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Integral Equations
and Operator Theory

Spectra of Generalized Cesàro Operators
Acting on Growth Spaces

Bartosz Malman

Abstract.We study the spectrum of generalized Cesàro operators Tg act-
ing on the class of growth spaces A−α. We show how the problem of de-
termining the spectrum is related to boundedness of standard weighted
Bergman projections on weighted L∞-spaces. Using this relation we es-
tablish some general spectral properties of these operators, and explicitly
compute the spectrum for a large class of symbols g.

Keywords. Generalized Cesàro operators, Volterra-type integral
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1. Introduction and Statements of the Main Results

Let D denote the open unit disk of the complex plane C. For a fixed analytic
function g : D → C with g(0) = 0 we define the corresponding generalized
Cesàro operator Tg acting on an analytic function f : D → C by the formula

Tgf(z) =
∫ z

0

g′(ζ)f(ζ) dζ.

For the particular choice of g(z) = log( 1
1−z ) we obtain the classical (shifted)

Cesàro operator, which can alternatively be defined by its action on the Taylor
coefficients of f(z) =

∑∞
n=0 anzn by the formula

∞∑
n=0

anzn �→
∞∑

n=0

bnzn+1,

where

bn =
1

n + 1

n∑
k=0

ak.

The action of generalized Cesàro operators on classical spaces of analytic
functions has been studied in a number of articles. It was noted in [14] that
Tg is bounded on the Hardy space H2 if and only if g is a function of bounded
mean oscillation, and this fact was used to obtain a short proof of the analytic
John–Nirenberg inequality. Further results on boundedness and compactness
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of Tg acting on the Hardy spaces Hp for p �= 2 have been obtained in [5], and
a characterization of the spectrum of Tg acting on those spaces is available
in [3]. Further properties of the spectrum of Tg acting on H2 are described
in [19]. The corresponding questions have also been studied in the context
of the Bergman spaces (see [2,6]). More recently, Tg operators with entire
symbols g : C → C acting on spaces of entire functions have been studied
in [8,10,11]. A study of the spectrum of a certain normalized version of Tg

acting on a class of Banach spaces of analytic function satisfying some natural
assumptions is carried out in [4]. The two excellent survey articles [1] and
[16] contain more references and mention how this class of operators appear
in other parts of analysis.

The purpose of this article is to study the spectrum of Tg acting on
the so-called growth spaces . For α > 0, the growth space A−α is the Banach
space of analytic functions defined in D for which the quantity

‖f‖−α := sup
z∈D

(1 − |z|2)α|f(z)|

is finite. Growth spaces appear in several contexts, perhaps most importantly
in the study of zero sequences and interpolating sequences for the classical
Bergman spaces (see [13, Chapter 4 and 5]). The closure of analytic polyno-
mials in the norm ‖ · ‖−α is denoted by A−α

0 and consists precisely of those
functions f ∈ A−α for which

lim
r→1

sup
r<|z|<1

(1 − |z|2)α|f(z)| = 0.

The space A−α
0 has the big advantage of being separable, and it turns out

that Tg exhibits largely the same behaviour on A−α and A−α
0 . As we will

see in Sect. 3, Tg is simultaneously bounded or compact on both spaces,
and the spectrum of Tg is the same for both spaces. The boundedness and
compactness questions have already been studied in [17], where it is shown
that Tg is bounded on A−α if and only if g satisfies

‖g‖B := sup
z∈D

(1 − |z|2)|g′(z)| < ∞,

that is, if and only if g is contained in the Bloch space B. The operator is
compact if and only if g ∈ B0, the little Bloch space, which is the subspace
of B consisting of functions which satisfy

lim
r→1

sup
r<|z|<1

(1 − |z|2)|g′(z)| = 0.

Our study of the spectrum σ(Tg|A−α) follows an idea of [2] which
translates the spectral problem into an equivalent problem of characterizing
weights w : D → (0,∞) with a certain property. It starts with the observation
that for λ ∈ C\{0} the unique analytic solution h to the equation

(1 − λ−1Tg)h = f

is given by

h(z) = Rλ,gf(z) := f(0)e
g(z)

λ + e
g(z)

λ

∫ z

0

e− g(ζ)
λ f ′(ζ) dζ.
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It is easy to see that the operator Tg − λ is injective, and hence it will
be invertible on any Banach space X if and only if the operator Rλ,g acts
boundedly on X. In the case X = A−α, this in turn implies an equivalence
of norms on a certain Banach space of analytic functions which we will now
describe. To this end, let w be a weight on D. For us, this will mean a
strictly positive continuous function w : D → (0,∞). Consider the space
L∞

w consisting of (equivalence classes of) measurable functions f defined in D

which satisfy ‖wf‖∞ < ∞, where ‖·‖∞ denotes the usual essential supremum
norm. Let H∞

w be the closed subspace of L∞
w consisting of analytic functions.

For λ ∈ C\{0} let

w(z) =
∣∣e g(z)

λ

∣∣(1 − |z|2)α. (1)
It turns out (see Proposition 5.1 below) that λ is in the resolvent set ρ(Tg|A−α)
if and only if for f ∈ H∞

w we have the equivalence of norms

sup
z∈D

w(z)|f(z)| ∼ sup
z∈D

w(z)(1 − |z|2)|f ′(z)| + |f(0)|. (2)

We are thus lead to studying weights w for which such an equivalence holds.
We show in Sect. 4 that the existence of such a norm equivalence is connected
to the boundedness on L∞

w of the weighted Bergman projections. For δ > −1,
the weighted Bergman projection Pδ is given by

Pδf(z) = (δ + 1)
∫
D

f(ζ)
(1 − |ζ|2)δ

(1 − zζ)2+δ
dA(ζ),

where dA denotes the area measure on D. For the class of bounded and
differentiable weights satisfying for some constant kw > 0 the inequality

(1 − |z|)|∇w(z)| ≤ kww(z) (3)

we prove the following theorem (see Sect. 4 for the definition of P̃δ appearing
below).

