Skip to main content

Advertisement

Log in

Functional diversity: update of the posttranslational modification of Epstein–Barr virus coding proteins

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Epstein–Barr virus (EBV), a human oncogenic herpesvirus with a typical life cycle consisting of latent phase and lytic phase, is associated with many human diseases. EBV can express a variety of proteins that enable the virus to affect host cell processes and evade host immunity. Additionally, these proteins provide a basis for the maintenance of viral infection, contribute to the formation of tumors, and influence the occurrence and development of related diseases. Posttranslational modifications (PTMs) are chemical modifications of proteins after translation and are very important to guarantee the proper biological functions of these proteins. Studies in the past have intensely investigated PTMs of EBV-encoded proteins. EBV regulates the progression of the latent phase and lytic phase by affecting the PTMs of its encoded proteins, which are critical for the development of EBV-associated human diseases. In this review, we summarize the PTMs of EBV-encoded proteins that have been discovered and studied thus far with focus on their effects on the viral life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This is a theoretical study and no experimental data.

References

  1. Epstein MA, Henle G, Achong BG et al (1965) Morphological and biological studies on a virus in cultured lymphoblasts from burkitt’s lymphoma. J Exp Med 121:761–770. https://doi.org/10.1084/jem.121.5.761

    Article  CAS  Google Scholar 

  2. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 283:702–703. https://doi.org/10.1016/s0140-6736(64)91524-7

    Article  Google Scholar 

  3. Feederle R, Klinke O, Kutikhin A et al (2015) Epstein–Barr virus: from the detection of sequence polymorphisms to the recognition of viral types. Springer International Publishing, Berlin

    Google Scholar 

  4. Masud HMA, Watanabe T, Yoshida M et al (2017) Epstein–Barr virus BKRF4 gene product is required for efficient progeny production. J Virol 91:e00975-e01917. https://doi.org/10.1128/JVI.00975-17

    Article  Google Scholar 

  5. Houen G, Trier NH (2020) Epstein–Barr virus and systemic autoimmune diseases. Front Immunol 11:587380. https://doi.org/10.3389/fimmu.2020.587380

    Article  CAS  Google Scholar 

  6. Chang PC, Campbell M, Robertson ES (2016) Human oncogenic herpesvirus and post-translational modifications—phosphorylation and SUMOylation. Front Microbiol 7:962. https://doi.org/10.3389/fmicb.2016.00962

    Article  Google Scholar 

  7. Wang Y, Banerjee S, Ding L et al (2017) The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virol Sin 32:357–368. https://doi.org/10.1007/s12250-017-4081-9

    Article  CAS  Google Scholar 

  8. Zhang Y, Wang Y, Zhu C et al (2020) Role of SUMOylation in human oncogenic herpesvirus infection. Virus Res 283:197962. https://doi.org/10.1016/j.virusres.2020.197962

    Article  CAS  Google Scholar 

  9. Pei Y, Robertson ES (2022) The central role of the ubiquitin-proteasome system in EBV-mediated oncogenesis. Cancers. https://doi.org/10.3390/cancers14030611

    Article  Google Scholar 

  10. Bagdonaite I, Nordén R, Joshi HJ et al (2016) Global mapping of O-glycosylation of varicella zoster virus, human cytomegalovirus, and Epstein–Barr virus. J Biol Chem 291:12014–12028. https://doi.org/10.1074/jbc.M116.721746

    Article  CAS  Google Scholar 

  11. Liu ZX, Cai YD, Guo XJ et al (2015) Post-translational modification (PTM) bioinformatics in China: progresses and perspectives. Hereditas 37:621–634. https://doi.org/10.16288/j.yczz.15-003

    Article  CAS  Google Scholar 

  12. Smith RF, Smith TF (1989) Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein–Barr virus. J Virol 63:450–455. https://doi.org/10.1128/jvi.63.1.450-455.1989

    Article  CAS  Google Scholar 

  13. Kato K, Kawaguchi Y, Tanaka M et al (2001) Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1delta (EF-1delta): EF-1delta is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J Gen Virol 82:1457–1463. https://doi.org/10.1099/0022-1317-82-6-1457

    Article  CAS  Google Scholar 

  14. Gershburg E, Marschall M, Hong K et al (2004) Expression and localization of the Epstein–Barr virus-encoded protein kinase. J Virol 78:12140–12146. https://doi.org/10.1128/JVI.78.22.12140-12146.2004

    Article  CAS  Google Scholar 

  15. Asai R, Kato A, Kato K et al (2006) Epstein–Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. J Virol 80:5125–5134. https://doi.org/10.1128/JVI.02674-05

    Article  CAS  Google Scholar 

  16. Chen MR, Chang SJ, Huang H et al (2000) A protein kinase activity associated with Epstein–Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74:3093–3104. https://doi.org/10.1128/jvi.74.7.3093-3104.2000

    Article  CAS  Google Scholar 

  17. Kitamura R, Sekimoto T, Ito S et al (2006) Nuclear import of Epstein–Barr virus nuclear antigen 1 mediated by NPI-1 (Importin alpha5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential. J Virol 80:1979–1991. https://doi.org/10.1128/JVI.80.4.1979-1991.2006

    Article  CAS  Google Scholar 

  18. Reedman BM, Klein G (1973) Cellular localization of an Epstein–Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer 11:499–520. https://doi.org/10.1002/ijc.2910110302

    Article  CAS  Google Scholar 

  19. Yates JL, Warren N, Sugden B (1985) Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313:812–815. https://doi.org/10.1038/313812a0

    Article  CAS  Google Scholar 

  20. Shire K, Kapoor P, Jiang K et al (2006) Regulation of the EBNA1 Epstein–Barr virus protein by serine phosphorylation and arginine methylation. J Virol 80:5261–5272. https://doi.org/10.1128/JVI.02682-05

    Article  CAS  Google Scholar 

  21. Hung SC, Kang MS, Kieff E (2001) Maintenance of Epstein–Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci U S A 98:1865–1870. https://doi.org/10.1073/pnas.98.4.1865

    Article  CAS  Google Scholar 

  22. Kanda T, Otter M, Wahl GM (2001) Coupling of mitotic chromosome tethering and replication competence in Epstein–barr virus-based plasmids. Mol Cell Biol 21:3576–3588. https://doi.org/10.1128/mcb.21.10.3576-3588.2001

