Skip to main content

Advertisement

Log in

Reciprocal negative feedback regulation of ATF6α and PTEN promotes prostate cancer progression

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Phosphatase and tensin homolog (PTEN) loss tightly correlates with prostate cancer (PCa) progression and metastasis. Inactivation of PTEN leads to abnormal activation of PI3K/AKT pathway. However, results from clinical trials with AKT inhibitors in PCa have been largely disappointing. Identification of novel regulators of PTEN in PTEN-dysfunctional PCa is urgently needed. Here we demonstrated that the expression level of PTEN is inversely correlated with the signature score of unfolded protein response (UPR) in PCa. Importantly, PTEN suppresses the activity of ATF6α, via interacting to de-phosphorylate ATF6α and consequently inhibiting its nuclear translocation. Conversely, ATF6α promotes the ubiquitination and degradation of PTEN by inducing CHIP expression. Thus, ATF6α and PTEN forms a negative feedback loop during PCa progression. Combination of ATF6α inhibitor with AKT inhibitor suppresses tumor cell proliferation and xenograft growth. Importantly, this study highlighted ATF6α as a therapeutic vulnerability in PTEN dysfunctional PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data and material during the current study are available from the corresponding author on reasonable request.

References

  1. Barbieri CE et al (2013) The mutational landscape of prostate cancer. Eur Urol 64(4):567–576. https://doi.org/10.1016/j.eururo.2013.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li J et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947. https://doi.org/10.1126/science.275.5308.1943

    Article  CAS  PubMed  Google Scholar 

  3. Alimonti A et al (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42(5):454–458. https://doi.org/10.1038/ng.556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lotan TL et al (2011) PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res 17(20):6563–6573. https://doi.org/10.1158/1078-0432.Ccr-11-1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Han B et al (2009) Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 22(8):1083–1093. https://doi.org/10.1038/modpathol.2009.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gray IC et al (1995) Loss of the chromosomal region 10q23-25 in prostate cancer. Cancer Res 55(21):4800–4803

    CAS  PubMed  Google Scholar 

  7. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13(2):140–156. https://doi.org/10.1038/nrd4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crabb SJ et al (2021) Pan-AKT inhibitor Capivasertib With docetaxel and prednisolone in metastatic castration-resistant prostate cancer: a randomized, placebo-controlled phase II trial (ProCAID). J Clin Oncol 39(3):190–201. https://doi.org/10.1200/jco.20.01576

    Article  CAS  PubMed  Google Scholar 

  9. Cen B et al (2013) Elevation of receptor tyrosine kinases by small molecule AKT inhibitors in prostate cancer is mediated by Pim-1. Cancer Res 73(11):3402–3411. https://doi.org/10.1158/0008-5472.Can-12-4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chee KG et al (2007) The AKT inhibitor perifosine in biochemically recurrent prostate cancer: a phase II California/Pittsburgh cancer consortium trial. Clin Genitourin Cancer 5(7):433–437. https://doi.org/10.3816/CGC.2007.n.031

    Article  CAS  PubMed  Google Scholar 

  11. Sweeney C et al (2021) Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet 398(10295):131–142. https://doi.org/10.1016/s0140-6736(21)00580-8

    Article  CAS  PubMed  Google Scholar 

  12. Yuan L et al (2015) Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol 17(9):1169–1181. https://doi.org/10.1038/ncb3218

    Article  CAS  PubMed  Google Scholar 

  13. Bassi C et al (2013) Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341(6144):395–399. https://doi.org/10.1126/science.1236188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goel A et al (2004) Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res 64(9):3014–3021. https://doi.org/10.1158/0008-5472.can-2401-2

    Article  CAS  PubMed  Google Scholar 

  15. Hetz C et al (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21(8):421–438. https://doi.org/10.1038/s41580-020-0250-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheng X et al (2019) IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat Commun 10(1):323. https://doi.org/10.1038/s41467-018-08152-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de la Calle CM et al (2022) The endoplasmic reticulum stress response in prostate cancer. Nat Rev Urol 19(12):708–726. https://doi.org/10.1038/s41585-022-00649-3

    Article  CAS  PubMed  Google Scholar 

  18. Chui MH et al (2019) Chromosomal instability and mTORC1 activation through PTEN loss contribute to Proteotoxic stress in Ovarian carcinoma. Cancer Res 79(21):5536–5549. https://doi.org/10.1158/0008-5472.Can-18-3029

    Article  PubMed  Google Scholar 

  19. Wang W et al (2018) KDM4B-regulated unfolded protein response as a therapeutic vulnerability in PTEN-deficient breast cancer. J Exp Med 215(11):2833–2849. https://doi.org/10.1084/jem.20180439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haze K et al (2001) Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J 355(Pt 1):19–28. https://doi.org/10.1042/0264-6021:3550019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Forouhan M et al (2018) Paradoxical roles of ATF6α and ATF6β in modulating disease severity caused by mutations in collagen X. Matrix Biol. https://doi.org/10.1016/j.matbio.2018.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu J et al (2017) Activation of UPR signaling pathway is associated with the malignant progression and poor prognosis in prostate cancer. Prostate 77(3):274–281. https://doi.org/10.1002/pros.23264

    Article  CAS  PubMed  Google Scholar 

  23. Wang L et al (2013) SOX4 is associated with poor prognosis in prostate cancer and promotes epithelial-mesenchymal transition in vitro. Prostate Cancer Prostatic Dis 16(4):301–307. https://doi.org/10.1038/pcan.2013.25

    Article  CAS  PubMed  Google Scholar 

  24. Feng T et al (2016) Growth factor progranulin promotes tumorigenesis of cervical cancer via PI3K/Akt/mTOR signaling pathway. Oncotarget. https://doi.org/10.18632/oncotarget.11126

