Skip to main content
Log in

Exploring the link between hedonic overeating and prefrontal cortex dysfunction in the Ts65Dn trisomic mouse model

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Individuals with Down syndrome (DS) have a higher prevalence of obesity compared to the general population. Conventionally, this has been attributed to endocrine issues and lack of exercise. However, deficits in neural reward responses and dopaminergic disturbances in DS may be contributing factors. To investigate this, we focused on a mouse model (Ts65Dn) bearing some triplicated genes homologous to trisomy 21. Through detailed meal pattern analysis in male Ts65Dn mice, we observed an increased preference for energy-dense food, pointing towards a potential “hedonic” overeating behavior. Moreover, trisomic mice exhibited higher scores in compulsivity and inflexibility tests when limited access to energy-dense food and quinine hydrochloride adulteration were introduced, compared to euploid controls. Interestingly, when we activated prelimbic-to-nucleus accumbens projections in Ts65Dn male mice using a chemogenetic approach, impulsive and compulsive behaviors significantly decreased, shedding light on a promising intervention avenue. Our findings uncover a novel mechanism behind the vulnerability to overeating and offer potential new pathways for tackling obesity through innovative interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the raw data and supplementary materials are available upon request.

References

  1. Bell AJ, Bhate MS (1992) Prevalence of overweight and obesity in Down’s syndrome and other mentally handicapped adults living in the community. J Intellect Disabil Res. https://doi.org/10.1111/J.1365-2788.1992.TB00534.X

    Article  PubMed  Google Scholar 

  2. Yahia S, El-farahaty RM, El-Hawary AK, El-hussiny MA, Abdel-maseih H, El-Dahtory F, El-Gilany AH (2012) Leptin, insulin and thyroid hormones in a cohort of Egyptian obese Down syndrome children: a comparative study. BMC Endocr Disord. https://doi.org/10.1186/1472-6823-12-22

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campos C, Casado Á (2015) Oxidative stress, thyroid dysfunction & Down syndrome. Indian J Med Res 142(2):113–119. https://doi.org/10.4103/0971-5916.164218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahy J, Shields N, Taylor NF, Dodd KJ (2010) Identifying facilitators and barriers to physical activity for adults with Down syndrome. J Intellect Disabil Res 54(9):795–805. https://doi.org/10.1111/J.1365-2788.2010.01308.X

    Article  CAS  PubMed  Google Scholar 

  5. Grammatikopoulou MG, Manai A, Tsigga M, Tsiligiroglou-Fachantidou A, Galli-Tsinopoulou A, Zakas A (2008) Nutrient intake and anthropometry in children and adolescents with Down syndrome–a preliminary study. Dev Neurorehabil 11(4):260–267. https://doi.org/10.1080/17518420802525526

    Article  PubMed  Google Scholar 

  6. Nordstrøm M, Paus B, Andersen LF, Kolset SO (2015) Dietary aspects related to health and obesity in Williams syndrome, Down syndrome, and Prader-Willi syndrome. Food Nutr Res 3:59. https://doi.org/10.3402/FNR.V59.25487

    Article  Google Scholar 

  7. Corwin RL, Hajnal A (2005) Too much of a good thing: neurobiology of non-homeostatic eating and drug abuse. Physiol Behav 86(1–2):5–8. https://doi.org/10.1016/J.PHYSBEH.2005.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kehagia AA, Murray GK, Robbins TW (2010) Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr Opin Neurobiol 20(2):199–204. https://doi.org/10.1016/J.CONB.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  9. Domingo-Rodriguez L, Ruiz de Azua I, Dominguez E, Senabre E, Serra I, Kummer S, Navandar M, Baddenhausen S, Hofmann C, Andero R, Gerber S, Navarrete M, Dierssen M, Lutz B, Martín-García E, Maldonado R (2020) A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction. Nat Commun. https://doi.org/10.1038/S41467-020-14458-Y

    Article  PubMed  PubMed Central  Google Scholar 

  10. Willeumier KC, Taylor DV, Amen DG (2011) Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity (Silver Spring) 19(5):1095–1097. https://doi.org/10.1038/OBY.2011.16

