Skip to main content

Advertisement

Log in

Vagus nerve stimulation exerts cardioprotection against doxorubicin-induced cardiotoxicity through inhibition of programmed cell death pathways

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The aberration of programmed cell death including cell death associated with autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis can be observed in the development and progression of doxorubicin-induced cardiotoxicity (DIC). Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against cardiomyocyte death through the release of the neurotransmitter acetylcholine (ACh) under a variety of pathological conditions. However, the roles of VNS and its underlying mechanisms against DIC have never been investigated. Forty adults male Wistar rats were divided into 5 experimental groups: (i) control without VNS (CSham) group, (ii) doxorubicin (3 mg/kg/day, i.p.) without VNS (DSham) group, (iii) doxorubicin + VNS (DVNS) group, (iv) doxorubicin + VNS + mAChR antagonist (atropine; 1 mg/kg/day, ip, DVNS + Atro) group, and (v) doxorubicin + VNS + nAChR antagonist (mecamylamine; 7.5 mg/kg/day, ip, DVNS + Mec) group. Our results showed that doxorubicin insult led to left ventricular (LV) dysfunction through impaired cardiac autonomic balance, decreased mitochondrial function, imbalanced mitochondrial dynamics, and exacerbated cardiomyocyte death including autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. However, VNS treatment improved cardiac mitochondrial and autonomic functions, and suppressed excessive autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, leading to improved LV function. Consistent with this, ACh effectively improved cell viability and suppressed cell cytotoxicity in doxorubicin-treated H9c2 cells. In contrast, either inhibitors of muscarinic (mAChR) or nicotinic acetylcholine receptor (nAChR) completely abrogated the favorable effects mediated by VNS and acetylcholine. These findings suggest that VNS exerts cardioprotective effects against doxorubicin-induced cardiomyocyte death via activation of both mAChR and nAChR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

Atro:

Atropine

CSham:

Control + sham

CO:

Cardiac output

DBP:

Diastolic blood pressure

DSham:

Doxorubicin + sham

DVNS:

Doxorubicin + VNS

DIC:

Doxorubicin-induced cardiotoxicity

DOX:

Doxorubicin

Drp1:

Dynamin-related protein 1

E/A:

Early filling to atrial filling velocities ratio

EF:

Ejection fraction

FS:

Fractional shortening

EDP:

End-diastolic pressure

ESP:

End-systolic pressure

HRV:

Heart rate variability

IL-6:

Interleukin-6

LDH:

Lactate dehydrogenase

LF/HF:

Low frequency/high frequency

Mec:

Mecamylamine

mAChR:

Muscarinic acetylcholine receptors

MDA:

Malondialdehyde

Mfn1-2:

Mitofusin1-2

nAChR:

Nicotinic acetylcholine receptor

P–V loop:

Pressure–volume loop

RT-PCR:

Real-time polymerase chain reaction

ROS:

Reactive oxygen species

SV:

Stroke volume

SBP:

Systolic blood pressure

TEM:

Transmission electron microscopy

TNF-α:

Tumor necrosis factor-alpha

VNS:

Vagus nerve stimulation

References

  1. Johnson-Arbor K, Dubey R (2022) Doxorubicin. In: StatPearls (Ed.^, Eds.), StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC., Treasure Island (FL)

  2. Young RC, Ozols RF, Myers CE (1981) The anthracycline antineoplastic drugs. N Engl J Med 305:139–153. https://doi.org/10.1056/nejm198107163050305

    Article  CAS  Google Scholar 

  3. Chatterjee K, Zhang J, Honbo N, Karliner JS (2010) Doxorubicin cardiomyopathy. Cardiology 115:155–162. https://doi.org/10.1159/000265166

    Article  CAS  Google Scholar 

  4. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314. https://doi.org/10.1002/1097-0142(197308)32:2%3c302::aid-cncr2820320205%3e3.0.co;2-2

    Article  CAS  Google Scholar 

  5. Nousiainen T, Jantunen E, Vanninen E, Hartikainen J (2002) Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer 86:1697–1700. https://doi.org/10.1038/sj.bjc.6600346

