Abstract
We study the spectrum of generalized Cesàro operators \(T_g\) acting on the class of growth spaces \(A^{-\alpha }\). We show how the problem of determining the spectrum is related to boundedness of standard weighted Bergman projections on weighted \(L^\infty \)-spaces. Using this relation we establish some general spectral properties of these operators, and explicitly compute the spectrum for a large class of symbols g.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Aleman, A.: A class of integral operators on spaces of analytic functions. In: Topics in Complex Analysis and Operator Theory. Univ. Málaga, Málaga, pp. 3–30 (2007)
Aleman, A., Constantin, O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009)
Aleman, A., Peláez, J.A.: Spectra of integration operators and weighted square functions. Indiana Univ. Math. J. 61, 775–793 (2012)
Aleman, A., Persson, A.-M.: Resolvent estimates and decomposable extensions of generalized Cesàro operators. J. Funct. Anal. 258, 67–98 (2010)
Aleman, A., Siskakis, A.: An integral operator on \(H^p\). Complex Var. Theory Appl. 28, 149–158 (1995)
Aleman, A., Siskakis, A.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997)
Békollé, D.: Inégalité à poids pour le projecteur de Bergman dans la boule unité de \({\bf C}^{n}\), Studia Math., 71, pp. 305–323 (1981/82)
Bonet, J.: The spectrum of Volterra operators on weighted spaces of entire functions. Q. J. Math. 66, 799–807 (2015)
Bonet, J., Engliš, M., Taskinen, J.: Weighted \(L^\infty \)-estimates for Bergman projections. Studia Math. 171, 67–92 (2005)
Constantin, O.: A Volterra-type integration operator on Fock spaces. Proc. Am. Math. Soc. 140, 4247–4257 (2012)
Constantin, O., Persson, A.-M.: The spectrum of Volterra-type integration operators on generalized Fock spaces. Bull. Lond. Math. Soc. 47, 958–963 (2015)
Duren, P.L.: Theory of \(H^{p}\) Spaces. Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)
Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer, New York (2000)
Pommerenke, C.: Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Comment. Math. Helv. 52, 591–602 (1977)
Rubel, L.A., Shields, A.L.: The second duals of certain spaces of analytic functions. J. Austral. Math. Soc. 11, 276–280 (1970)
Siskakis, A.G.: Volterra operators on spaces of analytic functions—a survey. In: Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Secr. Publ., Seville, pp. 51–68 (2006)
Stević, S.: Boundedness and compactness of an integral operator on a weighted space on the polydisc. Indian J. Pure Appl. Math. 37, 343–355 (2006)
Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980)
Young, S.W.: Spectral properties of generalized Cesàro operators. Integr. Equ. Oper. Theory 50, 129–146 (2004)
Acknowledgements
The author would like to thank his supervisor, Professor Alexandru Aleman, for the suggestion to study this problem and for many helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Malman, B. Spectra of Generalized Cesàro Operators Acting on Growth Spaces. Integr. Equ. Oper. Theory 90, 26 (2018). https://doi.org/10.1007/s00020-018-2448-4
Received:
Revised:
Published:
DOI: https://doi.org/10.1007/s00020-018-2448-4