Skip to main content
Log in

The multiple facets of mitochondrial regulations controlling cellular thermogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Abeele FV, Lotteau S, Ducreux S, Dubois C, Monnier N, Hanna A, Gkika D et al (2018) TRPV1 variants impair intracellular Ca2+ signaling and may confer susceptibility to malignant hyperthermia. Genet Med. https://doi.org/10.1038/s41436-018-0066-9

    Article  Google Scholar 

  2. Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D (2019) Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion 46(mai):73–90. https://doi.org/10.1016/j.mito.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  3. Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A, Deng C-X, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci 105(38):14447–14452. https://doi.org/10.1073/pnas.0803790105

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andreyev AY, Bondareva TO, Dedukhova VI, Mokhova EN, Skulachev VP, Tsofina LM, Volkov NI, Vygodina TV (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Eur J Biochem 182(3):585–592. https://doi.org/10.1111/j.1432-1033.1989.tb14867.x

    Article  PubMed  Google Scholar 

  5. Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356(6367):301–309. https://doi.org/10.1038/356301a0

    Article  CAS  PubMed  Google Scholar 

  6. Baffou G, Rigneault H, Marguet D, Jullien L (2014) A critique of methods for temperature imaging in single cells. Nat Methods 11(9):899

    Article  CAS  PubMed  Google Scholar 

  7. Baffou G, Rigneault H, Marguet D, Jullien L (2015) Reply to: “Validating subcellular thermal changes revealed by fluorescent thermosensors” and “The 10 5 gap issue between calculation and measurement in single-cell thermometry". Nat Methods 12(9):803

    Article  CAS  PubMed  Google Scholar 

  8. Balaban RS (2009) The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work. Biochem Biophys Acta 1787(11):1334–1341. https://doi.org/10.1016/j.bbabio.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  9. Barja de Quiroga G, López-Torres M, Pérez-Campo R, Abelenda M, Paz Nava M, Puerta ML (1991) Effect of cold acclimation on GSH, antioxidant enzymes and lipid peroxidation in brown adipose tissue. Biochem J 277(1):289–292. https://doi.org/10.1042/bj2770289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beam TA, Loudermilk EF, Kisor DF (2017) Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia. Physiol Genomics 49(2):81–87. https://doi.org/10.1152/physiolgenomics.00126.2016

    Article  CAS  PubMed  Google Scholar 

  11. Belhadj Slimen I, Najar T, Ghram A, Dabbebi H, Mrad MB, Abdrabbah M (2014) Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 30(7):513–523. https://doi.org/10.3109/02656736.2014.971446

    Article  CAS  Google Scholar 

  12. Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, Vidoni S et al (2019) H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature 571(7766):515–520. https://doi.org/10.1038/s41586-019-1400-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertholet AM, Kazak L, Chouchani ET, Bogaczyńska MG, Paranjpe I, Wainwright GL, Bétourné A, Kajimura S, Spiegelman BM, Kirichok Y (2017) Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab 25(4):811–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bertholet AM, Kirichok Y (2021) Mitochondrial H+ leak and thermogenesis. Ann Rev Physiol. https://doi.org/10.1146/annurev-physiol-021119-034405

    Article  Google Scholar 

  15. Blondin DP, Haman F (2018) Shivering and nonshivering thermogenesis in skeletal muscles. Handb Clin Neurol 156:153–173. https://doi.org/10.1016/B978-0-444-63912-7.00010-2

    Article  PubMed  Google Scholar 

  16. Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, Guérin B et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99(3):E438-446. https://doi.org/10.1210/jc.2013-3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bobyleva V, Pazienza L, Muscatello U, Kneer N, Lardy H (2000) Short-term hypothermia activates hepatic mitochondrial Sn-glycerol-3-phosphate dehydrogenase and thermogenic systems. Arch Biochem Biophys 380(2):367–372. https://doi.org/10.1006/abbi.2000.1942

    Article  CAS  PubMed  Google Scholar 

  18. Bobyleva V, Bellei M, Pazienza TL, Muscatello U (1997) Effect of cardiolipin on functional properties of isolated rat liver mitochondria. IUBMB Life 41(3):469–480. https://doi.org/10.1080/15216549700201491