    Article  CAS  Google Scholar 

  6. Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiade M, Lyon AR, Butler J (2016) Cancer Therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail 9:e002661. https://doi.org/10.1161/circheartfailure.115.002661

    Article  Google Scholar 

  7. Volkova M, Russell R 3rd (2011) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 7:214–220. https://doi.org/10.2174/157340311799960645

    Article  CAS  Google Scholar 

  8. Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44. https://doi.org/10.1146/annurev.physiol.010908.163111

    Article  CAS  Google Scholar 

  9. Jia XF, Liang FG, Kitsis RN (2021) Multiple cell death programs contribute to myocardial infarction. Circ Res 129:397–399. https://doi.org/10.1161/circresaha.121.319584

    Article  CAS  Google Scholar 

  10. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776. https://doi.org/10.1016/s0092-8674(03)00687-1

    Article  CAS  Google Scholar 

  11. Zhou L, Sun J, Gu L, Wang S, Yang T, Wei T, Shan T, Wang H, Wang L (2021) Programmed cell death: complex regulatory networks in cardiovascular disease. Front Cell Dev Biol 9:794879. https://doi.org/10.3389/fcell.2021.794879

    Article  Google Scholar 

  12. Mughal W, Kirshenbaum LA (2011) Cell death signalling mechanisms in heart failure. Exp Clin Cardiol 16:102–108

    CAS  Google Scholar 

  13. MacLellan WR, Schneider MD (1997) Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 81:137–144. https://doi.org/10.1161/01.res.81.2.137

    Article  CAS  Google Scholar 

  14. Christidi E, Brunham LR (2021) Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis 12:339. https://doi.org/10.1038/s41419-021-03614-x

    Article  CAS  Google Scholar 

  15. Kuznetsov AV, Margreiter R, Amberger A, Saks V, Grimm M (2011) Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochem Biophys Acta 1813:1144–1152. https://doi.org/10.1016/j.bbamcr.2011.03.002

    Article  CAS  Google Scholar 

  16. Ma Y, Yang L, Ma J, Lu L, Wang X, Ren J, Yang J (2017) Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochim Biophys Acta Mol Basis Dis 1863:1904–1911. https://doi.org/10.1016/j.bbadis.2016.12.021

    Article  CAS  Google Scholar 

  17. Abdullah CS, Alam S, Aishwarya R, Miriyala S, Bhuiyan MAN, Panchatcharam M, Pattillo CB, Orr AW, Sadoshima J, Hill JA, Bhuiyan MS (2019) Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Sci Rep 9:2002. https://doi.org/10.1038/s41598-018-37862-3

    Article  CAS  Google Scholar 

  18. Liang X, Wang S, Wang L, Ceylan AF, Ren J, Zhang Y (2020) Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol Res 157:104846. https://doi.org/10.1016/j.phrs.2020.104846

    Article  CAS  Google Scholar 

  19. Gump JM, Thorburn A (2011) Autophagy and apoptosis: what is the connection? Trends Cell Biol 21:387–392. https://doi.org/10.1016/j.tcb.2011.03.007

    Article  CAS  Google Scholar 

  20. Zhang X, Hu C, Kong CY, Song P, Wu HM, Xu SC, Yuan YP, Deng W, Ma ZG, Tang QZ (2020) FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ 27:540–555. https://doi.org/10.1038/s41418-019-0372-z

    Article  CAS  Google Scholar 

  21. Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation 15:199. https://doi.org/10.1186/s12974-018-1235-0

    Article  CAS  Google Scholar 

  22. Nicotera P, Melino G (2004) Regulation of the apoptosis-necrosis switch. Oncogene 23:2757–2765. https://doi.org/10.1038/sj.onc.1207559

    Article  CAS  Google Scholar 

  23. Erdogmus Ozgen Z, Erdinc M, Kelle İ, Erdinc L, Nergiz Y (2022) Protective effects of necrostatin-1 on doxorubicin-induced cardiotoxicity in rat heart. Hum Exp Toxicol 41:9603271211066066. https://doi.org/10.1177/09603271211066066

    Article  Google Scholar 

  24. Meng L, Lin H, Zhang J, Lin N, Sun Z, Gao F, Luo H, Ni T, Luo W, Chi J, Guo H (2019) Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. J Mol Cell Cardiol 136:15–26. https://doi.org/10.1016/j.yjmcc.2019.08.009

