Skip to main content
Log in

CHIP induces ubiquitination and degradation of HMGB1 to regulate glycolysis in ovarian endometriosis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Correction to this article was published on 17 March 2023

This article has been updated

Abstract

Ovarian endometriosis is a common gynecological condition that can cause infertility in women of childbearing age. However, the pathogenesis is still unknown. We demonstrate that the carboxyl terminus of Hsc70-interacting protein (CHIP) is a negative regulator in the development of endometriosis and reduces HMGB1 expression in endometriotic cells. Meanwhile, CHIP interacts with HMGB1 and promotes its ubiquitinated degradation, thereby inhibiting aerobic glycolysis and the progression of endometriosis. Furthermore, the CHIP agonist YL-109 effectively suppresses the growth of ectopic endometrium in endometriosis mouse model, which could be a potential therapeutic approach for endometriosis. In conclusion, our data suggest that CHIP may inhibit the development of endometriosis by suppressing the HMGB1-related glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Change history

References

  1. Burney RO, Giudice LC (2012) Pathogenesis and pathophysiology of endometriosis. Fertil Steril 98(3):511–519. https://doi.org/10.1016/j.fertnstert.2012.06.029

    Article  CAS  PubMed  Google Scholar 

  2. Busacca M, Vignali M (2003) Ovarian endometriosis: from pathogenesis to surgical treatment. Curr Opin Obstet Gynecol 15(4):321–326. https://doi.org/10.1097/01.gco.0000084247.09900.4f

    Article  PubMed  Google Scholar 

  3. Zondervan KT, Becker CM, Missmer SA (2020) Endometriosis. N Engl J Med 382(13):1244–1256. https://doi.org/10.1056/NEJMra1810764

    Article  CAS  PubMed  Google Scholar 

  4. Swiersz LM (2002) Role of endometriosis in cancer and tumor development. Ann N Y Acad Sci 955:281–292. https://doi.org/10.1111/j.1749-6632.2002.tb02788.x (discussion 93–5, 396–406)

    Article  PubMed  Google Scholar 

  5. Qi XC, Zhang YX, Ji H, Wu XD, Wang FX, Xie MX et al (2014) Knockdown of prohibitin expression promotes glucose metabolism in eutopic endometrial stromal cells from women with endometriosis. Reprod Biomed Online 29(6):761–770. https://doi.org/10.1016/j.rbmo.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Nicholes K, Shih IM (2020) The origin and pathogenesis of endometriosis. Annu Rev Pathol 15:71–95. https://doi.org/10.1146/annurev-pathmechdis-012419-032654

    Article  CAS  PubMed  Google Scholar 

  7. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. https://doi.org/10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  8. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925. https://doi.org/10.1158/0008-5472.CAN-11-1457

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Xiu J, Yang T, Ren C, Yu Z (2021) HSF1 promotes endometriosis development and glycolysis by up-regulating PFKFB3 expression. Reprod Biol Endocrinol 19(1):86. https://doi.org/10.1186/s12958-021-00770-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiong Y, Liu Y, Xiong W, Zhang L, Liu H, Du Y et al (2016) Hypoxia-inducible factor 1alpha-induced epithelial-mesenchymal transition of endometrial epithelial cells may contribute to the development of endometriosis. Hum Reprod 31(6):1327–1338. https://doi.org/10.1093/humrep/dew081

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Xiong W, Li N, Liu H, He H, Du Y et al (2017) Estrogen stabilizes hypoxia-inducible factor 1alpha through G protein-coupled estrogen receptor 1 in eutopic endometrium of endometriosis. Fertil Steril 107(2):439–447. https://doi.org/10.1016/j.fertnstert.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Xu J, Li J, Yu Z, Rao H, Wang S, Lan H (2017) HMGB1 promotes HLF-1 proliferation and ECM production through activating HIF1-alpha-regulated aerobic glycolysis. Pulm Pharmacol Ther 45:136–141. https://doi.org/10.1016/j.pupt.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  13. Chen R, Zhu S, Fan XG, Wang H, Lotze MT, Zeh HJ 3rd et al (2018) High mobility group protein B1 controls liver cancer initiation through yes-associated protein-dependent aerobic glycolysis. Hepatology 67(5):1823–1841. https://doi.org/10.1002/hep.29663

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda M, Negishi Y, Akira S, Morita R, Takeshita T (2021) Inflammation related to high-mobility group box-1 in endometrial ovarian cyst. J Reprod Immunol 145:103292. https://doi.org/10.1016/j.jri.2021.103292