Theorem 4.5. Let w : D → (0,∞) be a bounded and differentiable weight
which satisfies (3). The following are equivalent:

(i) The operator Pδ is bounded on L∞
w for some δ > −1.

(ii) The operator P̃δ is bounded on L∞
w for some δ > −1

(iii) There exists δ > −1 such that

sup
z∈D

w(z)
∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2
dA(ζ) < ∞.

(iv) For each n ≥ 1

sup
z∈D

(1 − |z|2)nw(z)|f (n)(z)| +
n−1∑
k=0

|f (k)(0)|

defines an equivalent norm on H∞
w .

The first three conditions of the above theorem are equivalent, with the same
constant δ, even without the assumption that (3) holds (see Theorem 4.1).
The fourth condition is on the other hand crucial for our further study of
the spectrum of Tg on the growth spaces. We note that the general problem
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of boundedness of weighted Bergman projections on L∞
w has been studied in

[9].
Results of Sect. 4 are applied to the spectral problem in Sect. 5. The

main difficulty is a technical one of extending (2) to higher derivatives, i.e.,
to establish that condition (iv) of Theorem 4.5 holds for the weight given by
(1) whenever λ ∈ ρ(Tg|A−α). The main tool here is an operator interpolation
theorem which we prove in Sect. 2 (see Theorem 2.2 below), and the result
is the following characterization of the spectrum of Tg acting on A−α.

Theorem 5.3. Let g ∈ B, λ ∈ C\{0} and

w(z) =
∣∣e g(z)

λ

∣∣(1 − |z|2)α.

The following are equivalent:
(i) λ ∈ ρ(Tg|A−α).
(ii) For some δ > −1, the weight w satisfies

sup
z∈D

w(z)
∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2
dA(ζ) < ∞.

This characterization allows us to explicitly compute the spectrum for a class
of symbols g ∈ B. It turns out, precisely as is the case for many other Banach
spaces X, that the spectrum of Tg acting on X = A−α satisfies the equality

σ(Tg|X) = {0}
⋃ {

λ ∈ C\{0} : eg/λ �∈ X
}

(4)

whenever g is the primitive of a rational function. Moreover, we obtain the
following spectral stability result.

Theorem 5.4. Let g, h ∈ B and assume that σ(Th|A−α) = {0}. Then

σ(Tg+h|A−α) = σ(Tg|A−α).

This allows us to extend (4) to the case when g is the sum of a primitive of a
rational function with a bounded analytic function and a function in B0 (see
Theorem 5.6).

For a general Banach space X and a general symbol g, the equality in
(4) does not hold. This is shown in [2] in the case when X is any of the
standard Bergman spaces. By relating condition (ii) of Theorem 5.3 to the
classical Békollé weight condition, we show that the example in [2] can be
adapted to the case considered here, so that the spectrum of Tg on A−α can
indeed be much larger than (4).

2. Preliminaries

2.1. An Integral Kernel Estimate

The following well-known estimate will be used frequently below.

Proposition 2.1. For any δ > −1 and any s > 0 there exists a constant C > 0
such that for z ∈ D we have∫

D

(1 − |ζ|2)δ

|1 − zζ|δ+2+s
dA(ζ) ≤ C

(1 − |z|)s
.
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For a proof, see [13, Theorem 1.7].

2.2. Equivalent Norms

For any n ≥ 0, the space A−α can equivalently be normed by

sup
z∈D

(1 − |z|2)α+n|f (n)(z)| +
n−1∑
k=0

|f (k)(0)|

(see Theorem 5.5 in [12]). We will often use these norms without further
reference.

2.3. Duality Relations

Let L1(D) be the Lebesgue space of (equivalence classes of) measurable func-
tions which are integrable with respect to dA. It is a consequence of the
results of [15] that the dual space (A−α

0 )∗ can be identified with the quotient
space L1(D)/N , where

N =
{

f ∈ L1(D) :
∫
D

f(ζ)(1 − |ζ|2)αh(ζ)dA(ζ) = 0,∀h ∈ A−α
}

.

Moreover, it is also proved in [15] that the dual space (L1(D)/N)∗ can be
identified with A−α. The duality pairing is in both cases given by∫

D

f(ζ)(1 − |ζ|2)h(ζ)dA(ζ),

where f ∈ L1(D)/N and h ∈ A−α or h ∈ A−α
0 .

It is clear from this characterization that a sequence {fn}∞
n=1 in A−α

0

converges weakly to f if and only if the norms ‖fn‖−α stay bounded and
fn(z) → f(z) for each z ∈ D as n → ∞, uniformly on compact subsets of
D. As the dual space of L1(D)/N , the space A−α can be equipped with the
usual weak-* topology, and similarly {fn}∞

n=1 in A−α converges weak-* to a
function f if and only if the norms ‖fn‖−α stay bounded and fn(z) → f(z)
uniformly on compact subsets of D. In particular, for r ∈ (0, 1) the dilations
fr(z) = f(rz) of any function f ∈ A−α converge weak-* to f as r → 1.