    Article  CAS  Google Scholar 

  25. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18:1106–1121. https://doi.org/10.1038/s41423-020-00630-3

    Article  CAS  Google Scholar 

  26. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124:617–630. https://doi.org/10.1172/jci72931

    Article  CAS  Google Scholar 

  27. Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H (2020) Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. https://doi.org/10.1172/jci.insight.132747

    Article  Google Scholar 

  28. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, Cheng Q, Zhang P, Dai W, Chen J, Yang F, Yang HT, Linkermann A, Gu W, Min J, Wang F (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 116:2672–2680. https://doi.org/10.1073/pnas.1821022116

    Article  CAS  Google Scholar 

  29. Liu Y, Zeng L, Yang Y, Chen C, Wang D, Wang H (2020) Acyl-CoA thioesterase 1 prevents cardiomyocytes from doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis 11:756. https://doi.org/10.1038/s41419-020-02948-2

    Article  CAS  Google Scholar 

  30. Luo B, Wu Y, Liu SL, Li XY, Zhu HR, Zhang L, Zheng F, Liu XY, Guo LY, Wang L, Song HX, Lv YX, Cheng ZS, Chen SY, Wang JN, Tang JM (2020) Vagus nerve stimulation optimized cardiomyocyte phenotype, sarcomere organization and energy metabolism in infarcted heart through FoxO3A-VEGF signaling. Cell Death Dis 11:971. https://doi.org/10.1038/s41419-020-03142-0

    Article  CAS  Google Scholar 

  31. Wang Y, Po SS, Scherlag BJ, Yu L, Jiang H (2019) The role of low-level vagus nerve stimulation in cardiac therapy. Expert Rev Med Devices 16:675–682. https://doi.org/10.1080/17434440.2019.1643234

    Article  CAS  Google Scholar 

  32. Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA, Milasinovic G, Berman BJ, Djordjevic S, Neelagaru S, Schwartz PJ, Starling RC, Mann DL (2016) Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol 68:149–158. https://doi.org/10.1016/j.jacc.2016.03.525

    Article  Google Scholar 

  33. Xuan Y, Liu S, Li Y, Dong J, Luo J, Liu T, Jin Y, Sun Z (2017) Short-term vagus nerve stimulation reduces myocardial apoptosis by downregulating microRNA-205 in rats with chronic heart failure. Mol Med Rep 16:5847–5854. https://doi.org/10.3892/mmr.2017.7344

    Article  CAS  Google Scholar 

  34. Zhao M, Yang Y, Bi X, Yu X, Jia H, Fang H, Zang W (2015) Acetylcholine attenuated TNF-α-induced apoptosis in H9c2 cells: role of calpain and the p38-MAPK pathway. Cell Physiol Biochem 36:1877–1889. https://doi.org/10.1159/000430157

    Article  CAS  Google Scholar 

  35. Tang H, Li J, Zhou Q, Li S, Xie C, Niu L, Ma J, Li C (2022) Vagus nerve stimulation alleviated cerebral ischemia and reperfusion injury in rats by inhibiting pyroptosis via α7 nicotinic acetylcholine receptor. Cell Death Discov 8:54. https://doi.org/10.1038/s41420-022-00852-6

    Article  CAS  Google Scholar 

  36. Lai Y, Zhou X, Guo F, Jin X, Meng G, Zhou L, Chen H, Liu Z, Yu L, Jiang H (2021) Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab209

    Article  Google Scholar 

  37. Zilinyi R, Czompa A, Czegledi A, Gajtko A, Pituk D, Lekli I, Tosaki A (2018) The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: the role of autophagy. Molecules. https://doi.org/10.3390/molecules23051184

    Article  Google Scholar 

  38. Shinlapawittayatorn K, Chinda K, Palee S, Surinkaew S, Kumfu S, Kumphune S, Chattipakorn S, KenKnight BH, Chattipakorn N (2014) Vagus nerve stimulation initiated late during ischemia, but not reperfusion, exerts cardioprotection via amelioration of cardiac mitochondrial dysfunction. Heart Rhythm 11:2278–2287. https://doi.org/10.1016/j.hrthm.2014.08.001