    Article  CAS  Google Scholar 

  23. Kapoor P, Lavoie BD, Frappier L (2005) EBP2 plays a key role in Epstein–Barr virus mitotic segregation and is regulated by aurora family kinases. Mol Cell Biol 25:4934–4945. https://doi.org/10.1128/mcb.25.12.4934-4945.2005

    Article  CAS  Google Scholar 

  24. Wu H, Ceccarelli DF, Frappier L (2000) The DNA segregation mechanism of Epstein–Barr virus nuclear antigen 1. EMBO Rep 1:140–144. https://doi.org/10.1093/embo-reports/kvd026

    Article  CAS  Google Scholar 

  25. Gahn TA, Sugden B (1995) An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein–Barr virus LMP gene. J Virol 69:2633–2636. https://doi.org/10.1128/jvi.69.4.2633-2636.1995

    Article  CAS  Google Scholar 

  26. Reisman D, Sugden B (1986) trans activation of an Epstein–Barr viral transcriptional enhancer by the Epstein–Barr viral nuclear antigen 1. Mol Cell Biol 6:3838–3846. https://doi.org/10.1128/mcb.6.11.3838-3846.1986

    Article  CAS  Google Scholar 

  27. Saridakis V, Sheng Y, Sarkari F et al (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein–Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18:25–36. https://doi.org/10.1016/j.molcel.2005.02.029

    Article  CAS  Google Scholar 

  28. Sivachandran N, Cao JY, Frappier L (2010) Epstein–Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 84:11113–11123. https://doi.org/10.1128/JVI.01183-10

    Article  CAS  Google Scholar 

  29. Noh KW, Park J, Joo EH et al (2016) ERK2 phosphorylation of EBNA1 serine 383 residue is important for EBNA1-dependent transactivation. Oncotarget 7:25507–25515. https://doi.org/10.18632/oncotarget.8177

    Article  Google Scholar 

  30. Hearing JC, Levine AJ (1985) The Epstein–Barr virus nuclear antigen (BamHI K antigen) is a single-stranded DNA binding phosphoprotein. Virology 145:105–116. https://doi.org/10.1016/0042-6822(85)90205-3

    Article  CAS  Google Scholar 

  31. Nakada R, Hirano H, Matsuura Y (2017) Structural basis for the regulation of nuclear import of Epstein–Barr virus nuclear antigen 1 (EBNA1) by phosphorylation of the nuclear localization signal. Biochem Biophys Res Commun 484:113–117. https://doi.org/10.1016/j.bbrc.2017.01.063

    Article  CAS  Google Scholar 

  32. Kang M-S, Lee EK, Soni V et al (2011) Roscovitine inhibits EBNA1 serine 393 phosphorylation, nuclear localization, transcription, and episome maintenance. J Virol 85:2859–2868. https://doi.org/10.1128/JVI.01628-10

    Article  CAS  Google Scholar 

  33. Cao JY, Shire K, Landry C et al (2014) Identification of a novel protein interaction motif in the regulatory subunit of casein kinase 2. Mol Cell Biol 34:246–258. https://doi.org/10.1128/MCB.00968-13

    Article  CAS  Google Scholar 

  34. Zhu J, Liao G, Shan L et al (2009) Protein array identification of substrates of the Epstein–Barr virus protein kinase BGLF4. J Virol 83:5219–5231. https://doi.org/10.1128/JVI.02378-08

    Article  CAS  Google Scholar 

  35. Peng R, Gordadze AV, Fuentes Pananá EM et al (2000) Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74:379–389. https://doi.org/10.1128/jvi.74.1.379-389.2000

    Article  CAS  Google Scholar 

  36. Grässer FA, Haiss P, Göttel S et al (1991) Biochemical characterization of Epstein–Barr virus nuclear antigen 2A. J Virol 65:3779–3788. https://doi.org/10.1128/JVI.65.7.3779-3788.1991

    Article  Google Scholar 

  37. Grässer FA, Göttel S, Haiss P et al (1992) Phosphorylation of the Epstein–barr virus nuclear antigen 2. Biochem Biophys Res Commun 186:1694–1701. https://doi.org/10.1016/s0006-291x(05)81604-3

    Article  Google Scholar 

  38. Wu DY, Kalpana GV, Goff SP et al (1996) Epstein–Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol 70:6020–6028. https://doi.org/10.1128/JVI.70.9.6020-6028.1996

    Article  CAS  Google Scholar 

  39. Kwiatkowski B, Chen SYJ, Schubach WH (2004) CKII site in Epstein–Barr virus nuclear protein 2 controls binding to hSNF5/Ini1 and is important for growth transformation. J Virol 78:6067–6072. https://doi.org/10.1128/JVI.78.11.6067-6072.2004

    Article  CAS  Google Scholar 

  40. Yue W, Davenport MG, Shackelford J et al (2004) Mitosis-specific hyperphosphorylation of Epstein–Barr virus nuclear antigen 2 suppresses its function. J Virol 78:3542–3552. https://doi.org/10.1128/jvi.78.7.3542-3552.2004

    Article  CAS  Google Scholar 

  41. Yue W, Gershburg E, Pagano JS (2005) Hyperphosphorylation of EBNA2 by Epstein–Barr virus protein kinase suppresses transactivation of the LMP1 promoter. J Virol 79:5880–5885. https://doi.org/10.1128/JVI.79.9.5880-5885.2005

    Article  CAS  Google Scholar 

  42. Yue W, Shackelford J, Pagano JS (2006) cdc2/cyclin B1-dependent phosphorylation of EBNA2 at Ser243 regulates its function in mitosis. J Virol 80:2045–2050. https://doi.org/10.1128/JVI.80.4.2045-2050.2006

    Article  CAS  Google Scholar 

  43. Zhang X, Schuhmachers P, Mourão A et al (2021) PLK1-dependent phosphorylation restrains EBNA2 activity and lymphomagenesis in EBV-infected mice. EMBO Rep 22:e53007–e53007. https://doi.org/10.15252/embr.202153007

    Article  CAS  Google Scholar 

  44. Yokoyama A, Tanaka M, Matsuda G et al (2001) Identification of major phosphorylation sites of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol 75:5119–5128. https://doi.org/10.1128/JVI.75.11.5119-5128.2001

    Article  CAS  Google Scholar 

  45. Kitay MK, Rowe DT (1996) Cell cycle stage-specific phosphorylation of the Epstein–Barr virus immortalization protein EBNA-LP. J Virol 70:7885–7893. https://doi.org/10.1128/JVI.70.11.7885-7893.1996