    Article  CAS  PubMed  Google Scholar 

  15. Huang J, Chen X, Lv Y (2021) HMGB1 mediated inflammation and autophagy contribute to endometriosis. Front Endocrinol (Lausanne) 12:616696. https://doi.org/10.3389/fendo.2021.616696

    Article  PubMed  Google Scholar 

  16. Su W, Cui H, Wu D, Yu J, Ma L, Zhang X et al (2021) Suppression of TLR4-MyD88 signaling pathway attenuated chronic mechanical pain in a rat model of endometriosis. J Neuroinflamm 18(1):65. https://doi.org/10.1186/s12974-020-02066-y

    Article  CAS  Google Scholar 

  17. Yu S, Qian L, Ma J (2022) Genetic alterations, RNA expression profiling and DNA methylation of HMGB1 in malignancies. J Cell Mol Med 26(15):4322–4332. https://doi.org/10.1111/jcmm.17454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oh YJ, Youn JH, Ji Y, Lee SE, Lim KJ, Choi JE et al (2009) HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J Immunol 182(9):5800–5809. https://doi.org/10.4049/jimmunol.0801873

    Article  CAS  PubMed  Google Scholar 

  19. Lu B, Antoine DJ, Kwan K, Lundback P, Wahamaa H, Schierbeck H et al (2014) JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci USA 111(8):3068–3073. https://doi.org/10.1073/pnas.1316925111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Xie J, Li X, Fang J (2020) Poly (ADP-ribosylation) of HMGB1 facilitates its acetylation and promotes HMGB1 translocation-associated chemotherapy-induced autophagy in leukaemia cells. Oncol Lett 19(1):368–378. https://doi.org/10.3892/ol.2019.11116

    Article  CAS  PubMed  Google Scholar 

  21. Kim YH, Kwak MS, Park JB, Lee SA, Choi JE, Cho HS et al (2016) N-linked glycosylation plays a crucial role in the secretion of HMGB1. J Cell Sci 129(1):29–38. https://doi.org/10.1242/jcs.176412

    Article  CAS  PubMed  Google Scholar 

  22. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33(3):275–286. https://doi.org/10.1016/j.molcel.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  23. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19(6):4535–4545. https://doi.org/10.1128/mcb.19.6.4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Su CH, Wang CY, Lan KH, Li CP, Chao Y, Lin HC et al (2011) Akt phosphorylation at Thr308 and Ser473 is required for CHIP-mediated ubiquitination of the kinase. Cell Signal 23(11):1824–1830. https://doi.org/10.1016/j.cellsig.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  25. Liu F, Zhou J, Zhou P, Chen W, Guo F (2015) The ubiquitin ligase CHIP inactivates NF-kappaB signaling and impairs the ability of migration and invasion in gastric cancer cells. Int J Oncol 46(5):2096–2106. https://doi.org/10.3892/ijo.2015.2893

    Article  CAS  PubMed  Google Scholar 

  26. Yang T, Ren C, Lu C, Qiao P, Han X, Wang L et al (2019) Phosphorylation of HSF1 by PIM2 induces PD-L1 expression and promotes tumor growth in breast cancer. Cancer Res 79(20):5233–5244. https://doi.org/10.1158/0008-5472.CAN-19-0063

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Q, Ding D, Liu X, Guo SW (2015) Activated platelets induce estrogen receptor beta expression in endometriotic stromal cells. Gynecol Obstet Investig 80(3):187–192. https://doi.org/10.1159/000377629

    Article  CAS  Google Scholar 

  28. Ren C, Yang T, Qiao P, Wang L, Han X, Lv S et al (2018) PIM2 interacts with tristetraprolin and promotes breast cancer tumorigenesis. Mol Oncol 12(5):690–704. https://doi.org/10.1002/1878-0261.12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang P, Li C, Li H, Yuan L, Dai H, Peng Z et al (2020) Ubiquitin ligase CHIP regulates OTUD3 stability and suppresses tumour metastasis in lung cancer. Cell Death Differ 27(11):3177–3195. https://doi.org/10.1038/s41418-020-0571-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Wang X, Wan L, Liu X, Yu H, Zhang D et al (2020) TIPE2 inhibits the migration and invasion of endometrial cells by targeting beta-catenin to reverse epithelial-mesenchymal transition. Hum Reprod 35(6):1377–1390. https://doi.org/10.1093/humrep/deaa062