    Article  PubMed  Google Scholar 

  11. Maayan L, Hoogendoorn C, Sweat V, Convit A (2011) Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction. Obesity (Silver Spring) 19(7):1382–1387. https://doi.org/10.1038/OBY.2011.15

    Article  PubMed  Google Scholar 

  12. Cohen JI, Yates KF, Duong M, Convit A (2011) Obesity, orbitofrontal structure and function are associated with food choice: a cross-sectional study. BMJ Open. https://doi.org/10.1136/BMJOPEN-2011-000175

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whittle N, Sartori SB, Dierssen M, Lubec G, Singewald N (2007) Fetal Down syndrome brains exhibit aberrant levels of neurotransmitters critical for normal brain development. Pediatrics. https://doi.org/10.1542/PEDS.2006-3448

    Article  PubMed  Google Scholar 

  14. Pujol J, del Hoyo L, Blanco-Hinojo L, de Sola S, Macià D, Martínez-Vilavella G, Amor M, Deus J, Rodríguez J, Farré M, Dierssen M, de la Torre R (2015) Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome. Cortex 1(64):148–156

    Article  Google Scholar 

  15. Del Hoyo L, Xicota L, Langohr K, Sánchez-Benavides G, De Sola S, Cuenca-Royo A, Rodriguez J, Rodríguez-Morató J, Farré M, Dierssen M, De La Torre R (2016) VNTR-DAT1 and COMTVal158Met genotypes modulate mental flexibility and adaptive behavior skills in Down syndrome. Front Behav Neurosci. https://doi.org/10.3389/FNBEH.2016.00193

    Article  PubMed  PubMed Central  Google Scholar 

  16. Palumbo ML, McDougle CJ (2018) Pharmacotherapy of Down syndrome. Expert Opin Pharmacother 19(17):1875–1889. https://doi.org/10.1080/14656566.2018.1529167

    Article  CAS  PubMed  Google Scholar 

  17. Dykens EM, Shah B, Davis B, Baker C, Fife T, Fitzpatrick J (2015) Psychiatric disorders in adolescents and young adults with Down syndrome and other intellectual disabilities. J Neurodev Disord. https://doi.org/10.1186/S11689-015-9101-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berthoud HR (2012) The neurobiology of food intake in an obesogenic environment. Proc Nutr Soc 71(4):478–487. https://doi.org/10.1017/S0029665112000602

    Article  PubMed  PubMed Central  Google Scholar 

  19. Singh M (2014) Mood, food, and obesity. Front Psychol 5:1–35. https://doi.org/10.3389/FPSYG.2014.00925

    Article  Google Scholar 

  20. Liu DP, Schmidt C, Billings T, Davisson MT (2003) Quantitative PCR genotyping assay for the Ts65Dn mouse model of Down syndrome. Biotechniques 35(6):1170–1180. https://doi.org/10.2144/03356ST02

    Article  CAS  PubMed  Google Scholar 

  21. Fructuoso M, Espinosa-Carrasco J, Erb I, Notredame C, Dierssen M (2019) Protocol for measuring compulsive-like feeding behavior in mice. Bio-Protoc. https://doi.org/10.21769/BIOPROTOC.3308

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bura SA, Burokas A, Martín-García E, Maldonado R (2010) Effects of chronic nicotine on food intake and anxiety-like behaviour in CB(1) knockout mice. Eur Neuropsychopharmacol 20(6):369–378. https://doi.org/10.1016/J.EURONEURO.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  23. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates - George Paxinos, Keith B.J. Franklin - Google Libros. [cited 2022 Dec 11]

  24. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. https://doi.org/10.1002/BIMJ.200810425

    Article  PubMed  Google Scholar 

  25. Espinosa-Carrasco J, Burokas A, Fructuoso M, Erb I, Martín-García E, Gutiérrez-Martos M, Notredame C, Maldonado R, Dierssen M (2018) Time-course and dynamics of obesity-related behavioral changes induced by energy-dense foods in mice. Addict Biol 23(2):531–543. https://doi.org/10.1111/ADB.12595

    Article  PubMed  Google Scholar 

  26. Heyne A, Kiesselbach C, Sahún I, McDonald J, Gaiffi M, Dierssen M, Wolffgramm J (2009) An animal model of compulsive food-taking behaviour. Addict Biol 14(4):373–383. https://doi.org/10.1111/J.1369-1600.2009.00175.X