    Article  CAS  Google Scholar 

  46. Han I, Harada S, Weaver D et al (2001) EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol 75:2475–2481. https://doi.org/10.1128/JVI.75.5.2475-2481.2001

    Article  CAS  Google Scholar 

  47. Kato K, Yokoyama A, Tohya Y et al (2003) Identification of protein kinases responsible for phosphorylation of Epstein–Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol 84:3381–3392. https://doi.org/10.1099/vir.0.19454-0

    Article  CAS  Google Scholar 

  48. Kieser A, Sterz KR (2015) The latent membrane protein 1 (LMP1). Curr Top Microbiol Immunol 391:119–149. https://doi.org/10.1007/978-3-319-22834-1_4

    Article  CAS  Google Scholar 

  49. Baichwal VR, Sugden B (1987) Posttranslational processing of an Epstein–Barr virus-encoded membrane protein expressed in cells transformed by Epstein–Barr virus. J Virol 61:866–875. https://doi.org/10.1128/jvi.61.3.866-875.1987

    Article  CAS  Google Scholar 

  50. Moorthy R, Thorley-Lawson DA (1990) Processing of the Epstein–Barr virus-encoded latent membrane protein p63/LMP. J Virol 64:829–837. https://doi.org/10.1128/jvi.64.2.829-837.1990

    Article  CAS  Google Scholar 

  51. Moorthy RK, Thorley-Lawson DA (1993) Biochemical, genetic, and functional analyses of the phosphorylation sites on the Epstein–Barr virus-encoded oncogenic latent membrane protein LMP-1. J Virol 67:2637–2645. https://doi.org/10.1128/JVI.67.5.2637-2645.1993

    Article  CAS  Google Scholar 

  52. Chien KY, Chang YS, Yu JS et al (2006) Identification of a new in vivo phosphorylation site in the cytoplasmic carboxyl terminus of EBV-LMP1 by tandem mass spectrometry. Biochem Biophys Res Commun 348:47–55. https://doi.org/10.1016/j.bbrc.2006.06.188

    Article  CAS  Google Scholar 

  53. Aviel S, Winberg G, Massucci M et al (2000) Degradation of the Epstein–barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. J Biol Chem 275:23491–23499. https://doi.org/10.1074/jbc.M002052200

    Article  CAS  Google Scholar 

  54. Mancao C, Hammerschmidt W (2007) Epstein–Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 110:3715–3721. https://doi.org/10.1182/blood-2007-05-090142

    Article  CAS  Google Scholar 

  55. Longnecker R, Druker B, Roberts TM et al (1991) An Epstein–Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol 65:3681–3692. https://doi.org/10.1128/JVI.65.7.3681-3692.1991

    Article  CAS  Google Scholar 

  56. Fruehling S, Swart R, Dolwick KM et al (1998) Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein–Barr virus latency. J Virol 72:7796–7806. https://doi.org/10.1128/JVI.72.10.7796-7806.1998

    Article  CAS  Google Scholar 

  57. Burkhardt AL, Brunswick M, Bolen JB et al (1991) Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc Natl Acad Sci U S A 88:7410–7414. https://doi.org/10.1073/pnas.88.16.7410

    Article  CAS  Google Scholar 

  58. Miller CL, Burkhardt AL, Lee JH et al (1995) Integral membrane protein 2 of Epstein–Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2:155–166. https://doi.org/10.1016/s1074-7613(95)80040-9

    Article  CAS  Google Scholar 

  59. Rancan C, Schirrmann L, Hüls C et al (2015) Latent membrane protein LMP2A impairs recognition of EBV-infected cells by CD8+ T cells. PLoS Pathog 11:e1004906–e1004906. https://doi.org/10.1371/journal.ppat.1004906

    Article  CAS  Google Scholar 

  60. Cen O, Longnecker R (2015) Latent membrane protein 2 (LMP2). Curr Top Microbiol Immunol 391:151–180. https://doi.org/10.1007/978-3-319-22834-1_5

    Article  CAS  Google Scholar 

  61. Panousis CG, Rowe DT (1997) Epstein–Barr virus latent membrane protein 2 associates with and is a substrate for mitogen-activated protein kinase. J Virol 71:4752–4760. https://doi.org/10.1128/JVI.71.6.4752-4760.1997

    Article  CAS  Google Scholar 

  62. Daibata M, Humphreys RE, Sairenji T (1992) Phosphorylation of the Epstein–Barr virus BZLF1 immediate-early gene product ZEBRA. Virology 188:916–920. https://doi.org/10.1016/0042-6822(92)90553-2

    Article  CAS  Google Scholar 

  63. Miller G, El‐Guindy A, Countryman J et al (2007) lytic cycle switches of oncogenic human gammaherpesviruses1. In, p 81–109

  64. Baumann M, Mischak H, Dammeier S et al (1998) Activation of the Epstein–Barr virus transcription factor BZLF1 by 12-O-tetradecanoylphorbol-13-acetate-induced phosphorylation. J Virol 72:8105–8114. https://doi.org/10.1128/JVI.72.10.8105-8114.1998

    Article  CAS  Google Scholar 

  65. Francis A, Ragoczy T, Gradoville L et al (1999) Amino acid substitutions reveal distinct functions of serine 186 of the ZEBRA protein in activation of early lytic cycle genes and synergy with the Epstein–Barr virus R transactivator. J Virol 73:4543–4551. https://doi.org/10.1128/JVI.73.6.4543-4551.1999

    Article  CAS  Google Scholar 

  66. Francis AL, Gradoville L, Miller G (1997) Alteration of a single serine in the basic domain of the Epstein–Barr virus ZEBRA protein separates its functions of transcriptional activation and disruption of latency. J Virol 71:3054–3061. https://doi.org/10.1128/JVI.71.4.3054-3061.1997

    Article  CAS  Google Scholar 

  67. Kolman JL, Taylor N, Marshak DR et al (1993) Serine-173 of the Epstein–Barr virus ZEBRA protein is required for DNA binding and is a target for casein kinase II phosphorylation. Proc Natl Acad Sci U S A 90:10115–10119. https://doi.org/10.1073/pnas.90.21.10115

    Article  CAS  Google Scholar 

  68. El-Guindy A, Heston L, Delecluse H-J et al (2007) Phosphoacceptor site S173 in the regulatory domain of Epstein–Barr Virus ZEBRA protein is required for lytic DNA replication but not for activation of viral early genes. J Virol 81:3303–3316. https://doi.org/10.1128/JVI.02445-06