    Article  CAS  Google Scholar 

  19. Bokhari MH, Halleskog C, Åslund A, Boulet N, Rendos EC, Anton JM, de Jong R, Csikasz E-Z, Shabalina I, Bengtsson T (2021) Isothermal microcalorimetry measures UCP1-mediated thermogenesis in mature brite adipocytes. Commun Biol 4(1):1–11. https://doi.org/10.1038/s42003-021-02639-4

    Article  CAS  Google Scholar 

  20. Borst P (2020) The malate-aspartate shuttle (Borst Cycle): how it started and developed into a major metabolic pathway. IUBMB Life 72(11):2241–2259. https://doi.org/10.1002/iub.2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino J-P (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408(1):39–42. https://doi.org/10.1016/S0014-5793(97)00384-0

    Article  CAS  PubMed  Google Scholar 

  22. Bosson C, Rendu J, Pelletier L, Abriat A, Chatagnon A, Brocard J, Brocard J et al (2020) Variations in the TRPV1 gene are associated to exertional heat stroke. J Sci Med Sport. https://doi.org/10.1016/j.jsams.2020.04.018

    Article  PubMed  Google Scholar 

  23. Brand MD (2005) The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33(Pt 5):897–904. https://doi.org/10.1042/BST0330897

    Article  CAS  PubMed  Google Scholar 

  24. Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK (1994) The causes and functions of mitochondrial proton leak. Biochem Biophys Acta 1187(2):132–139. https://doi.org/10.1016/0005-2728(94)90099-x

    Article  CAS  PubMed  Google Scholar 

  25. Brand MD, Chien LF, Diolez P (1994) Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochem J 297(Pt 1):27–29. https://doi.org/10.1042/bj2970027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brand MD, Harper ME, Taylor HC (1993) Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochem J 291(3):739–748. https://doi.org/10.1042/bj2910739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ (2005) The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J 392(2):353–362. https://doi.org/10.1042/BJ20050890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ (2003) Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem J 376(3):741–748. https://doi.org/10.1042/BJ20030984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS (2022) ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev Endocr Metab Disord 23(1):121–131. https://doi.org/10.1007/s11154-021-09690-w

    Article  CAS  PubMed  Google Scholar 

  30. Brustovetsky N, Klingenberg M (1994) The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by Mersalyl. J Biol Chem 269(44):27329–27336

    Article  CAS  PubMed  Google Scholar 

  31. Buttgereit F, Brand MD, Müller M (1992) ConA induced changes in energy metabolism of rat thymocytes. Biosci Rep 12(5):381–386. https://doi.org/10.1007/BF01121501

    Article  CAS  PubMed  Google Scholar 

  32. Cairns CB, Walther J, Harken AH, Banerjee A (1998) Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles. Am J Physiol 274(5):R1376–R1383. https://doi.org/10.1152/ajpregu.1998.274.5.R1376

    Article  CAS  PubMed  Google Scholar 

  33. Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, Pierce KA et al (2016) Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532(7597):112–116. https://doi.org/10.1038/nature17399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chouchani ET, Kazak L, Spiegelman BM (2017) Mitochondrial reactive oxygen species and adipose tissue thermogenesis: bridging physiology and mechanisms. J Biol Chem 292(41):16810–16816. https://doi.org/10.1074/jbc.R117.789628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chouchani ET, Kazak L, Spiegelman BM (2018) New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. https://doi.org/10.1016/j.cmet.2018.11.002

    Article  PubMed  Google Scholar 

  36. Chrétien D, Benit P, Ha H-H, Keipert S, El-Khoury R, Chang Y-T, Jastroch M, Jacobs HT, Rustin P, Rak M (2018) Mitochondria are physiologically maintained at close to 50 C. PLoS Biol 16(1):e2003992

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cimen H, Han M-J, Yang Y, Tong Q, Koc H, Koc EC (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49(2):304–311. https://doi.org/10.1021/bi901627u

    Article  CAS  PubMed  Google Scholar 

  38. Clarke SD, Lee K, Andrews ZB, Bischof R, Fahri F, Evans RG, Clarke IJ, Henry BA (2012) Postprandial heat production in skeletal muscle is associated with altered mitochondrial function and altered futile calcium cycling. Am J Physiol 303(10):R1071–R1079. https://doi.org/10.1152/ajpregu.00036.2012