    Article  Google Scholar 

  39. Reno CM, Bayles J, Huang Y, Oxspring M, Hirahara AM, Dosdall DJ, Fisher SJ (2019) Severe hypoglycemia-induced fatal cardiac arrhythmias are mediated by the parasympathetic nervous system in rats. Diabetes 68:2107–2119. https://doi.org/10.2337/db19-0306

    Article  CAS  Google Scholar 

  40. Samniang B, Shinlapawittayatorn K, Chunchai T, Pongkan W, Kumfu S, Chattipakorn SC, KenKnight BH, Chattipakorn N (2016) Vagus nerve stimulation improves cardiac function by preventing mitochondrial dysfunction in obese-insulin resistant rats. Sci Rep 6:19749. https://doi.org/10.1038/srep19749

    Article  CAS  Google Scholar 

  41. Bo-Htay C, Shwe T, Higgins L, Palee S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N (2020) Aging induced by D-galactose aggravates cardiac dysfunction via exacerbating mitochondrial dysfunction in obese insulin-resistant rats. GeroScience 42:233–249. https://doi.org/10.1007/s11357-019-00132-9

    Article  CAS  Google Scholar 

  42. Apaijai N, Moisescu DM, Palee S, McSweeney CM, Saiyasit N, Maneechote C, Boonnag C, Chattipakorn N, Chattipakorn SC (2019) Pretreatment With PCSK9 inhibitor protects the brain against cardiac ischemia/reperfusion injury through a reduction of neuronal inflammation and amyloid beta aggregation. J Am Heart Assoc 8:e010838. https://doi.org/10.1161/jaha.118.010838

    Article  CAS  Google Scholar 

  43. Maneechote C, Palee S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N (2020) Pharmacological inhibition of mitochondrial fission attenuates cardiac ischemia-reperfusion injury in pre-diabetic rats. Biochem Pharmacol 182:114295. https://doi.org/10.1016/j.bcp.2020.114295

    Article  CAS  Google Scholar 

  44. Thonusin C, Apaijai N, Jaiwongkam T, Kerdphoo S, Arunsak B, Amput P, Palee S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2019) The comparative effects of high dose atorvastatin and proprotein convertase subtilisin/kexin type 9 inhibitor on the mitochondria of oxidative muscle fibers in obese-insulin resistant female rats. Toxicol Appl Pharmacol 382:114741. https://doi.org/10.1016/j.taap.2019.114741

    Article  CAS  Google Scholar 

  45. Khuanjing T, Ongnok B, Maneechote C, Siri-Angkul N, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N (2021) Acetylcholinesterase inhibitor ameliorates doxorubicin-induced cardiotoxicity through reducing RIP1-mediated necroptosis. Pharmacol Res 173:105882. https://doi.org/10.1016/j.phrs.2021.105882

    Article  CAS  Google Scholar 

  46. Kangwan N, Pratchayasakul W, Kongkaew A, Pintha K, Chattipakorn N, Chattipakorn SC (2021) Perilla seed oil alleviates gut dysbiosis, intestinal inflammation and metabolic disturbance in obese-insulin-resistant rats. Nutrients. https://doi.org/10.3390/nu13093141

    Article  Google Scholar 

  47. Benjanuwattra J, Apaijai N, Chunchai T, Kerdphoo S, Jaiwongkam T, Arunsak B, Wongsuchai S, Chattipakorn N, Chattipakorn SC (2020) Metformin preferentially provides neuroprotection following cardiac ischemia/reperfusion in non-diabetic rats. Biochim Biophys Acta Mol Basis Dis 1866:165893. https://doi.org/10.1016/j.bbadis.2020.165893

    Article  CAS  Google Scholar 

  48. Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K (2022) Acetylcholine exerts cytoprotection against hypoxia/reoxygenation-induced apoptosis, autophagy and mitochondrial impairment through both muscarinic and nicotinic receptors. Apoptosis. https://doi.org/10.1007/s10495-022-01715-2

