Skip to main content

Advertisement

Log in

Artificial induction of circadian rhythm by combining exogenous BMAL1 expression and polycomb repressive complex 2 inhibition in human induced pluripotent stem cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Understanding the physiology of human-induced pluripotent stem cells (iPSCs) is necessary for directed differentiation, mimicking embryonic development, and regenerative medicine applications. Pluripotent stem cells (PSCs) exhibit unique abilities such as self-renewal and pluripotency, but they lack some functions that are associated with normal somatic cells. One such function is the circadian oscillation of clock genes; however, whether or not PSCs demonstrate this capability remains unclear. In this study, the reason why circadian rhythm does not oscillate in human iPSCs was examined. This phenomenon may be due to the transcriptional repression of clock genes resulting from the hypermethylation of histone H3 at lysine 27 (H3K27), or it may be due to the low levels of brain and muscle ARNT-like 1 (BMAL1) protein. Therefore, BMAL1-overexpressing cells were generated and pre-treated with GSK126, an inhibitor of enhancer of zest homologue 2 (EZH2), which is a methyltransferase of H3K27 and a component of polycomb repressive complex 2. Consequently, a significant circadian rhythm following endogenous BMAL1, period 2 (PER2), and other clock gene expression was induced by these two factors, suggesting a candidate mechanism for the lack of rhythmicity of clock gene expression in iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Umemura Y, Maki I, Tsuchiya Y et al (2019) Human circadian molecular oscillation development using induced pluripotent stem cells. J Biol Rhythms 34:525–532. https://doi.org/10.1177/0748730419865436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dierickx P, Vermunt MW, Muraro MJ et al (2017) Circadian networks in human embryonic stem cell-derived cardiomyocytes. EMBO Rep 18:1199–1212. https://doi.org/10.15252/embr.201743897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vilchez D, Boyer L, Morantte I et al (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489:304–308. https://doi.org/10.1038/nature11468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee HJ, Gutierrez-Garcia R, Vilchez D (2017) Embryonic stem cells: a novel paradigm to study proteostasis? FEBS J 284:391–398. https://doi.org/10.1111/febs.13810

    Article  CAS  PubMed  Google Scholar 

  5. Banito A, Gil J (2010) Induced pluripotent stem cells and senescence: learning the biology to improve the technology. EMBO Rep 11:353–359. https://doi.org/10.1038/embor.2010.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sancar G, Brunner M (2014) Circadian clocks and energy metabolism. Cell Mol Life Sci 71:2667–2680. https://doi.org/10.1007/s00018-014-1574-7

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179. https://doi.org/10.1038/nrg.2016.150

    Article  CAS  PubMed  Google Scholar 

  8. Papazyan R, Zhang Y, Lazar MA (2016) Genetic and epigenomic mechanisms of mammalian circadian transcription. Nat Struct Mol Biol 23:1045–1052. https://doi.org/10.1038/nsmb.3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saini C, Morf J, Stratmann M et al (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26:567–580. https://doi.org/10.1101/gad.183251.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paulose JK, Rucker EB, Cassone VM (2012) Toward the Beginning of time: circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS ONE 7:e49555. https://doi.org/10.1371/journal.pone.0049555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yagita K, Horie K, Koinuma S et al (2010) Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc Natl Acad Sci USA 107:3846–3851. https://doi.org/10.1073/pnas.0913256107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Umemura Y, Koike N, Matsumoto T et al (2014) Transcriptional program of Kpna2/Importin-α2 regulates cellular differentiation-coupled circadian clock development in mammalian cells. Proc Natl Acad Sci USA 111:E5039–E5048. https://doi.org/10.1073/pnas.1419272111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Umemura Y, Koike N, Ohashi M et al (2017) Involvement of posttranscriptional regulation of Clock in the emergence of circadian clock oscillation during mouse development. Proc Natl Acad Sci USA 114:E7479–E7488. https://doi.org/10.1073/pnas.1703170114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li M, Liu G-H, Belmonte JCI (2012) Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 13:524–535. https://doi.org/10.1038/nrm3393