    Article  CAS  Google Scholar 

  39. Claypool SM, Koehler CM (2012) The complexity of cardiolipin in health and disease. Trends Biochem Sci 37(1):32–41. https://doi.org/10.1016/j.tibs.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  40. Cleri F (2016) The physics of living systems. Springer

    Book  Google Scholar 

  41. Cohen P, Kajimura S (2021) The cellular and functional complexity of thermogenic fat. Nat Rev. https://doi.org/10.1038/s41580-021-00350-0

    Article  Google Scholar 

  42. Contreras L, Gomez-Puertas P, Iijima M, Kobayashi K, Saheki T, Satrústegui J (2007) Ca2+ activation kinetics of the two aspartate-glutamate mitochondrial carriers, Aralar and citrin: role in the heart malate-aspartate NADH shuttle. J Biol Chem 282(10):7098–7106. https://doi.org/10.1074/jbc.M610491200

    Article  CAS  PubMed  Google Scholar 

  43. Dawson AG, Cooney GJ (1978) Reconstruction of the α-glycerolphosphate shuttle using rat kidney mitochondria. FEBS Lett 91(2):169–172. https://doi.org/10.1016/0014-5793(78)81164-8

    Article  CAS  PubMed  Google Scholar 

  44. Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128(1):161–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochem Biophys Acta 1787(11):1309–1316. https://doi.org/10.1016/j.bbabio.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  46. Di X, Wang D, Zhou J, Zhang L, Stenzel MH, Qian Peter Su, Jin D (2021) Quantitatively monitoring in situ mitochondrial thermal dynamics by upconversion nanoparticles. Nano Lett 21(4):1651–1658. https://doi.org/10.1021/acs.nanolett.0c04281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. DosSantos RA, Alfadda A, Eto K, Kadowaki T, Enrique Silva J (2003) Evidence for a compensated thermogenic defect in transgenic mice lacking the mitochondrial glycerol-3-phosphate dehydrogenase gene. Endocrinology 144(12):5469–5479. https://doi.org/10.1210/en.2003-0687

    Article  CAS  PubMed  Google Scholar 

  48. Dunn CD (2017) Some liked it hot: a hypothesis regarding establishment of the proto-mitochondrial endosymbiont during eukaryogenesis. J Mol Evol 85(3):99–106. https://doi.org/10.1007/s00239-017-9809-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fahimi P and Matta CF (2021) The hot mitochondrion paradox: reconciling theory and experiment 12

  50. Ferguson-Miller S (1996) Mammalian cytochrome c oxidase, a molecular monster subdued. Science 272(5265):1125. https://doi.org/10.1126/science.272.5265.1125

    Article  CAS  PubMed  Google Scholar 

  51. Filadi R, Greotti E (2021) The yin and yang of mitochondrial Ca2+ signaling in cell physiology and pathology. Cell Calcium 93(1):102321. https://doi.org/10.1016/j.ceca.2020.102321

    Article  CAS  PubMed  Google Scholar 

  52. Filadi R, Leal NS, Schreiner B, Rossi A, Dentoni G, Pinho CM, Wiehager B et al (2018) TOM70 sustains cell bioenergetics by promoting IP3R3-mediated ER to mitochondria Ca2+ transfer. Curr Biol 28(3):369-382.e6. https://doi.org/10.1016/j.cub.2017.12.047

    Article  CAS  PubMed  Google Scholar 

  53. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F et al (1997) Uncoupling Protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15(3):269–272. https://doi.org/10.1038/ng0397-269

    Article  CAS  PubMed  Google Scholar 

  54. Fontaine EM, Moussa M, Devin A, Garcia J, Ghisolfi J, Rigoulet M, Leverve XM (1996) Effect of polyunsaturated fatty acids deficiency on oxidative phosphorylation in rat liver mitochondria. Biochem Biophys Acta 1276(3):181–187. https://doi.org/10.1016/0005-2728(96)00075-8

    Article  PubMed  Google Scholar 

  55. Gamu D, Bombardier E, Smith IC, Fajardo VA, Russell Tupling A (2014) Sarcolipin provides a novel muscle-based mechanism for adaptive thermogenesis. Exerc Sport Sci Rev 42(3):136–142. https://doi.org/10.1249/JES.0000000000000016