2.4. Interpolation of Operators on Growth Spaces

In Sect. 5 we will need the following result on interpolation of linear operators
between two growth spaces. The proof consists of applying the basic ideas of
the well-known complex interpolation method.

Theorem 2.2. Let R : A−β
0 → A−β

0 be a bounded linear operator. If for some
α ∈ (0, β) the operator R also maps A−α

0 boundedly into itself, then the
operator R maps A−γ

0 boundedly into itself for any γ ∈ (α, β).

Proof. Let C0(D) denote the Banach space of functions continuous in D that
vanish on the boundary ∂D = T, and let

S = S(α, β) = {z ∈ C : α < Re z < β}.

Fix a function f ∈ C0(D). For z ∈ S let

hz(λ) =
∫
D

f(ζ)
(1 − |ζ|2)β−z

(1 − λζ)β+2
dA(ζ), λ ∈ D



26 Page 6 of 19 B. Malman IEOT

Proposition 2.1 implies that hz ∈ A−Re z
0 ⊆ A−β

0 and that the norms ‖hz‖−β

are bounded uniformly in z ∈ S by a constant multiple of ‖f‖∞, i.e., there
exists a constant C > 0 such that for all λ ∈ D and all z ∈ S we have the
estimate |hz(λ)| ≤ C‖f‖∞(1 − |λ|)−β . In particular, the family {hz}z∈S is
bounded uniformly on compact subsets of D. It is also clear that hzn

(λ) →
hz(λ) uniformly on compact subsets of D if zn → z ∈ S, and hence in that
case hzn

→ hz weakly in A−β
0 .

For a fixed ε > 0 consider the function Gε : S → C0(D) given by

Gε(z) = exp

(
−ε

1 − | · |

)
(1 − | · |2)z(Rhz)(·).

Note that the exponential factor in the definition of Gε ensures that

sup
z∈S

‖Gε(z)‖∞ < ∞.

If zn → z ∈ S, then the above paragraph and the fact that R preserves weak
convergence of sequences implies that Rhzn

→ Rhz weakly in A−β
0 . Then

Rhzn
(λ) → Rhz(λ) uniformly on compact subsets of D, and so ‖Gε(zn) −

Gε(z)‖∞ → 0 by the rapid decay of exp(−ε/(1 − |λ|)). This shows continuity
of Gε. We claim that Gε is analytic in S. We will complete the proof of
the theorem under this assumption, and prove analyticity of Gε next. The
assumption of boundedness of R on A−α

0 together with Proposition 2.1 implies
that for all y ∈ R, we have

(1 − |λ|)αRhα+iy(λ) ≤ C‖f‖∞

and consequently

‖Gε(α + iy)‖∞ ≤ C‖f‖∞,

where C > 0 depends only on the norm of the operator R on A−α
0 but not

on ε > 0. In the same way we obtain

‖Gε(β + iy)‖∞ ≤ C1‖f‖∞,

C1 > 0 depending on the norm of R on A−β
0 but being independent of ε > 0.

By the vector-valued generalization of the classical Hadamard’s three lines
theorem we get that ‖Gε(z)‖ ≤ C2‖f‖∞ for all z ∈ S, with a constant
C2 > 0 independent of ε > 0. Now let g ∈ A−γ

0 , α < γ < β and put
f(ζ) = g(ζ)(1 − |ζ|2)γ ∈ C0(D). In the above notation we have that hγ = g,
and we conclude that

exp

(
−ε

1 − |λ|2
)

(1 − |λ|)γ |Rg(λ)| ≤ ‖Gε(γ)‖∞ ≤ C2‖g‖−γ .

Letting ε tend to zero and taking the supremum over λ ∈ D shows that R is
bounded on A−γ

0 .
It remains to prove that Gε : S → C0(D) is analytic. Recall that if

Ω ⊆ C and X is a Banach space, then to verify that a function F : Ω → X
is analytic it suffices to verify that z �→ φ(F (z)) is scalar-valued analytic for
any φ ∈ X∗ (see [18, p. 266, Theorem 1.1]). If B(X) is the algebra of bounded
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linear operators on a Banach space X, then the analyticity of F : Ω → B(X)
can be established by verifying that the function φ(F (z)x) is scalar-valued
analytic for any φ ∈ X∗ and x ∈ X (see [18, p. 267, Theorem 1.2]). Let
w(ζ) = (1 − |ζ|)β and C0,w(D) be the Banach space of continuous functions
f : D → C such that fw is bounded and vanishes on T, with the norm of f in
C0,w(D) given by ‖wf‖∞. For fixed f ∈ C0(D), the mapping A : S → C0,w(D)
given by

z �→ f(·)(1 − | · |)−z

is analytic, because f(ζ)(1 − |ζ|)β−z is bounded in a neighbourhood of any
fixed z ∈ S (we use that Re z < β here), so we easily see that

S � z �→
∫
D

f(ζ)(1 − |ζ|)β−zdμ(ζ) ∈ C

is scalar-valued analytic for each finite Borel measure μ on D. Consequently
A′ : S → C0(D) given by

z �→ exp

(
−ε

1 − | · |

)
(Rhz)(·)

is analytic, because it is equal to A composed with bounded linear maps. Let
M(z) : C0(D) → C0(D) be the bounded linear operator of multiplication by
(1 − | · |)z. Then M : S → B(C0(D)) is analytic, because

S � z →
∫
D

(1 − |ζ|)zg(ζ)dμ(ζ)

is clearly analytic for any finite Borel measure μ on D and every g ∈ C0(D).
We conclude that Gε(z) = M(z)A′(z) is analytic in S. �

3. Boundedness and Compactness

A consequence of the relation (A−α
0 )∗∗ = A−α is that any bounded linear

operator T defined on A−α
0 has an extension to A−α which coincides with the

double Banach space adjoint T ∗∗ : A−α → A−α. The operator T ∗∗ preserves
weak-* convergence of sequences in A−α, so that if f ∈ A−α, then

T ∗∗f(z) = lim
r→1−

T ∗∗fr(z) = lim
r→1−

Tfr(z).