    Article  CAS  PubMed  Google Scholar 

  31. Han X, Ren C, Lu C, Qiao P, Yang T, Yu Z (2022) Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ. https://doi.org/10.1038/s41418-022-00971-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ren C, Han X, Lu C, Yang T, Qiao P, Sun Y et al (2022) Ubiquitination of NF-kappaB p65 by FBXW2 suppresses breast cancer stemness, tumorigenesis, and paclitaxel resistance. Cell Death Differ 29(2):381–392. https://doi.org/10.1038/s41418-021-00862-4

    Article  CAS  PubMed  Google Scholar 

  33. Yu Z, Huang L, Qiao P, Jiang A, Wang L, Yang T et al (2016) PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells. Biochem Biophys Res Commun 473(4):953–958. https://doi.org/10.1016/j.bbrc.2016.03.160

    Article  CAS  PubMed  Google Scholar 

  34. Yang T, Ren C, Qiao P, Han X, Wang L, Lv S et al (2018) PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene 37(45):5997–6009. https://doi.org/10.1038/s41388-018-0386-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu C, Ren C, Yang T, Sun Y, Qiao P, Wang D et al (2020) A noncanonical role of fructose-1, 6-bisphosphatase 1 is essential for inhibition of Notch1 in breast cancer. Mol Cancer Res 18(5):787–796. https://doi.org/10.1158/1541-7786.MCR-19-0842

    Article  CAS  PubMed  Google Scholar 

  36. Lu C, Ren C, Yang T, Sun Y, Qiao P, Han X et al (2020) Fructose-1, 6-bisphosphatase 1 interacts with NF-kappaB p65 to regulate breast tumorigenesis via PIM2 induced phosphorylation. Theranostics 10(19):8606–8618. https://doi.org/10.7150/thno.46861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang S, Xiao F, Guo SW, Zhang T (2022) Tetramethylpyrazine retards the progression and fibrogenesis of endometriosis. Reprod Sci 29(4):1170–1187. https://doi.org/10.1007/s43032-021-00813-x

    Article  CAS  PubMed  Google Scholar 

  38. Hiyoshi H, Goto N, Tsuchiya M, Iida K, Nakajima Y, Hirata N et al (2014) 2-(4-Hydroxy-3-methoxyphenyl)-benzothiazole suppresses tumor progression and metastatic potential of breast cancer cells by inducing ubiquitin ligase CHIP. Sci Rep 4:7095. https://doi.org/10.1038/srep07095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Ren F, Wang Y, Feng Y, Wang D, Jia B et al (2014) CHIP/Stub1 functions as a tumor suppressor and represses NF-κB-mediated signaling in colorectal cancer. Carcinogenesis 35(5):983–991. https://doi.org/10.1093/carcin/bgt393

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Zhou Y, Zhang P, Li X, Duan C, Zhang C (2021) CHIP-mediated CIB1 ubiquitination regulated epithelial-mesenchymal transition and tumor metastasis in lung adenocarcinoma. Cell Death Differ 28(3):1026–1040. https://doi.org/10.1038/s41418-020-00635-5

    Article  CAS  PubMed  Google Scholar 

  41. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J et al (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3(1):93–96. https://doi.org/10.1038/35050618

    Article  CAS  PubMed  Google Scholar 

  42. Wang T, Wang W, Wang Q, Xie R, Landay A, Chen D (2020) The E3 ubiquitin ligase CHIP in normal cell function and in disease conditions. Ann N Y Acad Sci 1460(1):3–10. https://doi.org/10.1111/nyas.14206

    Article  CAS  PubMed  Google Scholar 

  43. Chen LJ, Hu B, Han ZQ, Zhu JH, Fan X, Chen XX et al (2020) BAG2-mediated inhibition of CHIP expression and overexpression of MDM2 contribute to the initiation of endometriosis by modulating estrogen receptor status. Front Cell Dev Biol 8:554190. https://doi.org/10.3389/fcell.2020.554190

    Article  PubMed  Google Scholar 

  44. Apriamashvili G, Vredevoogd DW, Krijgsman O, Bleijerveld OB, Ligtenberg MA, de Bruijn B et al (2022) Ubiquitin ligase STUB1 destabilizes IFNgamma-receptor complex to suppress tumor IFNgamma signaling. Nat Commun 13(1):1923. https://doi.org/10.1038/s41467-022-29442-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaeger-Lansky A, Schmidthaler K, Kuessel L, Gstottner M, Waidhofer-Sollner P, Zlabinger GJ et al (2018) Local and systemic levels of cytokines and danger signals in endometriosis-affected women. J Reprod Immunol 130:7–10. https://doi.org/10.1016/j.jri.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  46. Shimizu K, Kamada Y, Sakamoto A, Matsuda M, Nakatsuka M, Hiramatsu Y (2017) High expression of high-mobility group box 1 in menstrual blood: implications for endometriosis. Reprod Sci 24(11):1532–1537. https://doi.org/10.1177/1933719117692042