    Article  CAS  Google Scholar 

  69. El-Guindy AS, Miller G (2004) Phosphorylation of Epstein–Barr virus ZEBRA protein at its casein kinase 2 sites mediates its ability to repress activation of a viral lytic cycle late gene by Rta. J Virol 78:7634–7644. https://doi.org/10.1128/JVI.78.14.7634-7644.2004

    Article  CAS  Google Scholar 

  70. El-Guindy AS, Paek SY, Countryman J et al (2006) Identification of constitutive phosphorylation sites on the Epstein–Barr virus ZEBRA protein. J Biol Chem 281:3085–3095. https://doi.org/10.1074/jbc.M506076200

    Article  CAS  Google Scholar 

  71. Asai R, Kato A, Kawaguchi Y (2009) Epstein–Barr virus protein kinase BGLF4 interacts with viral transactivator BZLF1 and regulates its transactivation activity. J Gen Virol 90:1575–1581. https://doi.org/10.1099/vir.0.010462-0

    Article  CAS  Google Scholar 

  72. Yang PW, Chang SS, Tsai CH et al (2008) Effect of phosphorylation on the transactivation activity of Epstein–Barr virus BMRF1, a major target of the viral BGLF4 kinase. J Gen Virol 89:884–895. https://doi.org/10.1099/vir.0.83546-0

    Article  CAS  Google Scholar 

  73. Swaminathan S (2005) Post-transcriptional gene regulation by gamma herpesviruses. J Cell Biochem 95:698–711. https://doi.org/10.1002/jcb.20465

    Article  CAS  Google Scholar 

  74. Cook ID, Shanahan F, Farrell PJ (1994) Epstein–Barr virus SM protein. Virology 205:217–227. https://doi.org/10.1006/viro.1994.1637

    Article  CAS  Google Scholar 

  75. Medina-Palazon C, Gruffat H, Mure F et al (2007) Protein kinase CK2 phosphorylation of EB2 regulates its function in the production of Epstein–Barr virus infectious viral particles. J Virol 81:11850–11860. https://doi.org/10.1128/JVI.01421-07

    Article  CAS  Google Scholar 

  76. Sergeant A, Gruffat H, Manet E (2008) The Epstein–Barr virus (EBV) protein EB is an mRNA export factor essential for virus production. Front Biosci 13:3798–3813. https://doi.org/10.2741/2969

    Article  CAS  Google Scholar 

  77. Gershburg E, Pagano JS (2002) Phosphorylation of the Epstein–Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the L-riboside benzimidazole 1263W94. J Virol 76:998–1003. https://doi.org/10.1128/jvi.76.3.998-1003.2002

    Article  CAS  Google Scholar 

  78. Chen L-W, Hung C-H, Wang S-S et al (2018) Expression and regulation of the BKRF2, BKRF3 and BKRF4 genes of Epstein–Barr virus. Virus Res 256:76–89. https://doi.org/10.1016/j.virusres.2018.08.005

    Article  CAS  Google Scholar 

  79. Hoebe EK, Wille C, Hopmans ES et al (2012) Epstein–Barr virus transcription activator R upregulates BARF1 expression by direct binding to its promoter, independent of methylation. J Virol 86:11322–11332. https://doi.org/10.1128/jvi.01161-12

    Article  CAS  Google Scholar 

  80. Lo AK, Dawson CW, Lung HL et al (2020) The therapeutic potential of targeting BARF1 in EBV-associated malignancies. Cancers. https://doi.org/10.3390/cancers12071940

    Article  Google Scholar 

  81. Hoebe EK, Le Large TY, Greijer AE et al (2013) BamHI-A rightward frame 1, an Epstein–Barr virus-encoded oncogene and immune modulator. Rev Med Virol 23:367–383. https://doi.org/10.1002/rmv.1758

    Article  CAS  Google Scholar 

  82. De Turenne-Tessier M, Ooka T (2007) Post-translational modifications of Epstein Barr virus BARF1 oncogene-encoded polypeptide. J Gen Virol 88:2656–2661. https://doi.org/10.1099/vir.0.83058-0

    Article  CAS  Google Scholar 

  83. Li J, Walsh A, Lam TT et al (2019) A single phosphoacceptor residue in BGLF3 is essential for transcription of Epstein–Barr virus late genes. PLoS Pathog 15:e1007980. https://doi.org/10.1371/journal.ppat.1007980

    Article  CAS  Google Scholar 

  84. Aubry V, Mure F, Mariamé B et al (2014) Epstein–Barr virus late gene transcription depends on the assembly of a virus-specific preinitiation complex. J Virol 88:12825–12838. https://doi.org/10.1128/JVI.02139-14

    Article  CAS  Google Scholar 

  85. Sato Y, Watanabe T, Suzuki C et al (2019) S-like-phase cyclin-dependent kinases stabilize the Epstein–Barr virus BDLF4 protein to temporally control late gene transcription. J Virol 93:e01707-01718. https://doi.org/10.1128/JVI.01707-18

    Article  CAS  Google Scholar 

  86. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956. https://doi.org/10.1038/nrm2293

    Article  CAS  Google Scholar 

  87. Yau T-Y, Sander W, Eidson C et al (2021) SUMO interacting motifs: structure and function. Cells 10:2825. https://doi.org/10.3390/cells10112825

    Article  CAS  Google Scholar 

  88. Chang H-M, Yeh ETH (2020) SUMO: from bench to bedside. Physiol Rev 100:1599–1619. https://doi.org/10.1152/physrev.00025.2019

    Article  CAS  Google Scholar 

  89. Kerscher O (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8:550–555. https://doi.org/10.1038/sj.embor.7400980

    Article  CAS  Google Scholar 

  90. Wang Y, Du S, Zhu C et al (2020) STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein–Barr Virus latency. PLoS Pathog 16:e1008447–e1008447. https://doi.org/10.1371/journal.ppat.1008447

    Article  CAS  Google Scholar 

  91. Rosendorff A, Illanes D, David G et al (2004) EBNA3C coactivation with EBNA2 requires a SUMO homology domain. J Virol 78:367–377. https://doi.org/10.1128/jvi.78.1.367-377.2004

    Article  CAS  Google Scholar 

  92. Lin J, Johannsen E, Robertson E et al (2002) Epstein–Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2. J Virol 76:232–242. https://doi.org/10.1128/jvi.76.1.232-242.2002

    Article  CAS  Google Scholar 

  93. Frappier L (2011) Viral disruption of promyelocytic leukemia (PML) nuclear bodies by hijacking host PML regulators. Virulence 2:58–62. https://doi.org/10.4161/viru.2.1.14610