    Article  CAS  PubMed  Google Scholar 

  15. Guenther MG, Frampton GM, Soldner F et al (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7:249–257. https://doi.org/10.1016/j.stem.2010.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaneko H, Kaitsuka T, Tomizawa K (2020) Response to stimulations inducing circadian rhythm in human induced pluripotent stem cells. Cells 9:620. https://doi.org/10.3390/cells9030620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bunger MK, Wilsbacher LD, Moran SM et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017. https://doi.org/10.1016/S0092-8674(00)00205-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stratmann M, Suter DM, Molina N et al (2012) Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol Cell 48:277–287. https://doi.org/10.1016/j.molcel.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  19. Chan HL, Beckedorff F, Zhang Y et al (2018) Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms. Nat Commun 9:3377. https://doi.org/10.1038/s41467-018-05728-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schuettengruber B, Bourbon H-M, Di Croce L, Cavalli G (2017) Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171:34–57. https://doi.org/10.1016/j.cell.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  21. Atlasi Y, Stunnenberg HG (2017) The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 18:643–658. https://doi.org/10.1038/nrg.2017.57

    Article  CAS  PubMed  Google Scholar 

  22. Yokobayashi S, Yabuta Y, Nakagawa M et al (2021) Inherent genomic properties underlie the epigenomic heterogeneity of human induced pluripotent stem cells. Cell Rep 37:109909. https://doi.org/10.1016/j.celrep.2021.109909

    Article  CAS  PubMed  Google Scholar 

  23. Yan P, Liu Z, Song M, Belmonte JCI, Xie W, Ren J, Zhang W, Sun Q, Qu J, Liu GH (2020) Genome-wide R-loop landscapes during Cell differentiation and reprogramming. Cell Rep 32:107870. https://doi.org/10.1016/j.celrep.2020.107870

    Article  CAS  PubMed  Google Scholar 

  24. Vollmers C, Panda S, DiTacchio L (2008) A high-throughput assay for siRNA-based circadian screens in human U2OS cells. PLoS One 3:e3457. https://doi.org/10.1371/journal.pone.0003457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McCabe MT, Ott HM, Ganji G et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112. https://doi.org/10.1038/nature11606

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  27. Nakagawa M, Taniguchi Y, Senda S et al (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594. https://doi.org/10.1038/srep03594

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chin MH, Mason MJ, Xie W et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–123. https://doi.org/10.1016/j.stem.2009.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326. https://doi.org/10.1016/j.cell.2006.02.041

    Article  CAS  PubMed  Google Scholar 

  30. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349. https://doi.org/10.1038/nature09784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pan G, Tian S, Nie J et al (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1:299–312. https://doi.org/10.1016/j.stem.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  32. Harikumar A, Meshorer E (2015) Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 16:1609–1619. https://doi.org/10.15252/embr.201541011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Etchegaray J-P, Yang X, DeBruyne JP et al (2006) The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 281:21209–21215. https://doi.org/10.1074/jbc.M603722200

    Article  CAS  PubMed  Google Scholar 

  34. Margueron R, Li G, Sarma K et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32:503–518. https://doi.org/10.1016/j.molcel.2008.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee SH, Li Y, Kim H et al (2022) The role of EZH1 and EZH2 in development and cancer. BMB Rep 55:595–601. https://doi.org/10.5483/BMBRep.2022.55.12.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mayran A, Drouin J (2018) Pioneer transcription factors shape the epigenetic landscape. J Biol Chem 293:13795–13804. https://doi.org/10.1074/jbc.R117.001232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ameneiro C, Moreira T, Fuentes-Iglesias A et al (2020) BMAL1 coordinates energy metabolism and differentiation of pluripotent stem cells. Life Sci Alliance 3:e201900534. https://doi.org/10.26508/lsa.201900534