Applying this to the case of T = Tg acting on A−α
0 , we see that its double

adjoint coincides with Tg acting on A−α. It follows that if Tg is bounded or
compact on A−α

0 , then it is also bounded or compact on A−α. The converse
is a part of the following result.

Proposition 3.1. Let g : D → C be an analytic function.
(i) The operator Tg is bounded on A−α or A−α

0 if and only if g ∈ B.
(ii) The operator Tg is compact on A−α or A−α

0 if and only g ∈ B0.
(iii) The operator norm of Tg satisfies

‖Tg‖A−α ≤ ‖g‖B
α

.
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Proof. Part (i) and (ii) in the case of A−α, as well as part (iii), have already
been established in [17], thus we only need to verify (i) and (ii) in the case of
A−α

0 . The remark preceeding the proposition implies that if Tg is bounded on
A−α

0 , then it is bounded on A−α, and hence g ∈ B. Conversely if g ∈ B, then
Tg is bounded on A−α, and it is easy to verify that it maps the polynomials
into A−α

0 . Indeed, if f ∈ A−α
0 is a polynomial, then

(1 − |z|)α
∣∣∣
∫ z

0

g′(ζ)f(ζ) dζ
∣∣∣

� (1 − |z|)α‖f‖∞‖g‖B
∫ 1

0

|z|
(1 − t|z|)dt

≤ C(1 − |z|)α log
( 1

1 − |z|
)
.

The last quantity tends to zero as |z| → 1, so that Tgf ∈ A−α
0 . Since the

polynomials are dense in A−α
0 and Tg is bounded on A−α, we obtain TgA

−α
0 ⊂

A−α
0 . This completes the proof of (i). The same reasoning, with obvious

modificiations, leads to a proof of (ii). �

We note the following useful consequence of Proposition 3.1 and the
discussion preceeding it.

Corollary 3.2. The spectra σ(Tg|A−α
0 ) and σ(Tg|A−α) coincide.

Proof. We have verified that Tg acts boundedly on A−α
0 if and only if it acts

boundedly on A−α. For any bounded linear operator T on a Banach space we
have that σ(T ) = σ(T ∗). Then the claim follows from this, since the double
adjoint of Tg acting on A−α

0 equals Tg acting on A−α. �

4. Projections on L∞
w

The purpose of this section is to establish some equivalent conditions of
boundedness of the standard weighted Bergman projections on the spaces
L∞

w which were defined in the introduction. We recall that the definition of
the standard weighted Bergman projection Pδ, for δ > −1, is

Pδf(z) = (δ + 1)
∫
D

f(ζ)
(1 − |ζ|2)δ

(1 − zζ)2+δ
dA(ζ),

where f can be any measurable function for which the above integral makes
sense. We also introduce the helpful sublinear operator P̃ :

P̃δf(z) = (δ + 1)
∫
D

|f(ζ)| (1 − |ζ|2)δ

|1 − zζ|2+δ
dA(ζ).

Our basic proposition on boundedness of these operators is the following.

Theorem 4.1. Let w : D → (0,∞) be a weight and δ > −1. The following are
equivalent:

(i) The operator Pδ is bounded on L∞
w .

(ii) The operator P̃δ is bounded on L∞
w .
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(iii) The weight w satisfies

sup
z∈D

w(z)
∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2
dA(ζ) < ∞.

Proof. (i) ⇒ (ii): Fix any f ∈ L∞
w . For any z ∈ D there exists a measurable

function uz,f : D → C with |uz,f (ζ)| = 1 for ζ ∈ D such that

|f(ζ)|
|1 − zζ|2+δ

=
f(ζ)uz,f (ζ)
(1 − zζ)2+δ

.

Let C > 0 be the operator norm of Pδ on Lw
∞. Then we have

w(z)|P̃δf(z)| = w(z)|Pδfuz,f (z)| ≤ C‖wfuz,f‖∞ = C‖wf‖∞

which shows that P̃δ is bounded on L∞
w .

(ii) ⇒ (iii): The function w−1 is in L∞
w , and so the boundedness of P̃δ implies

that

sup
z∈D

w(z)P̃δw
−1(z) < ∞,

which is precisely the condition (iii).
(iii) ⇒ (i) : For any f ∈ L∞

w we have

w(z)|Pδf(z)| ≤ ‖wf‖∞w(z)
∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|2+δ
dA(ζ).