    Article  PubMed  Google Scholar 

  27. Kim HJ, Lee JH, Yun K, Kim JH (2017) Alterations in striatal circuits underlying addiction-like behaviors. Mol Cells 40(6):379–385. https://doi.org/10.14348/MOLCELLS.2017.0088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carlin J, Hill-Smith TE, Lucki I, Reyes TM (2013) Reversal of dopamine system dysfunction in response to high-fat diet. Obesity (Silver Spring) 21(12):2513–2521. https://doi.org/10.1002/OBY.20374

    Article  CAS  PubMed  Google Scholar 

  29. Moreton E, Baron P, Tiplady S, McCall S, Clifford B, Langley-Evans SC, Fone KCF, Voigt JP (2019) Impact of early exposure to a cafeteria diet on prefrontal cortex monoamines and novel object recognition in adolescent rats. Behav Brain Res 2(363):191–198. https://doi.org/10.1016/J.BBR.2019.02.003

    Article  Google Scholar 

  30. Wong C, Dwyer J, Holland M (2014) Overcoming weight problems in adults with down syndrome. Nutr Today 49(3):109–119. https://doi.org/10.1097/NT.0000000000000029

    Article  Google Scholar 

  31. Fructuoso M, Rachdi L, Philippe E, Denis RG, Magnan C, Le Stunff H, Janel N, Dierssen M (2018) Increased levels of inflammatory plasma markers and obesity risk in a mouse model of Down syndrome. Free Radic Biol Med 1(114):122–130. https://doi.org/10.1016/J.FREERADBIOMED.2017.09.021

    Article  Google Scholar 

  32. La Fleur SE, Luijendijk MCM, Van Der Zwaal EM, Brans MAD, Adan RAH (2014) The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. Int J Obes (Lond) 38(5):643–649. https://doi.org/10.1038/IJO.2013.159

    Article  PubMed  Google Scholar 

  33. Smith CH, Teo Y, Simpson S (2014) An observational study of adults with Down syndrome eating independently. Dysphagia 29(1):52–60. https://doi.org/10.1007/S00455-013-9479-4

    Article  PubMed  Google Scholar 

  34. Richtsmeier JT, Zumwalt A, Carlson EJ, Epstein CJ, Reeves RH (2002) Craniofacial phenotypes in segmentally trisomic mouse models for Down syndrome. Am J Med Genet 107(4):317–324. https://doi.org/10.1002/AJMG.10175

    Article  PubMed  Google Scholar 

  35. Glass TJ, Twadell SL, Valmadrid LC, Connor NP (2019) Early impacts of modified food consistency on oromotor outcomes in mouse models of Down syndrome. Physiol Behav 1(199):273–281

    Article  Google Scholar 

  36. Hennequin M, Allison PJ, Faulks D, Orliaguet T, Feine J (2005) Chewing indicators between adults with Down syndrome and controls. J Dent Res 84(11):1057–1061. https://doi.org/10.1177/154405910508401117

    Article  CAS  PubMed  Google Scholar 

  37. Si Hassen W, Castetbon K, Tichit C, Péneau S, Nechba A, Ducrot P, Lampuré A, Bellisle F, Hercberg S, Méjean C (2018) Energy, nutrient and food content of snacks in French adults. Nutr J. https://doi.org/10.1186/S12937-018-0336-Z

    Article  PubMed  PubMed Central  Google Scholar 

  38. Corwin RL, Buda-Levin A (2004) Behavioral models of binge-type eating. Physiol Behav 82(1):123–130

    Article  CAS  PubMed  Google Scholar 

  39. Boggiano MM, Artiga AI, Pritchett CE, Chandler-Laney PC, Smith ML, Eldridge AJ (2007) High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating. Int J Obes (Lond) 31(9):1357–1367. https://doi.org/10.1038/SJ.IJO.0803614

    Article  CAS  PubMed  Google Scholar 

  40. McKeown DA, Doty RL, Perl DP, Frye RE, Simms I, Mester A (1996) Olfactory function in young adolescents with Down’s syndrome. J Neurol Neurosurg Psychiatry 61(4):412–414. https://doi.org/10.1136/JNNP.61.4.412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bello NT, Yeh CY, Verpeut JL, Walters AL (2014) Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0093610

