _{{\mathbb {R}}}\frac{2zG_{\varepsilon }(x)}{x^2 -z^2}\,dx. \end{aligned}$$

Since the function \(G_{\varepsilon }\) is bounded, the second term tends to zero as \(R\rightarrow \infty \):

$$\begin{aligned} \left| \frac{1}{2\pi i}\int _{\Gamma _R}\frac{2zG_{\varepsilon }(x)}{x^2 -z^2}\,dx\right|&\leqslant \frac{1}{2\pi }\int _0^{\pi }\left| \frac{2zG_{\varepsilon }(Re^{i\theta })}{R^2e^{2i\theta } - z^2}\right| R\, d\theta \\&\leqslant \frac{R|z|}{R^2 - |z|^2}\sup \nolimits _{\theta }|G_{\varepsilon }(Re^{i\theta })| =O\left( \frac{1}{R}\right) . \end{aligned}$$

We can therefore pass to the limit \(R\rightarrow \infty \) in (6.4) and obtain

$$\begin{aligned} \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{2zG_{\varepsilon }(x)}{x^2 -z^2}\,dx = G_{\varepsilon }(z). \end{aligned}$$

Substituting this into (6.3) we get

$$\begin{aligned} \frac{1}{2\pi i}\int _{{\mathbb {R}}}\frac{f_r(x + \varepsilon i)D(x + \varepsilon i )}{x - z}\,dx&= G_{\varepsilon }(z)= f_r(z + i\varepsilon )D(z + i\varepsilon ). \end{aligned}$$

To prove equality (6.2) it only remains to pass to the limit as \(\varepsilon \) tends to 0. The right part of the equality tends to \(f_r(z)D(z)\) so we need to evaluate how the left side differs from the integral in the lemma.

$$\begin{aligned}&\left| \int _{{\mathbb {R}}}\frac{f_r(x + \varepsilon i)D(x + \varepsilon i )}{x - z}\,dx - \int _{{\mathbb {R}}}\frac{f_r(x )D(x )}{x - z}\,dx\right| \\&\quad = \left| \int _{{\mathbb {R}}}f_r(x +i\varepsilon )\frac{D(x + \varepsilon i ) - D(x)}{x - z}\,dx + \int _{{\mathbb {R}}}D(x)\frac{f_r(x +i\varepsilon )- f_r(x)}{x - z}\,dx\right| \\&\quad \leqslant \int _{{\mathbb {R}}}\left| f_r(x +i\varepsilon )\frac{D(x + \varepsilon i ) - D(x)}{x - z}\right| \,dx + \int _{{\mathbb {R}}}\left| D(x)\frac{f_r(x +i\varepsilon )- f_r(x)}{x - z}\right| \,dx \\&\quad \leqslant \left\| f_r(x + \varepsilon i) \right\| _{2}\cdot \left\| \frac{x + i}{x - z} \right\| _{\infty }\left\| \frac{D(x + \varepsilon i) - D(x)}{x + i} \right\| _{2} \\&\qquad +\left\| f_r(x + i\varepsilon ) - f_r(x) \right\| _{2}\cdot \left\| \frac{x + i}{x - z} \right\| _{\infty }\left\| \frac{D(x)}{x + i} \right\| _{2} \\&\quad \leqslant C\left( \left\| \frac{D(x + \varepsilon i) - D(x)}{x + i} \right\| _{2} + \left\| f_r(x + i\varepsilon ) - f_r(x) \right\| _{2}\right) \\&\quad \leqslant C\left( \left\| \frac{D(x+\varepsilon i )}{x + i}- \frac{D(x+\varepsilon i)}{x+\varepsilon i+i} \right\| _{2} + \left\| \frac{D(x+\varepsilon i)}{x+\varepsilon i +i} - \frac{D(x)}{x+i} \right\| _{2} \right. \\&\qquad \left. + \left\| f_r(x+i\varepsilon ) - f_r(x) \right\| _{2}\right) . \end{aligned}$$

The first term can be bounded in the following way:

$$\begin{aligned} \left\| \frac{D(x + \varepsilon i )}{x + i}- \frac{D(x + \varepsilon i)}{x + \varepsilon i + i} \right\| _{2} = \varepsilon \left\| \frac{D(x + \varepsilon i)}{(x + \varepsilon i + i)(x + i)} \right\| _{2} \leqslant \varepsilon \left\| \frac{D(x)}{x + i} \right\| _{2}\rightarrow 0. \end{aligned}$$

From a general property of functions in \(H^2({\mathbb {C}}_+)\) (see Theorem 3.1 in [14] or Section 19.2 in [17]), it follows that the second and the third terms in the bracket tend to zero as \(\varepsilon \rightarrow 0\). \(\square \)

1.3 Proof of (2.18)

Proof

We need to prove that for every \(\delta > 0\) the following holds:

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\left| H_r(x - \delta i)\right| ^2\,dx < 2\pi r, \end{aligned}$$

where \(H_r(x) = \frac{e^{-irx} -1 }{x}\). Recall the formula of the Fourier transform of \(\frac{1}{x^2 + 1}\):

$$\begin{aligned} {\mathcal {F}}\left( \frac{1}{x^2 + 1}\right) (w) = \int \limits _{-\infty }^{\infty }\frac{e^{iwx}}{x^2 + 1}\,dx = \pi e^{-|w|}. \end{aligned}$$

With that in mind, the integral can be easily estimated, we have

$$\begin{aligned} \int \limits _{-\infty }^{\infty }\left| H_r(x - \delta i)\right| ^2\,dx= & {} \int \limits _{-\infty }^{\infty }\frac{\left| e^{-r\delta }e^{irx} - 1\right| ^2}{x^2 + \delta ^2}\,dx \\= & {} \int \limits _{-\infty }^{\infty }\frac{e^{-2r\delta } + 1 - e^{-r\delta }(e^{irx} + e^{-irx})}{x^2 + \delta ^2} \,dx \\= & {} \frac{1}{\delta }\left[ (e^{-2r\delta } + 1)\int \limits _{-\infty }^{\infty }\frac{\,dy}{y^2 + 1} - e^{-r\delta }\int \limits _{-\infty }^{\infty }\frac{e^{ir\delta y} + e^{-ir\delta y}}{y^2 + 1}\,dy\right] \\= & {} \frac{1}{\delta }\left[ (e^{-2r\delta } + 1)\pi - 2e^{-r\delta }\pi e^{-r\delta }\right] = \pi \frac{1 - e^{-2r\delta }}{\delta } < 2\pi r. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubkin, P. Mate–Nevai–Totik Theorem for Krein Systems. Integr. Equ. Oper. Theory 93, 33 (2021). https://doi.org/10.1007/s00020-021-02650-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02650-8

Keywords

Mathematics Subject Classification

Navigation