    Article  CAS  PubMed  Google Scholar 

  47. Zhang HT, Zeng LF, He QY, Tao WA, Zha ZG, Hu CD (1863) (2016) The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5. Biochim Biophys Acta 2:335–346. https://doi.org/10.1016/j.bbamcr.2015.12.001

    Article  CAS  Google Scholar 

  48. Ullah K, Chen S, Lu J, Wang X, Liu Q, Zhang Y et al (2020) The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J Biol Chem 295(14):4696–4708. https://doi.org/10.1074/jbc.RA119.011280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shao M, Li L, Song S, Wu W, Peng P, Yang C et al (2016) E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation. Cell Signal 28(10):1530–1536. https://doi.org/10.1016/j.cellsig.2016.07.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Sun-wei Guo (Fudan University, Shanghai) for generously providing the cell line.

Funding

This research was supported by the National Natural Science Foundation of China (nos. 81602301 and 81972489), Natural Science Foundation of Shandong Province (no. ZR2021MH235), Shandong Province College Science and Technology Plan Project (no. J17KA254), and Clinical Research Center of Affiliated Hospital of Weifang Medical University (no. 2021wyfylcyj01).

Author information

Authors and Affiliations

Authors

Contributions

TY, ZY, YS, and QW designed the study; YS, MW, and FS performed the experiments; PQ and AJ reviewed the data and advised the study; CR, ZY, and TY supervised the study; YS and QW wrote the manuscript.

Corresponding authors

Correspondence to Chune Ren, Zhenhai Yu or Tingting Yang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2022_4637_MOESM1_ESM.tif

Supplementary Fig. 1. CHIP suppresses cell proliferation and invasion in vitro. A-B Immunoblot analysis revealed overexpression and knockdown levels of CHIP in EESC cell. Western blot was quantified by Image J software and statistics were normalized to β-actin. C-D Effect of CHIP overexpression or knockdown on the proliferation of EESC cells. E Overexpression of CHIP in EESC cells resulted in a significant decrease of colony formation. Knockdown of CHIP in EESC cells resulted in a significant increase of colony formation. F Overexpression of CHIP in EESC cells resulted in diminished cell invasion. Knockdown of CHIP in EESC cells resulted in enhanced cell invasion. G CHIP overexpression suppressed endometriotic cells migration. CHIP knockdown enhanced endometriotic cells migration. H-I The effects on glucose consumption and lactate production after overexpression or knockdown of CHIP are indicated, respectively. (All data represent mean ± SEM. The Student’s t-test was used for data analysis. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.) (TIF 4192 KB)

18_2022_4637_MOESM2_ESM.tif

Supplementary Fig. 2. Co-localization of CHIP and HMGB1 in cells and tissues. A Representative images of in situ PLA showing the interaction between CHIP and HMGB1 in 11Z cells (scale bar, 20 µm). B Confocal immunofluorescence microscopy was performed to analyze localization of CHIP (red) and HMGB1 (green) in human and mouse ectopic endometrium (scale bar, 20 µm). (TIF 3589 KB)

18_2022_4637_MOESM3_ESM.tif

Supplementary Fig. 3. CHIP decreases the protein level of HMGB1. A-B 11Z or EESC cells were treated with YL-109 (10μmo/L). Immunoblotting experiments were performed. C 11Z cells with overexpression of Flag-CHIP were treated with CHX for indicated time. Immunoblotting experiments were performed. D 11Z cells with knockdown of CHIP were treated with CHX for indicated time. Immunoblotting experiments were performed. (Representative western blot was quantified by Image J software and statistics were normalized to β-actin. All data represent mean ± SEM. Statistical significance was analyzed with Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.) (TIF 1174 KB)

Supplementary file4 (DOC 53 KB)

Supplementary file5 (DOC 19926 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, Q., Wang, M. et al. CHIP induces ubiquitination and degradation of HMGB1 to regulate glycolysis in ovarian endometriosis. Cell. Mol. Life Sci. 80, 13 (2023). https://doi.org/10.1007/s00018-022-04637-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04637-z

Keywords

Navigation