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gallardo A, Molina A, Asenjo HG et al (2020) The molecular clock protein Bmal1 regulates cell differentiation in mouse embryonic stem cells. Life Sci Alliance 3:e201900535. https://doi.org/10.26508/lsa.201900535

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thakur S, Storewala P, Basak U et al (2020) Clocking the circadian genes in human embryonic stem cells. Stem Cell Investig 7:9. https://doi.org/10.21037/sci-2020-014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koronowski KB, Sassone-Corsi P (2021) Communicating clocks shape circadian homeostasis. Science 371:eabd0951. https://doi.org/10.1126/science.abd0951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Balsalobre A, Brown SA, Marcacci L et al (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347. https://doi.org/10.1126/science.289.5488.2344

    Article  CAS  PubMed  Google Scholar 

  42. Yagita K, Okamura H (2000) Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 465:79–82. https://doi.org/10.1016/S0014-5793(99)01724-X

    Article  CAS  PubMed  Google Scholar 

  43. Verlande A, Masri S (2019) Circadian clocks and cancer: timekeeping governs cellular metabolism. Trends Endocrinol Metab 30:445–458. https://doi.org/10.1016/j.tem.2019.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kiessling S, Beaulieu-Laroche L, Blum ID et al (2017) Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol 15:13. https://doi.org/10.1186/s12915-017-0349-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ogino T, Matsunaga N, Tanaka T et al (2021) Post-transcriptional repression of circadian component CLOCK regulates cancer-stemness in murine breast cancer cells. Elife 10:e66155. https://doi.org/10.7554/eLife.66155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seron-Ferre M, Valenzuela GJ, Torres-Farfan C (2007) Circadian clocks during embryonic and fetal development. Birth Defect Res C 81:204–214. https://doi.org/10.1002/bdrc.20101

    Article  CAS  Google Scholar 

  47. Serón-Ferré M, Mendez N, Abarzua-Catalan L et al (2012) Circadian rhythms in the fetus. Mol Cell Endocrinol 349:68–75. https://doi.org/10.1016/j.mce.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  48. van der Horst GTJ, Muijtjens M, Kobayashi K et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630. https://doi.org/10.1038/19323

    Article  PubMed  Google Scholar 

  49. Zheng B, Albrecht U, Kaasik K et al (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683–694. https://doi.org/10.1016/S0092-8674(01)00380-4

    Article  CAS  PubMed  Google Scholar 

  50. Kondratov RV, Kondratova AA, Gorbacheva VY et al (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868–1873. https://doi.org/10.1101/gad.1432206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10:543–545. https://doi.org/10.1038/nn1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanna J, Cheng AW, Saha K et al (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA 107:9222–9227. https://doi.org/10.1073/pnas.1004584107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ware CB, Nelson AM, Mecham B et al (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci USA 111:4484–4489. https://doi.org/10.1073/pnas.1319738111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Okita K, Yamakawa T, Matsumura Y et al (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466. https://doi.org/10.1002/stem.1293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Japan Society for the Promotion of Science, grant number KAKENHI 18K06876, and Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency Grant Number JPMJTM19GL. The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP18K06876 and by Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency Grant Number JPMJTM19GL.

Author information

Authors and Affiliations

Authors

Contributions

HK performed experiments. HK, TK, and KT designed experiments and analyzed data. HK and TK wrote the paper. TK and KT oversaw the project.

Corresponding authors

Correspondence to Taku Kaitsuka or Kazuhito Tomizawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3508 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, H., Kaitsuka, T. & Tomizawa, K. Artificial induction of circadian rhythm by combining exogenous BMAL1 expression and polycomb repressive complex 2 inhibition in human induced pluripotent stem cells. Cell. Mol. Life Sci. 80, 200 (2023). https://doi.org/10.1007/s00018-023-04847-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04847-z

Keywords

Navigation