Skip to main content

Advertisement

Log in

Unraveling the lymphatic system in the spinal cord meninges: a critical element in protecting the central nervous system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The lymphatic vasculature plays a crucial role in fluid clearance and immune responses in peripheral organs by connecting them to distal lymph nodes. Recently, attention has been drawn to the lymphatic vessel network surrounding the brain’s border tissue (Aspelund et al. in J Exp Med 212:991–999, 2015. https://doi.org/10.1084/jem.20142290; Louveau et al. in Nat Neurosci 21:1380–1391, 2018. https://doi.org/10.1038/s41593-018-0227-9), which guides immune cells in mediating protection against tumors (Song et al. in Nature 577:689–694, 2020. https://doi.org/10.1038/s41586-019-1912-x) and pathogens Li et al. (Nat Neurosci 25:577–587, 2022. https://doi.org/10.1038/s41593-022-01063-z) while also contributing to autoimmunity (Louveau et al. 2018) and neurodegeneration (Da Mesquita et al. in Nature 560:185–191, 2018. https://doi.org/10.1038/s41586-018-0368-8). New studies have highlighted the integral involvement of meningeal lymphatic vessels in neuropathology. However, our limited understanding of spinal cord meningeal lymphatics and immunity hinders efforts to protect and heal the spinal cord from infections, injury, and other immune-mediated diseases. This review aims to provide a comprehensive overview of the state of spinal cord meningeal immunity, highlighting its unique immunologically relevant anatomy, discussing immune cells and lymphatic vasculature, and exploring the potential impact of injuries and inflammatory disorders on this intricate environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The manuscript has no associated data.

References

  1. Courtine G, Sofroniew MV (2019) Spinal cord repair: advances in biology and technology. Nat Med 25:898–908. https://doi.org/10.1038/s41591-019-0475-6

    Article  CAS  PubMed  Google Scholar 

  2. Lorach H, Galvez A, Spagnolo V, Martel F, Karakas S, Intering N, Vat M, Faivre O, Harte C, Komi S et al (2023) Walking naturally after spinal cord injury using a brain–spine interface. Nature 618:126–133. https://doi.org/10.1038/s41586-023-06094-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz M, Yoles E (2006) Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma 23:360–370. https://doi.org/10.1089/neu.2006.23.360

    Article  PubMed  Google Scholar 

  4. Chernykh ER, Shevela EY, Starostina NM, Morozov SA, Davydova MN, Menyaeva EV, Ostanin AA (2016) Safety and therapeutic potential of M2 macrophages in stroke treatment. Cell Transpl 25:1461–1471. https://doi.org/10.3727/096368915X690279

    Article  Google Scholar 

  5. Liao J, Zhang M, Shi Z, Lu H, Wang L, Fan W, Tong X, Yan H (2023) Improving the function of meningeal lymphatic vessels to promote brain edema absorption after traumatic brain injury. J Neurotrauma 40:383–394. https://doi.org/10.1089/neu.2022.0150

    Article  PubMed  Google Scholar 

  6. Salvador AFM, Dykstra T, Rustenhoven J, Gao W, Blackburn SM, Bhasiin K, Dong MQ, Guimaraes RM, Gonuguntla S, Smirnov I et al (2023) Age-dependent immune and lymphatic responses after spinal cord injury. Neuron 111:2155-2169 e2159. https://doi.org/10.1016/j.neuron.2023.04.011

    Article  CAS  PubMed  Google Scholar 

  7. Jacob L, Boisserand LSB, Geraldo LHM, de Brito Neto J, Mathivet T, Antila S, Barka B, Xu Y, Thomas JM, Pestel J et al (2019) Anatomy and function of the vertebral column lymphatic network in mice. Nat Commun 10:4594. https://doi.org/10.1038/s41467-019-12568-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, Chilov D, Li Z, Koppinen T, Park JH et al (2017) Development and plasticity of meningeal lymphatic vessels. J Exp Med 214:3645–3667. https://doi.org/10.1084/jem.20170391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, Herod SG, Knopp J, Setliff JC, Lupi AL et al (2018) CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 21:1380–1391. https://doi.org/10.1038/s41593-018-0227-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Escobedo N, Oliver G (2016) Lymphangiogenesis: origin, specification, and cell fate determination. Annu Rev Cell Dev Biol 32:677–691. https://doi.org/10.1146/annurev-cellbio-111315-124944

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Uemura A, Fukushima Y, Yoshida Y, Hirashima M (2016) Semaphorin 3G provides a repulsive guidance cue to lymphatic endothelial cells via neuropilin-2/plexinD1. Cell Rep 17:2299–2311. https://doi.org/10.1016/j.celrep.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Mahadevan A, Welsh IC, Sivakumar A, Gludish DW, Shilvock AR, Noden DM, Huss D, Lansford R, Kurpios NA (2014) The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev Cell 31:690–706. https://doi.org/10.1016/j.devcel.2014.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sabin FR (1909) The lymphatic system in human embryos, with a consideration of the morphology of the system as a whole. Am J Anat 9:43–91. https://doi.org/10.1002/aja.1000090104