    Article  Google Scholar 

  94. Salahuddin S, Fath EK, Biel N et al (2019) Epstein–Barr virus latent membrane protein-1 induces the expression of SUMO-1 and SUMO-2/3 in LMP1-positive lymphomas and cells. Sci Rep 9:208–208. https://doi.org/10.1038/s41598-018-36312-4

    Article  CAS  Google Scholar 

  95. Wei A (2018) Expression, purification, identification and crystallization of LMP1 intracellular soluble proteins and complex proteins. Tianjin University, Tianjin

    Google Scholar 

  96. Bentz GL, Whitehurst CB, Pagano JS (2011) Epstein–Barr virus latent membrane protein 1 (LMP1) C-terminal-activating region 3 contributes to LMP1-mediated cellular migration via its interaction with Ubc9. J Virol 85:10144–10153. https://doi.org/10.1128/JVI.05035-11

    Article  CAS  Google Scholar 

  97. Bentz GL, Shackelford J, Pagano JS (2012) Epstein–Barr virus latent membrane protein 1 regulates the function of interferon regulatory factor 7 by inducing its sumoylation. J Virol 86:12251–12261. https://doi.org/10.1128/JVI.01407-12

    Article  CAS  Google Scholar 

  98. Bentz GL, Moss CR 2nd, Whitehurst CB et al (2015) LMP1-induced sumoylation influences the maintenance of Epstein–Barr virus latency through KAP1. J Virol 89:7465–7477. https://doi.org/10.1128/JVI.00711-15

    Article  CAS  Google Scholar 

  99. Selby TL, Biel N, Varn M et al (2019) The Epstein–Barr virus oncoprotein, LMP1, regulates the function of SENP2, a SUMO-protease. Sci Rep 9:9523–9523. https://doi.org/10.1038/s41598-019-45825-5

    Article  CAS  Google Scholar 

  100. Adamson AL, Kenney S (2001) Epstein–barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75:2388–2399. https://doi.org/10.1128/JVI.75.5.2388-2399.2001

    Article  CAS  Google Scholar 

  101. Adamson AL (2005) Effects of SUMO-1 upon Epstein–Barr virus BZLF1 function and BMRF1 expression. Biochem Biophys Res Commun 336:22–28. https://doi.org/10.1016/j.bbrc.2005.08.036

    Article  CAS  Google Scholar 

  102. Hagemeier SR, Dickerson SJ, Meng Q et al (2010) Sumoylation of the Epstein–Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol 84:4383–4394. https://doi.org/10.1128/JVI.02369-09

    Article  CAS  Google Scholar 

  103. Wimmer P, Schreiner S, Dobner T (2012) Human pathogens and the host cell SUMOylation system. J Virol 86:642–654. https://doi.org/10.1128/jvi.06227-11

    Article  CAS  Google Scholar 

  104. Murata T, Hotta N, Toyama S et al (2010) Transcriptional repression by sumoylation of Epstein–Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem 285:23925–23935. https://doi.org/10.1074/jbc.M109.095356

    Article  CAS  Google Scholar 

  105. Yang YC, Feng TH, Chen TY et al (2015) RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. J Gen Virol 96:2336–2348. https://doi.org/10.1099/vir.0.000157

    Article  CAS  Google Scholar 

  106. Chang LK, Lee YH, Cheng TS et al (2004) Post-translational modification of Rta of Epstein–Barr virus by SUMO-1. J Biol Chem 279:38803–38812. https://doi.org/10.1074/jbc.M405470200

    Article  CAS  Google Scholar 

  107. Liu ST, Wang WH, Hong YR et al (2006) Sumoylation of Rta of Epstein–Barr virus is preferentially enhanced by PIASxbeta. Virus Res 119:163–170. https://doi.org/10.1016/j.virusres.2006.01.004

    Article  CAS  Google Scholar 

  108. Chang LK, Liu ST, Kuo CW et al (2008) Enhancement of transactivation activity of Rta of Epstein–Barr virus by RanBPM. J Mol Biol 379:231–242. https://doi.org/10.1016/j.jmb.2008.04.011

    Article  CAS  Google Scholar 

  109. Calderwood MA, Holthaus AM, Johannsen E (2008) The Epstein–Barr virus LF2 protein inhibits viral replication. J Virol 82:8509–8519. https://doi.org/10.1128/JVI.00315-08

    Article  CAS  Google Scholar 

  110. Heilmann AMF, Calderwood MA, Johannsen E (2010) Epstein–Barr virus LF2 protein regulates viral replication by altering Rta subcellular localization. J Virol 84:9920–9931. https://doi.org/10.1128/JVI.00573-10

    Article  CAS  Google Scholar 

  111. Li R, Wang L, Liao G et al (2012) SUMO binding by the Epstein–Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 86:5412–5421. https://doi.org/10.1128/JVI.00314-12

    Article  CAS  Google Scholar 

  112. Loboda AP, Soond SM, Piacentini M et al (2019) Lysine-specific post-translational modifications of proteins in the life cycle of viruses. Cell Cycle 18:1995–2005. https://doi.org/10.1080/15384101.2019.1639305

    Article  CAS  Google Scholar 

  113. Lv D-W, Zhong J, Zhang K et al (2017) Understanding Epstein–Barr virus life cycle with proteomics: a temporal analysis of ubiquitination during virus reactivation. OMICS 21:27–37. https://doi.org/10.1089/omi.2016.0158

    Article  CAS  Google Scholar 

  114. Levitskaya J, Sharipo A, Leonchiks A et al (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–12621. https://doi.org/10.1073/pnas.94.23.12616

    Article  CAS  Google Scholar 

  115. Dantuma NP, Sharipo A, Masucci MG (2002) Avoiding proteasomal processing: the case of EBNA1. Curr Top Microbiol Immunol 269:23–36. https://doi.org/10.1007/978-3-642-59421-2_2

    Article  CAS  Google Scholar 

  116. Dantuma NP, Heessen S, Lindsten K et al (2000) Inhibition of proteasomal degradation by the gly-Ala repeat of Epstein–Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci USA 97:8381–8385. https://doi.org/10.1073/pnas.140217397

    Article  CAS  Google Scholar 

  117. Zhang M, Coffino P (2004) Repeat sequence of Epstein–Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing. J Biol Chem 279:8635–8641. https://doi.org/10.1074/jbc.M310449200