    Article  PubMed  Google Scholar 

  56. Garlid KD, Orosz DE, Modrianský M, Vassanelli S, Jezek P (1996) On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271(5):2615–2620. https://doi.org/10.1074/jbc.271.5.2615

    Article  CAS  PubMed  Google Scholar 

  57. Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51(14):2959–2973. https://doi.org/10.1021/bi2018909

    Article  CAS  PubMed  Google Scholar 

  58. Hansford RG, Zorov D (1998) Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem 184(1–2):359–369

    Article  CAS  PubMed  Google Scholar 

  59. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262. https://doi.org/10.1038/nrm3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069. https://doi.org/10.1146/annurev.bi.54.070185.005055

    Article  CAS  PubMed  Google Scholar 

  61. Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) 1706(1):1–11. https://doi.org/10.1016/j.bbabio.2004.09.004

    Article  CAS  Google Scholar 

  62. Hoch FL (1992) Cardiolipins and biomembrane function. Biochem Biophys Acta 1113(1):71–133. https://doi.org/10.1016/0304-4157(92)90035-9

    Article  CAS  PubMed  Google Scholar 

  63. Hulbert AJ, Else PL (2004) Basal metabolic rate: history, composition, regulation, and usefulness. Physiol Biochem Zool 77(6):869–876. https://doi.org/10.1086/422768

    Article  CAS  PubMed  Google Scholar 

  64. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K et al (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23(12):1454–1465. https://doi.org/10.1038/nm.4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD (2010) Mitochondrial proton and electron leaks. Essays Biochem 47:53–67. https://doi.org/10.1042/bse0470053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jekabsons MB, Nicholls DG (2004) In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem 279(31):32989. https://doi.org/10.1074/jbc.M401540200

    Article  CAS  PubMed  Google Scholar 

  67. Jezek P, Zácková M, Růzicka M, Skobisová E, Jabůrek M (2004) Mitochondrial uncoupling proteins-facts and fantasies. Physiol Res 53(Suppl 1):S199-211

    CAS  PubMed  Google Scholar 

  68. Ježek P, Holendová B, Garlid KD, Jabůrek M (2018) Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid Redox Signal 29(7):667–714. https://doi.org/10.1089/ars.2017.7225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johannsen DL, Galgani JE, Johannsen NM, Zhang Z, Covington JD, Ravussin E (2012) Effect of short-term thyroxine administration on energy metabolism and mitochondrial efficiency in humans. PLoS One 7(7):e40837. https://doi.org/10.1371/journal.pone.0040837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci 96(24):13807–13812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Joubert F, Puff N (2021) Mitochondrial cristae architecture and functions: lessons from minimal model systems. Membranes 11(7):465. https://doi.org/10.3390/membranes11070465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) 1604(2):77–94

    Article  CAS  Google Scholar 

  73. Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M et al (2017) Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 26(4):660-671.e3. https://doi.org/10.1016/j.cmet.2017.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163(3):643–655. https://doi.org/10.1016/j.cell.2015.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kudin AP, Yaw-B N, Bimpong-Buta SV, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria*. J Biol Chem 279(6):4127–4135. https://doi.org/10.1074/jbc.M310341200

    Article  CAS  PubMed  Google Scholar 

  76. Kushnir A, Wajsberg B, Marks AR (2018) Ryanodine receptor dysfunction in human disorders. Biochem Biophys Acta 1865(11):1687–1697. https://doi.org/10.1016/j.bbamcr.2018.07.011

    Article  CAS  Google Scholar 

  77. Laitano O, Murray KO, Leon LR (2020) Overlapping mechanisms of exertional heat stroke and malignant hyperthermia: evidence vs. conjecture. Sports Med 50(9):1581–1592. https://doi.org/10.1007/s40279-020-01318-4

    Article  PubMed  Google Scholar 

  78. Lane N (2018) Hot mitochondria? PLoS Biol 16(1):e2005113. https://doi.org/10.1371/journal.pbio.2005113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van der Lans AAJJ, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, Hansen J et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Investig 123(8):3395–3403. https://doi.org/10.1172/JCI68993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Legendre LJ, Davesne D (2020) The evolution of mechanisms involved in vertebrate endothermy. Philos Trans R Soc B 375(1793):20190136. https://doi.org/10.1098/rstb.2019.0136