    Article  Google Scholar 

  14. Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45. https://doi.org/10.1038/nri1258

    Article  CAS  PubMed  Google Scholar 

  15. Izen RM, Yamazaki T, Nishinaka-Arai Y, Hong YK, Mukouyama YS (2018) Postnatal development of lymphatic vasculature in the brain meninges. Dev Dyn 247:741–753. https://doi.org/10.1002/dvdy.24624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balint L, Ocskay Z, Deak BA, Aradi P, Jakus Z (2019) Lymph flow induces the postnatal formation of mature and functional meningeal lymphatic vessels. Front Immunol 10:3043. https://doi.org/10.3389/fimmu.2019.03043

    Article  CAS  PubMed  Google Scholar 

  17. Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della S, Cui J, Shipley FB, Vernon A, Gao F et al (2021) Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun 12:447. https://doi.org/10.1038/s41467-020-20666-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petrova TV, Koh GY (2020) Biological functions of lymphatic vessels. Science. https://doi.org/10.1126/science.aax4063

    Article  PubMed  Google Scholar 

  19. Cohen M, Giladi A, Raposo C, Zada M, Li B, Ruckh J, Deczkowska A, Mohar B, Shechter R, Lichtenstein RG et al (2021) Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. Life Sci Alliance. https://doi.org/10.26508/lsa.202000907

    Article  PubMed  Google Scholar 

  20. Nurmi H, Saharinen P, Zarkada G, Zheng W, Robciuc MR, Alitalo K (2015) VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol Med 7:1418–1425. https://doi.org/10.15252/emmm.201505731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suh SH, Choe K, Hong SP, Jeong SH, Makinen T, Kim KS, Alitalo K, Surh CD, Koh GY, Song JH (2019) Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages. EMBO Rep. https://doi.org/10.15252/embr.201846927

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gordon EJ, Rao S, Pollard JW, Nutt SL, Lang RA, Harvey NL (2010) Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 137:3899–3910. https://doi.org/10.1242/dev.050021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ivanov S, Scallan JP, Kim KW, Werth K, Johnson MW, Saunders BT, Wang PL, Kuan EL, Straub AC, Ouhachi M et al (2016) CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J Clin Invest 126:1581–1591. https://doi.org/10.1172/JCI84518

    Article  PubMed  PubMed Central  Google Scholar 

  24. Merlini A, Haberl M, Strauss J, Hildebrand L, Genc N, Franz J, Chilov D, Alitalo K, Flugel-Koch C, Stadelmann C et al (2022) Distinct roles of the meningeal layers in CNS autoimmunity. Nat Neurosci 25:887–899. https://doi.org/10.1038/s41593-022-01108-3

    Article  CAS  PubMed  Google Scholar 

  25. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48:599. https://doi.org/10.1016/j.immuni.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  26. Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, Papadopoulos Z, Kanamori M, Salvador AF, Baker W et al (2021) Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184:1000-1016 e1027. https://doi.org/10.1016/j.cell.2020.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li X, Qi L, Yang D, Hao S, Zhang F, Zhu X, Sun Y, Chen C, Ye J, Yang J et al (2022) Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat Neurosci 25:577–587. https://doi.org/10.1038/s41593-022-01063-z

    Article  CAS  PubMed  Google Scholar 

  28. Rebejac J, Eme-Scolan E, Arnaud Paroutaud L, Kharbouche S, Teleman M, Spinelli L, Gallo E, Roussel-Queval A, Zarubica A, Sansoni A et al (2022) Meningeal macrophages protect against viral neuroinfection. Immunity 55:2103-2117 e2110. https://doi.org/10.1016/j.immuni.2022.10.005

    Article  CAS  PubMed  Google Scholar 

  29. Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, Alitalo K, Thomas JL, Iwasaki A (2020) VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577:689–694. https://doi.org/10.1038/s41586-019-1912-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, Ennerfelt HE, Shapiro D, Nguyen BH, Frost EL et al (2020) Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun 11:4524. https://doi.org/10.1038/s41467-020-18113-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salvador AF, de Lima KA, Kipnis J (2021) Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol 21:526–541. https://doi.org/10.1038/s41577-021-00508-z

    Article  CAS  PubMed  Google Scholar 

  32. Drieu A, Du S, Storck SE, Rustenhoven J, Papadopoulos Z, Dykstra T, Zhong F, Kim K, Blackburn S, Mamuladze T et al (2022) Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611:585–593. https://doi.org/10.1038/s41586-022-05397-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rua R, Lee JY, Silva AB, Swafford IS, Maric D, Johnson KR, McGavern DB (2019) Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity. Nat Immunol 20:407–419. https://doi.org/10.1038/s41590-019-0344-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K, Amann L, Staszewski O, Kierdorf K, Krueger M et al (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17:797–805. https://doi.org/10.1038/ni.3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–569. https://doi.org/10.1016/j.immuni.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niehaus JK, Taylor-Blake B, Loo L, Simon JM, Zylka MJ (2021) Spinal macrophages resolve nociceptive hypersensitivity after peripheral injury. Neuron 109:1274-1282 e1276. https://doi.org/10.1016/j.neuron.2021.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zivkovic S, Ayazi M, Hammel G, Ren Y (2021) For better or for worse: a look into neutrophils in traumatic spinal cord injury. Front Cell Neurosci 15:648076. https://doi.org/10.3389/fncel.2021.648076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim JV, Kang SS, Dustin ML, McGavern DB (2009) Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457:191–195. https://doi.org/10.1038/nature07591