    Article  CAS  Google Scholar 

  118. Dantuma NP, Masucci MG (2003) The ubiquitin/proteasome system in Epstein–Barr virus latency and associated malignancies. Semin Cancer Biol 13:69–76. https://doi.org/10.1016/s1044-579x(02)00101-3

    Article  CAS  Google Scholar 

  119. Liu L, Yang J, Ji W et al (2019) Curcumin inhibits proliferation of Epstein–Barr virus-associated human nasopharyngeal carcinoma cells by inhibiting EBV nuclear antigen 1 expression. Biomed Res Int 2019:8592921–8592921. https://doi.org/10.1155/2019/8592921

    Article  CAS  Google Scholar 

  120. Saha A, Murakami M, Kumar P et al (2009) Epstein–Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2. J Virol 83:4652–4669. https://doi.org/10.1128/jvi.02408-08

    Article  CAS  Google Scholar 

  121. Knight JS, Sharma N, Robertson ES (2005) SCFSkp2 complex targeted by Epstein–Barr virus essential nuclear antigen. Mol Cell Biol 25:1749–1763. https://doi.org/10.1128/mcb.25.5.1749-1763.2005

    Article  CAS  Google Scholar 

  122. Knight JS, Sharma N, Robertson ES (2005) Epstein–Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci U S A 102:18562–18566. https://doi.org/10.1073/pnas.0503886102

    Article  CAS  Google Scholar 

  123. Touitou R, Onions J, Heaney J et al (2005) Epstein-Barr virus EBNA3 proteins bind to the C8/alpha7 subunit of the 20S proteasome and are degraded by 20S proteasomes in vitro, but are very stable in latently infected B cells. J Gen Virol 86:1269–1277. https://doi.org/10.1099/vir.0.80763-0

    Article  CAS  Google Scholar 

  124. Fierti AO, Yakass MB, Okertchiri EA et al (2022) The role of Epstein–Barr virus in modulating key tumor suppressor genes in associated malignancies: epigenetics, transcriptional, and post-translational modifications. Biomolecules. https://doi.org/10.3390/biom12010127

    Article  Google Scholar 

  125. Dukers DF, Meij P, Vervoort MBHJ et al (2000) Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165:663. https://doi.org/10.4049/jimmunol.165.2.663

    Article  CAS  Google Scholar 

  126. Rothenberger S, Burns K, Rousseaux M et al (2003) Ubiquitination of the Epstein–Barr virus-encoded latent membrane protein 1 depends on the integrity of the TRAF binding site. Oncogene 22:5614–5618. https://doi.org/10.1038/sj.onc.1206497

    Article  CAS  Google Scholar 

  127. Li L, Li W, Xiao L et al (2012) Viral oncoprotein LMP1 disrupts p53-induced cell cycle arrest and apoptosis through modulating K63-linked ubiquitination of p53. Cell Cycle 11:2327–2336. https://doi.org/10.4161/cc.20771

    Article  CAS  Google Scholar 

  128. Hong SW, Kim SM, Jin DH et al (2017) RPS27a enhances EBV-encoded LMP1-mediated proliferation and invasion by stabilizing of LMP1. Biochem Biophys Res Commun 491:303–309. https://doi.org/10.1016/j.bbrc.2017.07.105

    Article  CAS  Google Scholar 

  129. Ikeda M, Ikeda A, Longan LC et al (2000) The Epstein–Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology 268:178–191. https://doi.org/10.1006/viro.1999.0166

    Article  CAS  Google Scholar 

  130. Ikeda M, Ikeda A, Longnecker R (2002) Lysine-independent ubiquitination of Epstein–Barr virus LMP2A. Virology 300:153–159. https://doi.org/10.1006/viro.2002.1562

    Article  CAS  Google Scholar 

  131. Seo M-D, Seok S-H, Kim J-H et al (2021) Molecular interactions between two LMP2A PY Motifs of EBV and WW domains of E3 ubiquitin ligase AIP4. Life (Basel) 11:379. https://doi.org/10.3390/life11050379

    Article  CAS  Google Scholar 

  132. Portis T, Ikeda M, Longnecker R (2004) Epstein–Barr virus LMP2A: regulating cellular ubiquitination processes for maintenance of viral latency? Trends Immunol 25:422–426. https://doi.org/10.1016/j.it.2004.05.009

    Article  CAS  Google Scholar 

  133. Zhao M, Nanbo A, Becnel D et al (2020) Ubiquitin modification of the Epstein–Barr Virus immediate early transactivator Zta. J Virol 94:e01298-e11220. https://doi.org/10.1128/JVI.01298-20

    Article  CAS  Google Scholar 

  134. Melchior F (2000) SUMO–nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626. https://doi.org/10.1146/annurev.cellbio.16.1.591

    Article  CAS  Google Scholar 

  135. Garza R, Pillus L (2013) STUbLs in chromatin and genome stability. Biopolymers 99:146–154. https://doi.org/10.1002/bip.22125

    Article  CAS  Google Scholar 

  136. Yang Y-C, Yoshikai Y, Hsu S-W et al (2013) Role of RNF4 in the ubiquitination of Rta of Epstein–Barr virus. J Biol Chem 288:12866–12879. https://doi.org/10.1074/jbc.M112.413393

    Article  CAS  Google Scholar 

  137. Huang H-H, Chen C-S, Wang W-H et al (2017) TRIM5α promotes ubiquitination of Rta from Epstein–Barr virus to attenuate lytic progression. Front Microbiol 7:2129–2129. https://doi.org/10.3389/fmicb.2016.02129

    Article  Google Scholar 

  138. Farina A, Santarelli R, Gonnella R et al (2000) The BFRF1 gene of Epstein–Barr virus encodes a novel protein. J Virol 74:3235–3244. https://doi.org/10.1128/jvi.74.7.3235-3244.2000

    Article  CAS  Google Scholar 

  139. Farina A, Feederle R, Raffa S et al (2005) BFRF1 of Epstein–Barr virus is essential for efficient primary viral envelopment and egress. J Virol 79:3703–3712. https://doi.org/10.1128/jvi.79.6.3703-3712.2005

    Article  CAS  Google Scholar 

  140. Lake CM, Hutt-Fletcher LM (2004) The Epstein–Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 320:99–106. https://doi.org/10.1016/j.virol.2003.11.018

    Article  CAS  Google Scholar 

  141. Gonnella R, Farina A, Santarelli R et al (2005) Characterization and intracellular localization of the Epstein–Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 79:3713–3727. https://doi.org/10.1128/jvi.79.6.3713-3727.2005