Hence if (iii) holds, then Pδ is bounded on L∞
w . �

With the investigation of spectra of Tg and weights of the form

w(z) =
∣∣e g(z)

λ

∣∣(1 − |z|2)α

in mind, we will restrict our further investigation to a class of weights which
share some crucial properties with the above. Therefore, we will additionally
assume that our weights are bounded, differentiable and satisfy

(1 − |z|)|∇w(z)| ≤ kww(z) (5)

for some constant kw > 0. Here ∇w denotes the gradient of the function w.
An easily verifiable property of such weights is that they are approximately
constant on discs of the form

Dz =
{

ζ ∈ D : |ζ − z| < (1 − |z|)/2
}

,

i.e., there exists a constant C > 0, independent of z, such that w(ζ)/w(s) ≤ C
whenever ζ, s ∈ Dz. We also have the growth estimates

w(0)(1 − |z|)kw � w(z) � w(0)(1 − |z|)−kw . (6)

We refer to [2] for proofs of the above claims, where weights satisfying (5) have
been studied in the context of Tg acting on the weighted Bergman spaces.

For w satisfying the estimate (5) we will now extend Theorem 4.1 to
include a fourth equivalent condition, one which will be important in the next
section.
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Proposition 4.2. Let w : D → (0,∞) be a bounded and differentiable weight
which satisfies (5). If for some δ > −1 the projection Pδ is a bounded operator
on L∞

w , then for each integer n ≥ 1 we have that

sup
z∈D

w(z)|f(z)| ∼ sup
z∈D

(1 − |z|2)nw(z)|f (n)(z)| +
n−1∑
k=0

|f (k)(0)|

for all f ∈ H∞
w , i.e., for each integer n ≥ 1 the right-hand side above defines

an equivalent norm on H∞
w .

Proof. We start by establishing the proposition in the special case that n = 1.
One of the norm inequalities holds without any assumption on the bound-
edness of Pδ on L∞

w , we need only the fact that w satisfies (5). Indeed, the
value w(z) is comparable to values of w on the circle

Cz =
{
ζ ∈ D : |ζ − z| = (1 − |z|)/2

}
,

and so from Cauchy’s integral formula we have that

|f ′(z)| �
supζ∈Cz

|f(ζ)|
1 − |z| ∼ supζ∈Cz

|f(ζ)w(ζ)|
(1 − |z|)w(z)

,

which clearly implies that

(1 − |z|)w(z)|f ′(z)| � ‖wf‖∞.

We proceed to establish the reverse inequality. We claim that boundedness
of Pδ on L∞

w implies that the operator P 1
δ given by

P 1
δ h(z) =

∫
D

h(ζ)
(1 − |ζ|2)δ

ζ(1 − zζ)2+δ
dA(ζ)

is bounded on L∞
w . To see this, we recall that by Theorem 4.1 the operator

P̃δ is also bounded on L∞
w , and we estimate

w(z)|P 1
δ h(z)| ≤ w(z)

(∫
|ζ|>1/2

+
∫

|ζ|<1/2

|h(ζ)| (1 − |ζ|2)δ

|ζ||1 − zζ|2+δ
dA(ζ)

)

� ‖hw‖∞ +
∫

|ζ|<1/2

|h(ζ)|
|ζ| dA(ζ)

� ‖hw‖∞ + ‖hw‖∞
∫

|ζ|<1/2

1
|ζ| dA(ζ) � ‖hw‖∞

where in the next-to-last step we used that w is strictly positive, and hence
bounded from below for |ζ| < 1/2. This shows boundedness of P 1

δ on L∞
w .

Now fix a function f ∈ H∞
w and let

h(ζ) = f ′(ζ)(1 − |ζ|2) ∈ L∞
w ,

g(z) =
∫
D

f ′(ζ)
(1 − |ζ|2)δ+1

ζ(1 − zζ)2+δ
dA(ζ) = P 1

δ h(z).

Differentiating g we obtain

g′(z) = (δ + 2)
∫
D

f ′(ζ)
(1 − |ζ|2)δ+1

(1 − zζ)3+δ
dA(ζ) = f ′(z),
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where the last equality is the reproducing property of Pδ+1. Hence

f(z) − f(0) = g(z),

because by direct calculation we see that g(0) = 0. Then the boundedness of
P 1

δ gives

‖wP 1
δ h‖∞ = ‖w(f − f(0))‖∞ ≤ ‖wh‖∞

which obviously implies

sup
z∈D

w(z)|f(z)| � sup
z∈D

(1 − |z|2)w(z)|f ′(z)| + |f(0)|.

The proof of the case n = 1 is complete.
To prove the theorem for n > 1, note that if Pδ is bounded on L∞

w ,
then Pδ+1 is bounded on L∞

w̃ , where w̃(ζ) = (1−|ζ|2)w(ζ). This follows from
Theorem 4.1, because we have

w̃(z)
∫
D

1
w̃(ζ)

(1 − |ζ|2)δ+1

|1 − zζ|δ+3
dA(ζ) = w(z)(1 − |z|2)

∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+3
dA(ζ)

� w(z)
∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2
dA(ζ).

The case n > 1 of the proposition now follows readily by induction. �

We proceed to prove the converse of Proposition 4.2. For this, we will
need the following very useful result from [2, Lemma 3.2].

Lemma 4.3. Let w : D → (0,∞) be a differentiable weight which satisfies (5).
If α + 1 > kw and β > α + 2 + kw, then∫

D

w(ζ)
(1 − |ζ|2)α

|1 − zζ|β dA(ζ) � w(z)
(1 − |z|)β−α−2

.

Proposition 4.4. Let w : D → (0,∞) be a bounded and differentiable weight
which satisfies (5). If for each n ≥ 1

sup
z∈D

(1 − |z|2)nw(z)|f (n)(z)| +
n−1∑
k=1

|f (k)(0)|

defines an equivalent norm on H∞
w , then there exists a δ > −1 such that Pδ

is bounded on L∞
w .