    Article  CAS  Google Scholar 

  81. Lettieri-Barbato D (2019) Redox control of non-shivering thermogenesis. Mol Metab 25(juillet):11–19. https://doi.org/10.1016/j.molmet.2019.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin CS, Klingenberg M (1980) Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett 113(2):299–303. https://doi.org/10.1016/0014-5793(80)80613-2

    Article  CAS  PubMed  Google Scholar 

  83. Lippe G, Sala FD, Sorgato MC (1988) ATP synthase complex from beef heart mitochondria role of the thiol group of the 25-KDa subunit of Fo in the coupling mechanism between Fo and F1. J Biol Chem 263(35):18627–18634. https://doi.org/10.1016/S0021-9258(18)37331-9

    Article  CAS  PubMed  Google Scholar 

  84. Lippe G, Coluccino G, Zancani M, Baratta W, Crusiz P (2019) Mitochondrial F-ATP synthase and its transition into an energy-dissipating molecular machine. Oxidative Med Cell Longevity 2019(avril):e8743257. https://doi.org/10.1155/2019/8743257

    Article  CAS  Google Scholar 

  85. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404(6778):652

    Article  CAS  PubMed  Google Scholar 

  86. Macherel D, Haraux F, Guillou H, Bourgeois O (2021) The conundrum of hot mitochondria. Biochim Biophys Acta 1862(2):148348. https://doi.org/10.1016/j.bbabio.2020.148348

    Article  CAS  Google Scholar 

  87. Mailloux RJ, Adjeitey CN-K, Xuan JY, Harper M-E (2012) Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. FASEB J 26(1):363–375. https://doi.org/10.1096/fj.11-189639

    Article  CAS  PubMed  Google Scholar 

  88. Mao W, Xing Xian Yu, Zhong A, Li W, Brush J, Sherwood SW, Adams SH, Pan G (1999) UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett 443(3):326–330. https://doi.org/10.1016/S0014-5793(98)01713-X

    Article  CAS  PubMed  Google Scholar 

  89. Masson SWC, Hedges CP, Devaux JBL, James CS, Hickey AJR (2017) Mitochondrial glycerol 3-phosphate facilitates bumblebee pre-flight thermogenesis. Sci Rep 7(1):13107. https://doi.org/10.1038/s41598-017-13454-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70(2):391–425. https://doi.org/10.1152/physrev.1990.70.2.391

    Article  CAS  PubMed  Google Scholar 

  91. McLaughlin KL, Hagen JT, Coalson HS, Nelson MAM, Kew KA, Wooten AR, Fisher-Wellman KH (2020) Novel approach to quantify mitochondrial content and intrinsic bioenergetic efficiency across organs. Sci Rep 10(1):17599. https://doi.org/10.1038/s41598-020-74718-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McNeill BT, Morton NM, Stimson RH (2020) Substrate utilization by brown adipose tissue: What’s hot and What’s not? Front Endocrinol. https://doi.org/10.3389/fendo.2020.571659

    Article  Google Scholar 

  93. de Meis L (2002) Ca2+-ATPases (SERCA): energy transduction and heat production in transport ATPases. J Membr Biol 188(1):1–9. https://doi.org/10.1007/s00232-001-0171-5

    Article  CAS  PubMed  Google Scholar 

  94. de Meis L, Ketzer LA, Madeiro R, da Costa I, de Andrade R, Benchimol M (2010) Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+. PLoS One 5(3):e9439. https://doi.org/10.1371/journal.pone.0009439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mihara S, Suzuki N, Wakisaka S, Suzuki S, Sekita N, Yamamoto S, Saito N, Hoshino T, Sakane T (1999) Effects of thyroid hormones on apoptotic cell death of human lymphocytes. J Clin Endocrinol Metab 84(4):1378–1385. https://doi.org/10.1210/jcem.84.4.5598

    Article  CAS  PubMed  Google Scholar 

  96. Mills EL, Pierce KA, Jedrychowski MP, Garrity R, Winther S, Vidoni S, Yoneshiro T et al (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560(7716):102–106. https://doi.org/10.1038/s41586-018-0353-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Monternier P-A, Marmillot V, Rouanet J-L, Roussel D (2014) Mitochondrial phenotypic flexibility enhances energy savings during winter fast in king penguin chicks. J Exp Biol 217(Pt 15):2691–2697. https://doi.org/10.1242/jeb.104505