    Article  CAS  Google Scholar 

  142. Lee CP, Liu PT, Kung HN et al (2012) The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein–Barr Virus. PLoS Pathog 8:e1002904. https://doi.org/10.1371/journal.ppat.1002904

    Article  CAS  Google Scholar 

  143. Lee CP, Liu GT, Kung HN et al (2016) The ubiquitin ligase itch and ubiquitination regulate BFRF1-mediated nuclear envelope modification for Epstein–Barr virus maturation. J Virol 90:8994–9007. https://doi.org/10.1128/jvi.01235-16

    Article  CAS  Google Scholar 

  144. Spear PG, Longnecker R (2003) Herpesvirus entry: an update. J Virol 77:10179–10185. https://doi.org/10.1128/jvi.77.19.10179-10185.2003

    Article  CAS  Google Scholar 

  145. Zhang HJ, Tian J, Qi XK et al (2018) Epstein–Barr virus activates F-box protein FBXO2 to limit viral infectivity by targeting glycoprotein B for degradation. PLoS Pathog 14:e1007208. https://doi.org/10.1371/journal.ppat.1007208

    Article  CAS  Google Scholar 

  146. Sompallae R, Gastaldello S, Hildebrand S et al (2008) Epstein–Barr virus encodes three bona fide ubiquitin-specific proteases. J Virol 82:10477–10486. https://doi.org/10.1128/jvi.01113-08

    Article  CAS  Google Scholar 

  147. Schmaus S, Wolf H, Schwarzmann F (2004) The reading frame BPLF1 of Epstein–Barr virus: a homologue of herpes simplex virus protein VP16. Virus Genes 29:267–277. https://doi.org/10.1023/B:VIRU.0000036387.39937.9b

    Article  CAS  Google Scholar 

  148. Van Gent M, Braem SG, De Jong A et al (2014) Epstein–Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog 10:e1003960. https://doi.org/10.1371/journal.ppat.1003960

    Article  CAS  Google Scholar 

  149. Calderwood MA, Venkatesan K, Xing L et al (2007) Epstein–Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A 104:7606–7611. https://doi.org/10.1073/pnas.0702332104

    Article  CAS  Google Scholar 

  150. Whitehurst CB, Ning S, Bentz GL et al (2009) The Epstein–Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J Virol 83:4345–4353. https://doi.org/10.1128/jvi.02195-08

    Article  CAS  Google Scholar 

  151. Whitehurst CB, Vaziri C, Shackelford J et al (2012) Epstein–Barr virus BPLF1 deubiquitinates PCNA and attenuates polymerase η recruitment to DNA damage sites. J Virol 86:8097–8106. https://doi.org/10.1128/jvi.00588-12

    Article  Google Scholar 

  152. Saito S, Murata T, Kanda T et al (2013) Epstein–Barr virus deubiquitinase downregulates TRAF6-mediated NF-κB signaling during productive replication. J Virol 87:4060–4070. https://doi.org/10.1128/jvi.02020-12

    Article  CAS  Google Scholar 

  153. Kumar R, Whitehurst CB, Pagano JS (2014) The Rad6/18 ubiquitin complex interacts with the Epstein–Barr virus deubiquitinating enzyme, BPLF1, and contributes to virus infectivity. J Virol 88:6411–6422. https://doi.org/10.1128/jvi.00536-14

    Article  CAS  Google Scholar 

  154. Dyson OF, Pagano JS, Whitehurst CB (2017) The translesion polymerase Pol η is required for efficient Epstein–Barr virus infectivity and is regulated by the viral deubiquitinating enzyme BPLF1. J Virol. https://doi.org/10.1128/jvi.00600-17

    Article  Google Scholar 

  155. Ylä-Anttila P, Gupta S, Masucci MG (2021) The Epstein–Barr virus deubiquitinase BPLF1 targets SQSTM1/p62 to inhibit selective autophagy. Autophagy 17:3461–3474. https://doi.org/10.1080/15548627.2021.1874660

    Article  CAS  Google Scholar 

  156. Li J, Nagy N, Liu J et al (2021) The Epstein–Barr virus deubiquitinating enzyme BPLF1 regulates the activity of topoisomerase II during productive infection. PLoS Pathog 17:e1009954. https://doi.org/10.1371/journal.ppat.1009954

    Article  CAS  Google Scholar 

  157. Gastaldello S, Hildebrand S, Faridani O et al (2010) A deneddylase encoded by Epstein–Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases. Nat Cell Biol 12:351–361. https://doi.org/10.1038/ncb2035

    Article  CAS  Google Scholar 

  158. Chen N, Kong X, Zhao S et al (2020) Post-translational modification of baculovirus-encoded proteins. Virus Res 279:197865. https://doi.org/10.1016/j.virusres.2020.197865

    Article  CAS  Google Scholar 

  159. Jarrell KF, Ding Y, Meyer BH et al (2014) N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 78:304–341. https://doi.org/10.1128/mmbr.00052-13

    Article  Google Scholar 

  160. Krummenacher C, Carfí A, Eisenberg RJ et al (2013) Entry of herpesviruses into cells: the enigma variations. Adv Exp Med Biol 790:178–195. https://doi.org/10.1007/978-1-4614-7651-1_10

    Article  CAS  Google Scholar 

  161. Corrales-Aguilar E, Hoffmann K, Hengel H (2014) CMV-encoded Fcγ receptors: modulators at the interface of innate and adaptive immunity. Semin Immunopathol 36:627–640. https://doi.org/10.1007/s00281-014-0448-2

    Article  CAS  Google Scholar 

  162. Reimer JJ, Backovic M, Deshpande CG et al (2009) Analysis of Epstein–Barr virus glycoprotein B functional domains via linker insertion mutagenesis. J Virol 83:734–747. https://doi.org/10.1128/JVI.01817-08

    Article  CAS  Google Scholar 

  163. Chesnokova LS, Jiang R, Hutt-Fletcher LM (2015) Viral entry. Curr Top Microbiol Immunol 391:221–235. https://doi.org/10.1007/978-3-319-22834-1_7

    Article  CAS  Google Scholar 

  164. Serafini-Cessi F, Malagolini N, Nanni M et al (1989) Characterization of N- and O-linked oligosaccharides of glycoprotein 350 from Epstein–Barr virus. Virology 170:1–10. https://doi.org/10.1016/0042-6822(89)90345-0