    Article  PubMed  PubMed Central  Google Scholar 

  25. Plate L et al (2016) Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife https://doi.org/10.7554/eLife.15550.

  26. Myers MP et al (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A 95(23):13513–13518. https://doi.org/10.1073/pnas.95.23.13513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378. https://doi.org/10.1074/jbc.273.22.13375

    Article  CAS  PubMed  Google Scholar 

  28. Lee YR et al (2018) The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 19(9):547–562. https://doi.org/10.1038/s41580-018-0015-0

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed SF et al (2012) The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J Biol Chem 287(19):15996–16006. https://doi.org/10.1074/jbc.M111.321083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maddika S et al (2011) WWP2 is an E3 ubiquitin ligase for PTEN. Nat Cell Biol 13(6):728–733. https://doi.org/10.1038/ncb2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Themsche C et al (2009) X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J Biol Chem 284(31):20462–20466. https://doi.org/10.1074/jbc.C109.009522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang X et al (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128(1):129–139. https://doi.org/10.1016/j.cell.2006.11.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Misra J et al (2013) Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response. Nucleic Acids Res 41(14):6960–6974. https://doi.org/10.1093/nar/gkt429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang W et al (2015) Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex. Cell Signal 27(3):436–442. https://doi.org/10.1016/j.cellsig.2014.12.010

    Article  CAS  PubMed  Google Scholar 

  35. Rebello RJ et al (2021) Prostate cancer. Nat Rev Dis Primers 7(1):9. https://doi.org/10.1038/s41572-020-00243-0

    Article  PubMed  Google Scholar 

  36. Ferraldeschi R et al (2015) PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur Urol 67(4):795–802. https://doi.org/10.1016/j.eururo.2014.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toren P et al (2015) Combination AZD5363 with Enzalutamide significantly delays Enzalutamide-resistant prostate cancer in preclinical models. Eur Urol 67(6):986–990. https://doi.org/10.1016/j.eururo.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  38. Kim MJ et al (2002) Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 99(5):2884–2889. https://doi.org/10.1073/pnas.042688999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Cristofano A et al (2001) Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27(2):222–224. https://doi.org/10.1038/84879

    Article  CAS  PubMed  Google Scholar 

  40. Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730. https://doi.org/10.1038/nature03918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu Y, et al (2023) PTEN phosphatase inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6. iScience 26 (2): 106070 https://doi.org/10.1016/j.isci.2023.106070.

  42. Jin Y, Saatcioglu F (2020) Targeting the unfolded protein response in hormone-regulated cancers. Trends Cancer 6(2):160–171. https://doi.org/10.1016/j.trecan.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  43. Vandewynckel YP et al (2016) Next-generation proteasome inhibitor oprozomib synergizes with modulators of the unfolded protein response to suppress hepatocellular carcinoma. Oncotarget 7(23):34988–35000. https://doi.org/10.18632/oncotarget.9222

    Article  PubMed  PubMed Central  Google Scholar 

  44. Benedetti R et al (2022) ATF6 prevents DNA damage and cell death in colon cancer cells undergoing ER stress. Cell Death Discov 8(1):295. https://doi.org/10.1038/s41420-022-01085-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spaan CN et al (2019) Expression of UPR effector proteins ATF6 and XBP1 reduce colorectal cancer cell proliferation and stemness by activating PERK signaling. Cell Death Dis 10(7):490. https://doi.org/10.1038/s41419-019-1729-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verfaillie T et al (2013) Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett 332(2):249–264. https://doi.org/10.1016/j.canlet.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  47. Wu J et al (2007) ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13(3):351–364. https://doi.org/10.1016/j.devcel.2007.07.005

    Article  CAS  PubMed  Google Scholar 

  48. Pachikov AN et al (2021) The non-canonical mechanism of ER stress-mediated progression of prostate cancer. J Exp Clin Cancer Res 40(1):289. https://doi.org/10.1186/s13046-021-02066-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salmena L et al (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414. https://doi.org/10.1016/j.cell.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  50. Wu HH et al (2021) Hsp70 acts as a fine-switch that controls E3 ligase CHIP-mediated TAp63 and ΔNp63 ubiquitination and degradation. Nucleic Acids Res 49(5):2740–2758. https://doi.org/10.1093/nar/gkab081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grants No. 82172818, 81972416), (Grant No. 81772760, 82072850), (Grant No. 81972436), Joint Research Fund of Natural Science of Shandong Province (ZR2019LZL014), Academic promotion program of Shandong First Medical University (LJ001), The Youth Innovation Technology Plan of Shandong University (Grant No. 2019KJK003), China Postdoctoral Science Foundation (2022M711900) and Natural Science Foundation of Shandong Province (ZR202111150013).

Author information

Authors and Affiliations

Authors

Contributions

BH, LW, TF, and RZ wrote the manuscript, performed, designed, and analyzed experiments; FS, HZ, and LG accomplished some of in vitro experiments; WC and MW analyzed experiments; TF, and YX accomplished some of in vivo studies; JH, MQ, JZ and LL analyzed IHC assay. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lin Wang or Bo Han.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Shandong University (Document No. ECSBMSSDU2021-1-61). All animal experimental protocols were performed following the Ethical Animal Care and Use Committee of Shandong University (Document No. ECSBMSSDU2021-2-126).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 2a.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3038 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Zhao, R., Zhang, H. et al. Reciprocal negative feedback regulation of ATF6α and PTEN promotes prostate cancer progression. Cell. Mol. Life Sci. 80, 292 (2023). https://doi.org/10.1007/s00018-023-04940-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04940-3

Keywords

Navigation