Proof. Since w satisfies (6), we see that for sufficiently large δ the integral
defining Pδf converges for every f ∈ L∞

w . We will show that δ can be chosen so
that the operator Pδ is bounded on L∞

w . This will follow from the assumption
if we show that for some n ≥ 0 we have

w(z)(1 − |z|2)n

∣∣∣∣∣
∫
D

f(ζ)
(1 − |ζ|2)δ

(1 − zζ)δ+2+n
dA(ζ)

∣∣∣∣∣ ≤ C‖fw‖∞.

We have the obvious estimate∣∣∣∣∣
∫
D

f(ζ)
(1 − |ζ|2)δ

(1 − zζ)δ+2+n
dA(ζ)

∣∣∣∣∣ ≤ ‖fw‖∞
∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2+n
dA(ζ).
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An easy computation shows that the weight w̃ = 1/w also satisfies (5), so if
n and δ are sufficiently large, then by Lemma 4.3 we obtain∫

D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2+n
dA(ζ) ≤ C

1
w(z)(1 − |z|)n

. �

Proposition 4.2 and Proposition 4.4 now imply the following version of
Theorem 4.1.

Theorem 4.5. Let w : D → (0,∞) be a bounded and differentiable weight
which satisfies (5). The following are equivalent:

(i) The operator Pδ is bounded on L∞
w for some δ > −1.

(ii) The operator P̃δ is bounded on L∞
w for some δ > −1

(iii) There exists δ > −1 such that

sup
z∈D

w(z)
∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2
dA(ζ) < ∞.

(iv) For each n ≥ 1,

sup
z∈D

(1 − |z|2)nw(z)|f (n)(z)| +
n−1∑
k=0

|f (k)(0)|

defines an equivalent norm on H∞
w .

5. Spectrum

As mentioned in the introduction, for fixed analytic functions f, h : D → C,
the equation

h − 1
λ

Tgh = f

has a unique solution Rλ,gf which is given by

Rλ,gf(z) = f(0)e
g(z)

λ + e
g(z)

λ

∫ z

0

e− g(ζ)
λ f ′(ζ) dζ.

It is easy to see that Tg is injective if g �= 0, and therefore non-zero λ is in
the resolvent set of Tg acting on any Banach space X of analytic functions if
and only if the operator Rλ,g is bounded on X. If this is the case, then Rλ,g

is automatically invertible on X.

5.1. Spectrum

We will now apply the results of Sect. 4 to prove Theorem 5.3, which provides
a characterization of the spectrum of Tg acting on A−α.

Proposition 5.1. The operator Rλ,g is bounded on A−α if and only if

eg/λ ∈ A−α (7)

and the weight

w(z) =
∣∣e g(z)

λ

∣∣(1 − |z|2)α
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satisfies
sup
z∈D

w(z)|f(z)| ∼ sup
z∈D

(1 − |z|2)w(z)|f ′(z)| + |f(0)| (8)

for every f ∈ H∞
w (D).

Proof. Assume first that Rλ,g is bounded on A−α. Then eg/λ = Rλ,g1 ∈ A−α,
so that (7) holds. Moreover, note that f ∈ H∞

w if and only if eg/λf ∈ A−α,
and that if f(0) = 0, then

eg/λf = Rλ,g

∫
eg/λf ′.

Hence by the invertibility of Rλ,g we have that
∫

eg/λf ′ ∈ A−α and

‖eg/λf‖−α ∼ ‖eg/λf ′‖−(α+1),

which is clearly equivalent to (8). Conversely, assume that (7) and (8) hold.
Then Rλ,g maps constants into A−α because Rλ,g1 = eg/λ, while for any
f ∈ A−α with f(0) = 0 we have

‖Rλ,gf‖−α = sup
z∈D

w(z)
∣∣∣
∫ z

0

e−g(ζ)/λf ′(ζ)dζ
∣∣∣

∼ sup
z∈D

(1 − |z|2)α+1|f ′(z)| < ∞. �

We make a short remark. By Corollary 3.2, Rλ,g is bounded on A−α

if and only if it is bounded on A−α
0 . Since 1 ∈ A−α

0 , we see that if Rλ,g is
bounded on A−α, then we obtain the stronger statement that eg/λ ∈ A−α

0 .

Proposition 5.2. Assume that 0 �= λ ∈ ρ(Tg|A−α) and let

w(z) =
∣∣e g(z)

λ

∣∣(1 − |z|2)α.

For each n ≥ 1,

sup
z∈D

(1 − |z|2)nw(z)|f (n)(z)| +
n−1∑
k=0

|f (k)(0)|

defines an equivalent norm on H∞
w .

Proof. The assumption that λ ∈ ρ(Tg|A−α) mean precisely that R = Rλ,g is
bounded on A−α, and by Corollary 3.2 it is also bounded on A−α

0 . For any
sufficiently large β > 0 we have by Proposition 3.1 that |λ| > ‖Tg‖A−β , and
for such β the operator Rλ, g is bounded on A−β

0 . Then from Theorem 2.2
and Corollary 3.2 we obtain that Rλ,g is bounded on A−β for all β > α, and
the claim follows from Proposition 5.1 by induction. �

We can now prove the main result characterizing the spectrum of Tg

acting on A−α.

Theorem 5.3. Assume that g ∈ B, λ ∈ C\{0} and

w(z) =
∣∣e g(z)

λ

∣∣(1 − |z|2)α.

The following are equivalent:
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(i) λ ∈ ρ(Tg|A−α).
(ii) For some δ > −1, the weight w satisfies

sup
z∈D

w(z)
∫
D

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2
dA(ζ) < ∞.

