Skip to main content
Log in

Multivariable Bergman Shifts and Wold Decompositions

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \(H_m({\mathbb {B}})\) be the analytic functional Hilbert space on the unit ball \({\mathbb {B}} \subset {\mathbb {C}}^n\) with reproducing kernel \(K_m(z,w) = (1 - \langle z,w \rangle )^{-m}\). Using algebraic operator identities we characterize those commuting row contractions \(T \in L(H)^n\) on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple \(M_z \in L(H_m({\mathbb {B}}))^n\). For \(m=1\), this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at \(z = 0\). For \(m = 1 = n\), one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829–842, 2012) to the case of the unit ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agler, J.: Hypercontractions and subnormality. J. Oper. Theory 13, 203–217 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Athavale, A.: On the intertwining of joint isometries. J. Oper. Theory 23, 339–350 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Chavan, S., Kumari, R.: \({\cal{U}}\)-invariant kernels, defect operators, and graded submodules. N. Y. J. Math. 22, 677–709 (2016)

    Google Scholar 

  4. Eschmeier, J.: Bergman inner functions and \(m\)-hypercontractions. J. Funct. Anal. 275, 73–102 (2018)

    Google Scholar 

  5. Eschmeier, J., Langendörfer, S.: Cowen–Douglas tuples and fiber dimensions. J. Oper. Theory 78, 21–43 (2017)

    Article  MathSciNet  Google Scholar 

  6. Eschmeier, J., Putinar, M.: Spectral decompositions and analytic sheaves, London Math. Monograph Series, vol. 20. Clarendon Press, Oxford (1996)

  7. Giselsson, O., Olofsson, A.: On some Bergman shift operators. Complex Anal. Oper. Theory 6, 829–842 (2012)

    Article  MathSciNet  Google Scholar 

  8. Gleason, J., Richter, S.: \(m\)-Isometric commuting tuples of operators on a Hilbert space. Intergral Equ. Oper. Theory 56, 181–196 (2006)

    Google Scholar 

  9. Gleason, J., Richter, S., Sundberg, C.: On the index of invariant subspaces in spaces of analytic functions of several complex variables. J. Reine Angew. Math. 587, 49–76 (2005)

    Article  MathSciNet  Google Scholar 

  10. Gu, C., Stankus, M.: Some results on higher order isometries and symmetries: products and sums with a nilpotent operator. Linear Algebra Appl. 469, 500–509 (2015)

    Article  MathSciNet  Google Scholar 

  11. Halmos, P.R., Wallen, L.J.: Powers of partial isometries. J. Math. Mech. 19, 657–663 (1970)

    MathSciNet  MATH  Google Scholar 

  12. Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory Advances and Applications, vol. 139. Birkhäuser, Basel (2007)

    Google Scholar 

  13. Müller, V., Vasilescu, F.-H.: Standard models for some commuting multioperators. Proc. Am. Math. Soc. 117, 979–989 (1993)

    Article  MathSciNet  Google Scholar 

  14. Shimorin, S.: Wold-type decompositions and wandering subspaces close to isometries. J. Reine Angew. Math. 531, 147–189 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewer whose useful comments have lead to an improved version of the original paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Eschmeier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eschmeier, J., Langendörfer, S. Multivariable Bergman Shifts and Wold Decompositions. Integr. Equ. Oper. Theory 90, 56 (2018). https://doi.org/10.1007/s00020-018-2481-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2481-3

Keywords

Mathematics Subject Classification

Navigation