    Article  Google Scholar 

  49. Zidan AA, El-Ashmawy NE, Khedr EG, Ebeid EM, Salem ML, Mosalam EM (2018) Loading of doxorubicin and thymoquinone with F2 gel nanofibers improves the antitumor activity and ameliorates doxorubicin-associated nephrotoxicity. Life Sci 207:461–470. https://doi.org/10.1016/j.lfs.2018.06.008

    Article  CAS  Google Scholar 

  50. Shin S, Choi JW, Moon H, Lee CY, Park JH, Lee J, Seo HH, Han G, Lim S, Lee S, Kim SW, Hwang KC (2019) Simultaneous suppression of multiple programmed cell death pathways by miRNA-105 in cardiac ischemic injury. Mol Therapy Nucleic Acids 14:438–449. https://doi.org/10.1016/j.omtn.2018.12.015

    Article  CAS  Google Scholar 

  51. Chen M, Li X, Yang H, Tang J, Zhou S (2020) Hype or hope: Vagus nerve stimulation against acute myocardial ischemia-reperfusion injury. Trends Cardiovasc Med 30:481–488. https://doi.org/10.1016/j.tcm.2019.10.011

    Article  Google Scholar 

  52. Sant’Anna LB, Couceiro SLM, Ferreira EA, Sant’Anna MB, Cardoso PR, Mesquita ET, Sant’Anna GM, Sant’Anna FM (2021) Vagal neuromodulation in chronic heart failure with reduced ejection fraction: a systematic review and meta-analysis. Front Cardiovasc Med 8:766676. https://doi.org/10.3389/fcvm.2021.766676

    Article  CAS  Google Scholar 

  53. Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K (2018) Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol 113:22. https://doi.org/10.1007/s00395-018-0683-0

    Article  CAS  Google Scholar 

  54. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124. https://doi.org/10.1161/01.cir.0000105721.71640.da

    Article  Google Scholar 

  55. Nearing BD, Anand IS, Libbus I, Dicarlo LA, Kenknight BH, Verrier RL (2021) Vagus nerve stimulation provides multiyear improvements in autonomic function and cardiac electrical stability in the ANTHEM-HF study. J Cardiac Fail 27:208–216. https://doi.org/10.1016/j.cardfail.2020.10.003

    Article  Google Scholar 

  56. Schwach V, Slaats RH, Passier R (2020) Human pluripotent stem cell-derived cardiomyocytes for assessment of anticancer drug-induced cardiotoxicity. Front Cardiovasc Med 7:50. https://doi.org/10.3389/fcvm.2020.00050

    Article  CAS  Google Scholar 

  57. Benjanuwattra J, Siri-Angkul N, Chattipakorn SC, Chattipakorn N (2020) Doxorubicin and its proarrhythmic effects: a comprehensive review of the evidence from experimental and clinical studies. Pharmacol Res 151:104542. https://doi.org/10.1016/j.phrs.2019.104542

    Article  CAS  Google Scholar 

  58. Tan R, Cong T, Xu G, Hao Z, Liao J, Xie Y, Lin Y, Yang X, Li Q, Liu Y, Xia YL (2022) Anthracycline-induced atrial structural and electrical remodeling characterizes early cardiotoxicity and contributes to atrial conductive instability and dysfunction. Antioxid Redox Signal. https://doi.org/10.1089/ars.2021.0002

    Article  Google Scholar 

  59. Mavropoulos SA, Khan NS, Levy ACJ, Faliks BT, Sison CP, Pavlov VA, Zhang Y, Ojamaa K (2017) Nicotinic acetylcholine receptor-mediated protection of the rat heart exposed to ischemia reperfusion. Mol Med 23:120–133. https://doi.org/10.2119/molmed.2017.00091

    Article  CAS  Google Scholar 

  60. Wang Z, Shi H, Wang H (2004) Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 142:395–408. https://doi.org/10.1038/sj.bjp.0705787

    Article  CAS  Google Scholar 

  61. Potočnik N, Perše M, Cerar A, Injac R, Finderle Ž (2017) Cardiac autonomic modulation induced by doxorubicin in a rodent model of colorectal cancer and the influence of fullerenol pretreatment. PLoS ONE 12:e0181632. https://doi.org/10.1371/journal.pone.0181632