    Article  PubMed  Google Scholar 

  98. Moreno AJM, Moreira PI, Custódio JBA, Santos MS (2013) Mechanism of inhibition of mitochondrial ATP synthase by 17β−estradiol. J Bioenergetics Biomembranes 45(3):261–270. https://doi.org/10.1007/s10863-012-9497-

    Article  CAS  Google Scholar 

  99. Mráček T, Drahota Z, Houštěk J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochem Biophys Acta 1827(3):401–410. https://doi.org/10.1016/j.bbabio.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  100. Murakami A, Nagao K, Sakaguchi R, Kida K, Hara Y, Mori Y, Okabe K, Harada Y, Umeda M (2022) Cell-autonomous control of intracellular temperature by unsaturation of phospholipid acyl chains. Cell Rep 38(11):110487. https://doi.org/10.1016/j.celrep.2022.110487

    Article  CAS  PubMed  Google Scholar 

  101. Murphy MP (1989) Slip and leak in mitochondrial oxidative phosphorylation. Biochem Biophys Acta 977(2):123–141. https://doi.org/10.1016/s0005-2728(89)80063-5

    Article  CAS  PubMed  Google Scholar 

  102. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  103. Nakano M, Arai Y, Kotera I, Okabe K, Kamei Y, Nagai T (2017) Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response. Édité par Takuya Matsumoto. PLOS One 12(2):e0172344. https://doi.org/10.1371/journal.pone.0172344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nasr MA, Dovbeshko GI, Bearne SL, El-Badri N, Matta CF (2019) Heat shock proteins in the “hot” mitochondrion: identity and putative roles. BioEssays 41(9):e1900055. https://doi.org/10.1002/bies.201900055

    Article  CAS  PubMed  Google Scholar 

  105. Nath S (2016) The Thermodynamic Efficiency of ATP Synthesis in Oxidative Phosphorylation. Biophys Chem 219(décembre):69–74. https://doi.org/10.1016/j.bpc.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  106. Nedergaard JAN, Cannon B, Lindberg O (1977) Microcalorimetry of isolated mammalian cells. Nature 267(5611):518

    Article  CAS  PubMed  Google Scholar 

  107. Nedergaard J, Lindberg O (1979) Norepinephrine-stimulated fatty-acid release and oxygen consumption in isolated hamster brown-fat cells. Influence of buffers, albumin, insulin and mitochondrial inhibitors. Eur J Biochem 95(1):139–145. https://doi.org/10.1111/j.1432-1033.1979.tb12948.x

    Article  CAS  PubMed  Google Scholar 

  108. Nguyen AD, Lee NJ, Wee NKY, Zhang L, Enriquez RF, Khor EC, Nie T et al (2018) Uncoupling Protein-1 is protective of bone mass under mild cold stress conditions. Bone 106(janvier):167–178. https://doi.org/10.1016/j.bone.2015.05.037

    Article  CAS  PubMed  Google Scholar 

  109. Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’h J, Siliart B, Dumon H (2008) Liver lipid Metabolism. J Anim Physiol Anim Nutr 92(3):272–283. https://doi.org/10.1111/j.1439-0396.2007.00752.x

    Article  CAS  Google Scholar 

  110. Nicholls DG (1974) « Hamster brown-adipose-tissue mitochondria. The control of respiration and the proton electrochemical potential gradient by possible physiological effectors of the proton conductance of the inner membrane. Eur J Biochem 49(3):573–583. https://doi.org/10.1111/j.1432-1033.1974.tb03861.x

    Article  CAS  PubMed  Google Scholar 

  111. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöop MH (2012) SIRTUIN 1 and SIRTUIN 3: physiological modulators of metabolism. Physiol Rev 92(3):1479–1514. https://doi.org/10.1152/physrev.00022.2011

    Article  CAS  PubMed  Google Scholar 

  112. Oeckl J, Janovska P, Adamcova K, Bardova K, Brunner S, Dieckmann S, Ecker J et al (2022) Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat. Mol Metab 61(juillet):101499. https://doi.org/10.1016/j.molmet.2022.101499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49. https://doi.org/10.1146/annurev.physiol.69.031905.163804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pant M, Bal NC, Periasamy M (2016) Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends Endocrinol Metab 27(12):881–892. https://doi.org/10.1016/j.tem.2016.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Papa S, Capitanio N, Capitanio G, De Nitto E, Minuto M (1991) The cytochrome chain of mitochondria exhibits variable H+/e- stoichiometry. FEBS Lett 288(1–2):183–186. https://doi.org/10.1016/0014-5793(91)81030-c