    Article  PubMed  PubMed Central  Google Scholar 

  42. Granon S, Changeux JP (2012) Deciding between conflicting motivations: what mice make of their prefrontal cortex. Behav Brain Res 229(2):419–426. https://doi.org/10.1016/J.BBR.2011.11.011

    Article  PubMed  Google Scholar 

  43. Wright TM, Fone KCF, Langley-Evans SC, Voigt JPW (2011) Exposure to maternal consumption of cafeteria diet during the lactation period programmes feeding behaviour in the rat. Int J Dev Neurosci 29(8):785–793. https://doi.org/10.1016/J.IJDEVNEU.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  44. Mobbs O, Crépin C, Thiéry C, Golay A, Van der Linden M (2010) Obesity and the four facets of impulsivity. Patient Educ Couns 79(3):372–377. https://doi.org/10.1016/J.PEC.2010.03.003

    Article  PubMed  Google Scholar 

  45. Evans DW, Gray FL (2000) Compulsive-like behavior in individuals with Down syndrome: its relation to mental age level, adaptive and maladaptive behavior. Child Dev 71(2):288–300. https://doi.org/10.1111/1467-8624.00144

    Article  CAS  PubMed  Google Scholar 

  46. Laskowski CS, Williams RJ, Martens KM, Gruber AJ, Fisher KG, Euston DR (2016) The role of the medial prefrontal cortex in updating reward value and avoiding perseveration. Behav Brain Res 1(306):52–63. https://doi.org/10.1016/J.BBR.2016.03.007

    Article  Google Scholar 

  47. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205(4409):929–932. https://doi.org/10.1126/SCIENCE.112679

    Article  CAS  PubMed  Google Scholar 

  48. Dekker AD, Vermeiren Y, Albac C, Lana-Elola E, Watson-Scales S, Gibbins D, Aerts T, Van Dam D, Fisher EMC, Tybulewicz VLJ, Potier MC, De Deyn PP (2017) Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models. Neurobiol Dis 105:235–244. https://doi.org/10.1016/J.NBD.2017.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yates CM, Simpson J, Gordon A, Maloney AFJ, Allison Y, Ritchie IM, Urquhart A (1983) Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down’s syndrome. Brain Res 280(1):119–126. https://doi.org/10.1016/0006-8993(83)91179-4

    Article  CAS  PubMed  Google Scholar 

  50. Duval N, Vacano GN, Patterson D (2018) Rapamycin treatment ameliorates age-related accumulation of toxic metabolic intermediates in brains of the Ts65Dn mouse model of down syndrome and aging. Front Aging Neurosci. https://doi.org/10.3389/FNAGI.2018.00263

    Article  PubMed  PubMed Central  Google Scholar 

  51. Décarie-Spain L, Hryhorczuk C, Fulton S (2016) Dopamine signalling adaptations by prolonged high-fat feeding. Curr Opin Behav Sci 1(9):136–143

    Article  Google Scholar 

  52. Wang GJ, Geliebter A, Volkow ND, Telang FW, Logan J, Jayne MC, Galanti K, Selig PA, Han H, Zhu W, Wong CT, Fowler JS (2011) Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity (Silver Spring) 19(8):1601–1608. https://doi.org/10.1038/OBY.2011.27

    Article  CAS  PubMed  Google Scholar 

  53. Kessler RM, Hutson PH, Herman BK, Potenza MN (2016) The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev 1(63):223–238. https://doi.org/10.1016/J.NEUBIOREV.2016.01.013

    Article  Google Scholar 

  54. Vollbrecht PJ, Mabrouk OS, Nelson AD, Kennedy RT, Ferrario CR (2016) Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats. Obesity (Silver Spring) 24(3):670–677. https://doi.org/10.1002/OBY.21411