    Article  CAS  Google Scholar 

  62. Marín-García J, Akhmedov AT (2016) Mitochondrial dynamics and cell death in heart failure. Heart Fail Rev 21:123–136. https://doi.org/10.1007/s10741-016-9530-2

    Article  CAS  Google Scholar 

  63. Xue RQ, Sun L, Yu XJ, Li DL, Zang WJ (2017) Vagal nerve stimulation improves mitochondrial dynamics via an M(3) receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med 21:58–71. https://doi.org/10.1111/jcmm.12938

    Article  CAS  Google Scholar 

  64. Tait SW, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harbor Perspect Biol. https://doi.org/10.1101/cshperspect.a008706

    Article  Google Scholar 

  65. Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26:605–616. https://doi.org/10.1038/s41418-018-0252-y

    Article  CAS  Google Scholar 

  66. Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2018) The role of autophagy in the heart. Annu Rev Physiol 80:1–26. https://doi.org/10.1146/annurev-physiol-021317-121427

    Article  CAS  Google Scholar 

  67. Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V, Schneider JW, Gillette TG, Hill JA (2016) Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation 133:1668–1687. https://doi.org/10.1161/circulationaha.115.017443

    Article  CAS  Google Scholar 

  68. Hou Z, Zhou Y, Yang H, Liu Y, Mao X, Qin X, Li X, Zhang X, Hu Y (2018) Alpha7 nicotinic acetylcholine receptor activation protects against myocardial reperfusion injury through modulation of autophagy. Biochem Biophys Res Commun 500:357–364. https://doi.org/10.1016/j.bbrc.2018.04.077

    Article  CAS  Google Scholar 

  69. Zhao M, Sun L, Yu XJ, Miao Y, Liu JJ, Wang H, Ren J, Zang WJ (2013) Acetylcholine mediates AMPK-dependent autophagic cytoprotection in H9c2 cells during hypoxia/reoxygenation injury. Cell Physiol Biochem 32:601–613. https://doi.org/10.1159/000354464

    Article  CAS  Google Scholar 

  70. Kostin S, Pool L, Elsässer A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn WP, Schaper J (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724. https://doi.org/10.1161/01.res.0000067471.95890.5c

    Article  CAS  Google Scholar 

  71. Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, Schiffmann LM, Stair N, Stocks H, Seeger JM, Lamkanfi M, Krönke M, Pasparakis M, Kashkar H (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575:683–687. https://doi.org/10.1038/s41586-019-1770-6

    Article  CAS  Google Scholar 

  72. Zhang L, Feng Q, Wang T (2018) Necrostatin-1 protects against paraquat-induced cardiac contractile dysfunction via RIP1-RIP3-MLKL-dependent necroptosis pathway. Cardiovasc Toxicol 18:346–355. https://doi.org/10.1007/s12012-017-9441-z

    Article  CAS  Google Scholar 

  73. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882. https://doi.org/10.1016/j.cell.2010.02.029

    Article  CAS  Google Scholar 

  74. Caravaca AS, Gallina AL, Tarnawski L, Tracey KJ, Pavlov VA, Levine YA, Olofsson PS (2019) An effective method for acute vagus nerve stimulation in experimental inflammation. Front Neurosci 13:877. https://doi.org/10.3389/fnins.2019.00877

    Article  Google Scholar 

  75. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9:125–134

    CAS  Google Scholar 

  76. Li S, Zhang X (2021) Iron in cardiovascular disease: challenges and potentials. Front Cardiovasc Med 8:707138. https://doi.org/10.3389/fcvm.2021.707138

    Article  CAS  Google Scholar 

  77. Shortt J, Johnstone RW (2012) Oncogenes in cell survival and cell death. Cold Spring Harbor Perspect Biol. https://doi.org/10.1101/cshperspect.a009829

    Article  Google Scholar 

  78. (!!! INVALID CITATION !!! [66]). DOI.