Proof. The implication (i) ⇒ (ii) is covered by Proposition 5.2 together with
Theorem 4.5. If (ii) holds, then w(z) is certainly bounded, and this together
with Theorem 4.5 implies that the two conditions of Proposition 5.1 hold, so
that (ii) implies (i). �

5.2. Applications

As a first application of Theorem 5.3 we establish the spectral stability prop-
erty of the operator Tg that was mentioned in the introduction. Next we
obtain the spectrum of Tg in the case g is the anti-derivative of a rational
function. The two results are then combined in Theorem 5.6 to obtain the
spectrum of Tg whenever g = r + h + b, where r′ is rational, h ∈ H∞ and
b ∈ B0.

Theorem 5.4. Let g, h ∈ B and assume that σ(Th|A−α) = {0}. Then

σ(Tg+h|A−α) = σ(Tg|A−α).

Proof. It will be sufficient to show that ρ(Tg|A−α) ⊆ ρ(Tg+h|A−α), since
the other inclusion follows by replacing g with g + h and h with −h. Fix
λ ∈ ρ(Tg|A−α). By Theorem 5.3 we must verify that there exists a δ > −1
such that

sup
z∈D

(1 − |z|2)α|eg(z)/λ||eh(z)/λ|
∫
D

|e−g(ζ)/λ||e−h(ζ)/λ| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ) < ∞.

Take p, q > 1 with 1/p + 1/q = 1 and p close enough to 1 so that λ̃ = λ/p ∈
ρ(Tg|A−α). Let λ̂ = λ/q. Use Hölder’s inequality to obtain∫

D

|e−g(ζ)/λ||e−h(ζ)/λ| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ)

≤
(∫

D

|e−g(ζ)/λ̃| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ)

)1/p

×
(∫

D

|e−h(ζ)/λ̂| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ)

)1/q

.

Now use the assumption that λ̂ ∈ ρ(Th|A−α) = C\{0} and Theorem 5.3 to
see that δ > −1 can be chosen big enough so that we simultaneously have

sup
z∈D

(1 − |z|2)α|eg(z)/λ̃|
∫
D

|e−g(ζ)/λ̃| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ) = C1 < ∞

and

sup
z∈D

(1 − |z|2)α|eh(z)/λ̂|
∫
D

|e−h(ζ)/λ̂| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ) = C2 < ∞.
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We get that

(1 − |z|2)α|eg(z)/λ||eh(z)/λ|
∫
D

|e−g(ζ)/λ||e−h(ζ)/λ| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ)

≤ (1 − |z|2)α|eg(z)/λ||eh(z)/λ|
(∫

D

|e−g(ζ)/λ̃| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ)

)1/p

×
(∫

D

|e−h(ζ)/λ̂| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ)

)1/q

=

(
(1 − |z|2)α|eg(z)/λ̃|

∫
D

|e−g(ζ)/λ̃| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ)

)1/p

×
(

(1 − |z|2)α|eh(z)/λ̂|
∫
D

|e−h(ζ)/λ̂| (1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ)

)1/q

≤ C
1/p
1 C

1/q
2 . �

Corollary 5.5. Let g, h ∈ B and assume that h ∈ H∞ or h ∈ B0. Then

σ(Tg+h|A−α) = σ(Tg|A−α).

Proof. By Proposition 3.1 if h ∈ B0, then Th is compact and hence σ(Th|A−α)
= {0} since Tg has no eigenvalues. On the other hand if h ∈ H∞ then for
all λ �= 0 the function eh/λ is bounded from above and below in D. It then
follows from Proposition 2.1 that condition (ii) of Theorem 5.3 is satisfied, so
that again σ(Th|A−α) = {0}. The claim then follows from Theorem 5.4. �

Let ω0, . . . , ωn be distinct points on the circle T. For non-zero complex
numbers c0, . . . , cn let

g(z) =
n∑

k=0

ck log
( 1

1 − ωkz

)
∈ B.

The spectrum of Tg in this case turns out to be

σ(Tg|A−α) =
n⋃

k=1

{
λ ∈ C : Re(ck/λ) ≥ α

}
. (9)

This result can be predicted from results in [4], where it is shown that the
equality above holds with Tg replaced by the operator f �→ 1

z Tgf . We shall
therefore not carry out the entire argument, but merely indicate how con-
dition (ii) of Theorem 5.3 can be used to establish (9). Let sk = Re(ck/λ).
Since for each k the function log

(
1

1−ωkz

)
has bounded imaginary part, it

follows easily that

|eg(z)/λ| ∼
n∏

k=0

|1 − ωkz|−sk . (10)
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If for some k we have that sk > α, then by the above eg/λ �∈ A−α, which by
Proposition 5.1 implies that

n⋃
k=1

{
λ ∈ C : Re(ck/λ) ≥ α

}
⊆ σ(Tg : A−α).

Conversely, if sk < α for k = 0, . . . , n, then to show that λ ∈ ρ(Tg|A−α) it
will suffice by (10) and (ii) of Theorem 5.3 to show that

sup
z∈D

(1 − |z|2)α
n∏

k=0

|1 − ωkz|−sk

∫
D

n∏
k=0

|1 − ωkζ|sk
(1 − |ζ|2)δ−α

|1 − zζ|δ+2
dA(ζ) < ∞

holds for some δ > −1. This follows from Proposition 2.1 together with a
straightforward and elementary computation involving isolation of the possi-
ble poles of the functions |1 − ωkζ|sk .