    Article  CAS  Google Scholar 

  165. Szakonyi G, Klein MG, Hannan JP et al (2006) Structure of the Epstein–Barr virus major envelope glycoprotein. Nat Struct Mol Biol 13:996–1001. https://doi.org/10.1038/nsmb1161

    Article  CAS  Google Scholar 

  166. Gong M, Ooka T, Matsuo T et al (1987) Epstein–Barr virus glycoprotein homologous to herpes simplex virus gB. J Virol 61:499–508. https://doi.org/10.1128/jvi.61.2.499-508.1987

    Article  CAS  Google Scholar 

  167. Chen J, Schaller S, Jardetzky TS et al (2020) Epstein–Barr Virus gH/gL and Kaposi’s sarcoma-associated herpesvirus gH/gL bind to different sites on EphA2 to trigger fusion. J Virol 94:e01454-e11420. https://doi.org/10.1128/JVI.01454-20

    Article  CAS  Google Scholar 

  168. Möhl BS, Chen J, Park SJ et al (2017) Epstein–Barr virus fusion with epithelial cells triggered by gB is restricted by a gL glycosylation site. J Virol 91:e01255-e11217. https://doi.org/10.1128/JVI.01255-17

    Article  Google Scholar 

  169. Xiao J, Palefsky JM, Herrera R et al (2007) Characterization of the Epstein–Barr virus glycoprotein BMRF-2. Virology 359:382–396. https://doi.org/10.1016/j.virol.2006.09.047

    Article  CAS  Google Scholar 

  170. Modrow S, Höflacher B, Wolf H (1992) Identification of a protein encoded in the EB-viral open reading frame BMRF2. Adv Virol 127:379–386. https://doi.org/10.1007/bf01309601

    Article  CAS  Google Scholar 

  171. Gore M, Hutt-Fletcher LM (2009) The BDLF2 protein of Epstein–Barr virus is a type II glycosylated envelope protein whose processing is dependent on coexpression with the BMRF2 protein. Virology 383:162–167. https://doi.org/10.1016/j.virol.2008.10.010

    Article  CAS  Google Scholar 

  172. Lake CM, Molesworth SJ, Hutt-Fletcher LM (1998) The Epstein–Barr virus (EBV) gN homolog BLRF1 encodes a 15-kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3. J Virol 72:5559–5564. https://doi.org/10.1128/jvi.72.7.5559-5564.1998

    Article  CAS  Google Scholar 

  173. Gross H, Barth S, Palermo RD et al (2010) Asymmetric Arginine dimethylation of Epstein–Barr virus nuclear antigen 2 promotes DNA targeting. Virology 397:299–310. https://doi.org/10.1016/j.virol.2009.11.023

    Article  CAS  Google Scholar 

  174. Holowaty MN, Zeghouf M, Wu H et al (2003) Protein profiling with Epstein–Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 278:29987–29994. https://doi.org/10.1074/jbc.M303977200

    Article  CAS  Google Scholar 

  175. Liu C-D, Cheng C-P, Fang J-S et al (2013) Modulation of Epstein–Barr virus nuclear antigen 2-dependent transcription by protein arginine methyltransferase 5. Biochem Biophys Res Commun 430:1097–1102. https://doi.org/10.1016/j.bbrc.2012.12.032

    Article  CAS  Google Scholar 

  176. Barth S, Liss M, Voss MD et al (2003) Epstein–Barr virus nuclear antigen 2 binds via its methylated arginine-glycine repeat to the survival motor neuron protein. J Virol 77:5008–5013. https://doi.org/10.1128/jvi.77.8.5008-5013.2003

    Article  CAS  Google Scholar 

  177. Gross H, Barth S, Pfuhl T et al (2011) The NP9 protein encoded by the human endogenous retrovirus HERV-K(HML-2) negatively regulates gene activation of the Epstein–Barr virus nuclear antigen 2 (EBNA2). Int J Cancer 129:1105–1115. https://doi.org/10.1002/ijc.25760

    Article  CAS  Google Scholar 

  178. Ivaldi C, Martin BR, Kieffer-Jaquinod S et al (2012) Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23. PLoS ONE 7:e37187–e37187. https://doi.org/10.1371/journal.pone.0037187

    Article  CAS  Google Scholar 

  179. Higuchi M, Izumi KM, Kieff E (2001) Epstein–Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc Natl Acad Sci USA 98:4675–4680. https://doi.org/10.1073/pnas.081075298

    Article  CAS  Google Scholar 

  180. Katzman RB, Longnecker R (2004) LMP2A does not require palmitoylation to localize to buoyant complexes or for function. J Virol 78:10878–10887. https://doi.org/10.1128/JVI.78.20.10878-10887.2004

    Article  CAS  Google Scholar 

  181. Verweij FJ, De Heus C, Kroeze S et al (2015) Exosomal sorting of the viral oncoprotein LMP1 is restrained by TRAF2 association at signalling endosomes. J Extracell Vesicles 4:26334–26334. https://doi.org/10.3402/jev.v4.26334

    Article  Google Scholar 

  182. Li Y, Webster-Cyriaque J, Tomlinson CC et al (2004) Fatty acid synthase expression is induced by the Epstein–Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J Virol 78:4197–4206. https://doi.org/10.1128/jvi.78.8.4197-4206.2004

    Article  CAS  Google Scholar 

  183. Wang P, Day L, Dheekollu J et al (2005) A redox-sensitive cysteine in Zta is required for Epstein–Barr virus lytic cycle DNA replication. J Virol 79:13298–13309. https://doi.org/10.1128/JVI.79.21.13298-13309.2005

    Article  CAS  Google Scholar 

  184. Deng Z, Atanasiu C, Zhao K et al (2005) Inhibition of Epstein–Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. J Virol 79:4640–4650. https://doi.org/10.1128/JVI.79.8.4640-4650.2005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to apologize to the many researchers who have contributed to this area of research but have not been cited in this review due to space limitations. This work is supported by the Natural Science Foundation of Shandong Province (ZR2020MH302 and ZR2021MC068).

Funding

This work is supported by the Natural Science Foundation of Shandong Province (ZR2020MH302 and ZR2021MC068).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YS helped in writing—original draft preparation; WL and BL contributed to writing—review and editing. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wen Liu or Bing Luo.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, W. & Luo, B. Functional diversity: update of the posttranslational modification of Epstein–Barr virus coding proteins. Cell. Mol. Life Sci. 79, 590 (2022). https://doi.org/10.1007/s00018-022-04561-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04561-2

Keywords

Navigation