  79. Pei Z, Hu J, Bai Q, Liu B, Cheng D, Liu H, Na R, Yu Q (2018) Thymoquinone protects against cardiac damage from doxorubicin-induced heart failure in Sprague-Dawley rats. RSC Adv 8:14633–14639. https://doi.org/10.1039/c8ra00975a

    Article  CAS  Google Scholar 

  80. Shimizu M, Ohwada W, Kouzu H, Sato T, Osanami A, Ogawa T, Ino S, Toda Y, Kuno A, Tanno M, Yano T (2022) Nuclear accumulation of MLKL induces necroptosis in cardiomyocytes: potential implication in Doxorubicin-induced cardiotoxicity. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac544.2926

    Article  Google Scholar 

  81. Smuder AJ, Kavazis AN, Min K, Powers SK (2013) Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. J Appl Physiol 115:176–185. https://doi.org/10.1152/japplphysiol.00924.2012

    Article  CAS  Google Scholar 

  82. Zhang H, Wang Z, Liu Z, Du K, Lu X (2021) Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1. Front Cardiovasc Med 8:685434. https://doi.org/10.3389/fcvm.2021.685434

    Article  CAS  Google Scholar 

  83. Zhang L, Fan C, Jiao HC, Zhang Q, Jiang YH, Cui J, Liu Y, Jiang YH, Zhang J, Yang MQ, Li Y, Xue YT (2022) Calycosin alleviates doxorubicin-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation. Oxid Med Cell Longev 2022:1733834. https://doi.org/10.1155/2022/1733834

    Article  CAS  Google Scholar 

  84. Babaei H, Razmaraii N, Assadnassab G, Mohajjel Nayebi A, Azarmi Y, Mohammadnejad D, Azami A (2020) Ultrastructural and echocardiographic assessment of chronic doxorubicin-induced cardiotoxicity in rats. Arch Razi Inst 75:55–62. https://doi.org/10.22092/ari.2019.116862.1177

    Article  CAS  Google Scholar 

  85. Hou K, Shen J, Yan J, Zhai C, Zhang J, Pan JA, Zhang Y, Jiang Y, Wang Y, Lin RZ, Cong H, Gao S, Zong WX (2021) Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine 69:103456. https://doi.org/10.1016/j.ebiom.2021.103456

    Article  CAS  Google Scholar 

  86. Dhingra R, Margulets V, Chowdhury SR, Thliveris J, Jassal D, Fernyhough P, Dorn GW 2nd, Kirshenbaum LA (2014) Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc Natl Acad Sci USA 111:E5537-5544. https://doi.org/10.1073/pnas.1414665111

    Article  CAS  Google Scholar 

  87. Abi-Gerges N, Miller PE, Ghetti A (2020) Human heart cardiomyocytes in drug discovery and research: new opportunities in translational sciences. Curr Pharm Biotechnol 21:787–806. https://doi.org/10.2174/1389201021666191210142023

    Article  CAS  Google Scholar 

  88. Leone M, Engel FB (2021) Isolation, culture, and live-cell imaging of primary rat cardiomyocytes. Methods Mol Biol 2158:109–124. https://doi.org/10.1007/978-1-0716-0668-1_9

    Article  CAS  Google Scholar 

  89. Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S (2022) Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 7:254. https://doi.org/10.1038/s41392-022-01044-5

    Article  CAS  Google Scholar 

  90. Branco AF, Pereira SP, Gonzalez S, Gusev O, Rizvanov AA, Oliveira PJ (2015) Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS ONE 10:e0129303. https://doi.org/10.1371/journal.pone.0129303

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand (NC), the Senior Research Scholar grant from the National Research Council of Thailand (SCC), Thailand Research Fund-Royal Golden Jubilee Program PHD/0105/2561 (NP and NC), and the Chiang Mai University Center of Excellence Award (NC).

Author information

Authors and Affiliations

Authors

Contributions

SCC and NC designed the experiments. NP, BO, TK, AA, CM, NA, TC, BA, SK, SJ conducted the experiments. NP, SCC, and NC analyzed the data, wrote the manuscript, and finalized the manuscript. All authors reviewed and provided critical comments on the manuscript. NP and NC are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Nipon Chattipakorn.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathumsap, N., Ongnok, B., Khuanjing, T. et al. Vagus nerve stimulation exerts cardioprotection against doxorubicin-induced cardiotoxicity through inhibition of programmed cell death pathways. Cell. Mol. Life Sci. 80, 21 (2023). https://doi.org/10.1007/s00018-022-04678-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04678-4

Keywords

Navigation