Theorem 5.6. Let h ∈ H∞, b ∈ B0 and

r(z) =
n∑

k=0

ck log
( 1

1 − ωkz

)
.

If g = r + h + b, then

σ(Tg|A−α) =
n⋃

k=1

{
λ ∈ C : Re(ck/λ) ≥ α

}

= {0} ∪
{

λ ∈ C\{0} : eg/λ �∈ A−α
}

.

Proof. The first of the two set equalities in the statement is immediate from
the discussion preceeding the theorem and Corollary 5.5. To establish the
second equality it will be sufficient to show that eg/λ �∈ A−α whenever λ is
in the interior of one of the closed disks whose union is σ(Tg|A−α). For any
such λ there exists an ε > 0 such that er/λ �∈ A−α−ε. Since h ∈ H∞ and
b ∈ B0, we obtain easily that

e(h(z)+b(z))/λ � (1 − |z|2)ε.

Then

sup
z∈D

(1 − |z|2)α|eg(z)/λ| � sup
z∈D

(1 − |z|2)α+ε|er(z)/λ| = ∞,

so eg/λ �∈ A−α. �
5.3. An Important Example

For p > 1 and η > −1 the class Bp(η) consists of weights w on D for which
there exists a constant C > 0 such that(∫

S(θ,h)

w(ζ)(1 − |ζ|2)ηdA(ζ)

) (∫
S(θ,h)

w(ζ)−q/p(1 − |ζ|2)ηdA(ζ)

)p/q

≤ Chp(η+2)

for any Carleson box S(θ, h) given by

S(θ, h) = {z = reit ∈ D : 1 − r < h, |t − θ| < h}.
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The significance of this definition comes from the work of Békollé, who
proves that the Bp(η)-condition is related to the boundedness of the stan-
dard weighted Bergman projections on weighted Bergman spaces. See [7] for
details.

Proposition 5.7. Let w : D → (0,∞) be a weight. If w satisfies for some
δ > −1 the condition (ii) of Theorem 5.3, then

w(z)(1 − |z|2)−η ∈ B2(η)

for η = δ/2.

Proof. Let S = S(θ, h) be a Carleson square of width h > 0. We have

w(z)
∫

S

1
w(ζ)

(1 − |ζ|2)δ

|1 − zζ|δ+2
dA(ζ) ≤ C

for all z ∈ D, and in particular for z ∈ S. But if z, ζ ∈ S, then |1 − zζ| � h,
and consequently

w(z)
∫

S

1
w(ζ)

(1 − |ζ|2)δdA(ζ) � hδ+2.

Now integrate for z ∈ S to obtain∫
S

w(z)dA(z)
∫

S

1
w(ζ)

(1 − |ζ|2)δdA(ζ) � hδ+4.

Setting η = δ/2, the last inequality means precisely that w(z)(1 − |z|2)−η ∈
B2(η). �

The significance of the above proposition in the study of the spectrum
σ(Tg|A−α) is the following. We have seen in this section that the equality

σ(Tg|A−α) = {0} ∪
{

λ ∈ C\{0} : eg/λ �∈ A−α
}

(11)

holds for a large class of symbols g. The fact that (11) does not hold for
general g ∈ B can be seen from Proposition 5.7 and the corresponding result
for weighted Bergman spaces Lp,α

a . For p > 0 and α > −1 the space Lp,α
a

consists of functions analytic in D which satisfy

‖f‖p
p,α =

∫
D

|f(z)|p(1 − |z|2)αdA(z) < ∞.

The operator Tg acts boundedly on Lp,α
a if and only if g ∈ B, and it is shown

in [2] that λ ∈ ρ(Tg|Lp,α
a ) if and only if the weight

w(z) = |epg(z)/λ|(1 − |z|2)α

is integrable (which means precisely that eg/λ ∈ Lp,α
a ) and w̃(z) = w(z)(1 −

|z|)−η satisfies for some η > −1 and p0 > 1 the Bp0(η)-condition. It is shown
in [2] that there exists a function g ∈ B such that eg/λ belongs to the space
Lp,α

a for all λ ∈ C\{0} and p > 0, yet the spectrum σ(Tg|Lp,α
a ) is always larger

than {0}. See [2, Section 5] for details of the construction of the function g
and its properties. It can be see in [2] that g also satisfies eg/λ ∈ A−α

0 for all
λ ∈ C\{0} and all α > 0. Let w(z) = |eg(z)/λ|(1 − |z|2)α. If λ ∈ ρ(Tg|A−α),
then condition (ii) of Theorem 5.3 holds for w for sufficiently large δ, and
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consequently by Proposition 5.7 and the results of [2] mentioned above we
have that λ ∈ ρ(Tg|L1,α

a ). It follows that

σ(Tg|A−α) ⊇ σ(Tg|L1,α
a ).

Since σ(Tg|L1,α
a ) is bigger than {0}, thus so is σ(Tg|A−α).
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unité de Cn, Studia Math., 71, pp. 305–323 (1981/82)

[8] Bonet, J.: The spectrum of Volterra operators on weighted spaces of entire
functions. Q. J. Math. 66, 799–807 (2015)
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[17] Stević, S.: Boundedness and compactness of an integral operator on a weighted
space on the polydisc. Indian J. Pure Appl. Math. 37, 343–355 (2006)

[18] Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis, 2nd edn. Wiley,
New York (1980)

[19] Young, S.W.: Spectral properties of generalized Cesàro operators. Integr. Equ.
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