    Article  CAS  PubMed  Google Scholar 

  55. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN (2009) Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159(4):1193–1199. https://doi.org/10.1016/J.NEUROSCIENCE.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  56. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641. https://doi.org/10.1038/NN.2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rada P, Bocarsly ME, Barson JR, Hoebel BG, Leibowitz SF (2010) Reduced accumbens dopamine in Sprague-Dawley rats prone to overeating a fat-rich diet. Physiol Behav 101(3):394–400. https://doi.org/10.1016/J.PHYSBEH.2010.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Volkow ND, Wang GJ, Tomasi D, Baler RD (2013) The addictive dimensionality of obesity. Biol Psychiatry 73(9):811–818. https://doi.org/10.1016/J.BIOPSYCH.2012.12.020

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, Bonci A (2013) Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496(7445):359–362. https://doi.org/10.1038/NATURE12024

    Article  CAS  PubMed  Google Scholar 

  60. Moorman DE, James MH, McGlinchey EM, Aston-Jones G (2015) Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 1628(Pt A):130–146. https://doi.org/10.1016/J.BRAINRES.2014.12.024

    Article  CAS  PubMed  Google Scholar 

  61. Hong J, Stubbins RE, Smith RR, Harvey AE, Núñez NP (2009) Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J 17(8):1–5. https://doi.org/10.1186/1475-2891-8-11

    Article  Google Scholar 

Download references

Acknowledgements

Figure 6a–b were created with BioRender.com. We acknowledge the PRBB animal facility, and the CRG histology facility. We thank the Advanced Light Microscopy Unit (ALMU) at the CRG for their support in the confocal data acquisition process.

Funding

This work was supported by the Fondation Jérôme Lejeune #2002 (MD, MML, MF, AF), MINECO (PID2019-110755RB-I00/AEI/1013039/501100011033, RTC2019-007230-1 and RTC2019-007329-1 (MD, AF, MML, IT), Fundació La Marató De TV3 (201620-31) (EM.G, MD, MML, MF, IT) and 202212-30-31-32 (MD, MML, AFB), European Union’s Horizon 2020 research and innovation programme under grant agreement No 848077 (MD, MML, MF, AF), Brain Initiative (1R01EB 028159-01) (MD, MML) and grants from Université de Paris and CNRS (JD and NJ). ‘Plan Nacional Sobre Drogas of the Spanish Ministry of Health’ (#PNSD-2019I006) and Spanish Ministerio de Ciencia e Innovación (ERA-NET) PCI2021-122073-2A to E.M.-G. The laboratory of MD is supported by DIUE de la Generalitat de Catalunya (Grups Consolidats 2017 SGR 926). We acknowledge the support of the Spanish Ministry of Science and Innovation through the Centro de Excelencia Severo Ochoa (CEX2020-001049-S, MCIN/AEI/10.13039/501100011033), and the Generalitat de Catalunya through the CERCA programme. The CIBER of Rare Diseases is an initiative of the ISCIII. CS received the FI grant from Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) de la Generalitat de Catalunya, AFB received an FPI-SO fellowship (PRE2018-084504). J.D also acknowledges the Mass spectrometry platform of UMR 8601 laboratory.

Author information

Authors and Affiliations

Authors

Contributions

MD, MF, ÁF, EM and RM designed the experiments and discussed the results. MF, ÁF, AG and MMdL performed the experiments and MF, ÁF and AG analyzed the behavioral studies. MF, JD, and NJ performed and analyzed the bioamine determination by HPLC. CS quantified the expression of Ddr1 and Ddr2 by q-PCR. NL contributed to the acquisition of confocal images. IdT performed the correlations and statistical analysis between the behavioral and the brain bioamine’s data. MF, and ÁF did the statistical analysis of the results. MF, ÁF and MD wrote the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mara Dierssen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval and consent to participate

All experimental procedures were approved by the local ethical committee (Comité Ético de Experimentación Animal del PRBB (CEEA-PRBB); procedure number MDS-12-1464P3), and met the guidelines of the local (law 32/2007) and European regulations (EU directive n° 86/609, EU decree 2001-486) and the Standards for the use of Laboratory Animals n° A5388-01 (NIH).

Consent for publication

All authors consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 609 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fructuoso, M., Fernández-Blanco, Á., Gallego-Román, A. et al. Exploring the link between hedonic overeating and prefrontal cortex dysfunction in the Ts65Dn trisomic mouse model. Cell. Mol. Life Sci. 80, 370 (2023). https://doi.org/10.1007/s00018-023-05009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-05009-x

Keywords

Navigation