    Article  CAS  PubMed  Google Scholar 

  39. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J (2015) The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85:703–709. https://doi.org/10.1016/j.neuron.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  40. Mazzitelli JA, Smyth LCD, Cross KA, Dykstra T, Sun J, Du S, Mamuladze T, Smirnov I, Rustenhoven J, Kipnis J (2022) Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat Neurosci 25:555–560. https://doi.org/10.1038/s41593-022-01029-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Biswas L, Chen J, De Angelis J, Singh A, Owen-Woods C, Ding Z, Pujol JM, Kumar N, Zeng F, Ramasamy SK, Kusumbe AP (2023) Lymphatic vessels in bone support regeneration after injury. Cell 186:382-397 e324. https://doi.org/10.1016/j.cell.2022.12.031

    Article  CAS  PubMed  Google Scholar 

  42. Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394. https://doi.org/10.1146/annurev-pathol-051217-111018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147111. https://doi.org/10.1126/scitranslmed.3003748

    Article  CAS  Google Scholar 

  44. Blomqvist KJ, Skogster MOB, Kurkela MJ, Rosenholm MP, Ahlstrom FHG, Airavaara MT, Backman JT, Rauhala PV, Kalso EA, Lilius TO (2022) Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine. J Control Release 344:214–224. https://doi.org/10.1016/j.jconrel.2022.03.022

    Article  CAS  PubMed  Google Scholar 

  45. Oklinski MK, Skowronski MT, Skowronska A, Rutzler M, Norgaard K, Nieland JD, Kwon TH, Nielsen S (2016) Aquaporins in the spinal cord. Int J Mol Sci. https://doi.org/10.3390/ijms17122050

    Article  PubMed  PubMed Central  Google Scholar 

  46. Molofsky AV, Kelley KW, Tsai HH, Redmond SA, Chang SM, Madireddy L, Chan JR, Baranzini SE, Ullian EM, Rowitch DH (2014) Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509:189–194. https://doi.org/10.1038/nature13161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoon H, Walters G, Paulsen AR, Scarisbrick IA (2017) Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. PLoS ONE 12:e0180697. https://doi.org/10.1371/journal.pone.0180697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Itoh N, Itoh Y, Tassoni A, Ren E, Kaito M, Ohno A, Ao Y, Farkhondeh V, Johnsonbaugh H, Burda J et al (2018) Cell-specific and region-specific transcriptomics in the multiple sclerosis model: Focus on astrocytes. Proc Natl Acad Sci U S A 115:E302–E309. https://doi.org/10.1073/pnas.1716032115

    Article  CAS  PubMed  Google Scholar 

  49. Pestana F, Edwards-Faret G, Belgard TG, Martirosyan A, Holt MG (2020) No longer underappreciated: the emerging concept of astrocyte heterogeneity in neuroscience. Brain Sci. https://doi.org/10.3390/brainsci10030168

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dai W, Yang M, Xia P, Xiao C, Huang S, Zhang Z, Cheng X, Li W, Jin J, Zhang J et al (2022) A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat Commun 13:4825. https://doi.org/10.1038/s41467-022-32556-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, Zhou F, Zhang C, Shao L, Feng J et al (2020) Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res 30:229–243. https://doi.org/10.1038/s41422-020-0287-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mifflin KA, Brennan FH, Guan Z, Kigerl KA, Filous AR, Mo X, Schwab JM, Popovich PG (2022) Spinal cord injury impairs lung immunity in mice. J Immunol 209:157–170. https://doi.org/10.4049/jimmunol.2200192

    Article  CAS  PubMed  Google Scholar 

  53. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999. https://doi.org/10.1084/jem.20142290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560:185–191. https://doi.org/10.1038/s41586-018-0368-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Kipnis lab for discussing this manuscript.

Funding

Author J.H. receives research support from the Cure Alzheimer’s Fund (GR0029150).

Author information

Authors and Affiliations

Authors

Contributions

SG and JH prepared the manuscript.

Corresponding author

Correspondence to Jasmin Herz.

Ethics declarations

Conflict of interest

The authors have no competing interest to disclose.

Consent for publication

The authors give consent for the publication of the manuscript in CMLS.

Ethics approval and consent to participate

Approval for publishing this manuscript was obtained from the Washington University in St Louis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonuguntla, S., Herz, J. Unraveling the lymphatic system in the spinal cord meninges: a critical element in protecting the central nervous system. Cell. Mol. Life Sci. 80, 366 (2023). https://doi.org/10.1007/s00018-023-05013-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-05013-1

Keywords

Navigation