    Article  CAS  PubMed  Google Scholar 

  116. Pehowich DJ (1999) Thyroid hormone status and membrane N − 3 fatty acid content influence mitochondrial proton leak. Biochimica et Biophysica Acta (BBA) 1411(1):192–200. https://doi.org/10.1016/S0005-2728(99)00041-9

    Article  CAS  Google Scholar 

  117. Phillips RC, George P, Rutman RJ (1969) Thermodynamic data for the hydrolysis of adenosine triphosphate as a function of PH, Mg2+ ion concentration, and ionic strength. J Biol Chem 244(12):3330–3342

    Article  CAS  PubMed  Google Scholar 

  118. Porter C (2017) Quantification of UCP1 function in human brown adipose tissue. Adipocyte 6(2):167–174. https://doi.org/10.1080/21623945.2017.1319535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Porter RK, Brand MD (1995) Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. Biochem J 310(Pt 2):379–382. https://doi.org/10.1042/bj3100379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rajagopal MC, Brown JW, Gelda D, Valavala KV, Wang H, Llano DA, Gillette R, Sinha S (2019) Transient heat release during induced mitochondrial proton uncoupling. Commun Biol 2(1):1–6. https://doi.org/10.1038/s42003-019-0535-y

    Article  CAS  Google Scholar 

  121. Ricquier D, Gaillard Jl, Turc JM (1979) Microcalorimetry of isolated mitochondria from brown adipose tissue. FEBS Lett 99(1):203–206. https://doi.org/10.1016/0014-5793(79)80279-3

    Article  CAS  PubMed  Google Scholar 

  122. Ricquier D (2006) Fundamental mechanisms of thermogenesis. CR Biol 329(8):578–586

    Article  CAS  Google Scholar 

  123. Ricquier D (2017) UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal contribution and a historical perspective. Biochimie 134(mars):3–8. https://doi.org/10.1016/j.biochi.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  124. Riley CL, Christine Dao M, Kenaston A, Muto L, Kohno S, Nowinski SM, Solmonson AD et al (2016) The complementary and divergent roles of uncoupling proteins 1 and 3 in thermoregulation. J Physiol 594(24):7455–7464. https://doi.org/10.1113/JP272971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578. https://doi.org/10.1038/nrm3412

    Article  CAS  PubMed  Google Scholar 

  126. Rolfe DF, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol Cell Physiol 271(4):C1380–C1389. https://doi.org/10.1152/ajpcell.1996.271.4.C1380

    Article  CAS  Google Scholar 

  127. Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758. https://doi.org/10.1152/physrev.1997.77.3.731

    Article  CAS  PubMed  Google Scholar 

  128. Rolfe DF, Newman JM, Buckingham JA, Clark MG, Brand MD (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol 276(3):C692-699. https://doi.org/10.1152/ajpcell.1999.276.3.C692

    Article  CAS  PubMed  Google Scholar 

  129. Rolfe DFS, Newman JMB, Buckingham JA, Clark MG, Brand MD (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol Cell Physiol 276(3):C692–C699. https://doi.org/10.1152/ajpcell.1999.276.3.C692

    Article  CAS  Google Scholar 

  130. Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K (2015) Malignant hyperthermia: a review. Orphanet J Rare Dis 10(1):93. https://doi.org/10.1186/s13023-015-0310-1

    Article  PubMed  PubMed Central  Google Scholar 

  131. Rossi A, Pizzo P, Filadi R (2019) Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics. Biochem Biophys Acta 1866(7):1068–1078. https://doi.org/10.1016/j.bbamcr.2018.10.016

    Article  CAS  Google Scholar 

  132. Roussel D, Voituron Y (2020) Mitochondrial costs of being hot: effects of acute thermal change on liver bioenergetics in toads (Bufo bufo). Front Physiol. https://doi.org/10.3389/fphys.2020.00153

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rutter GA, Denton RM (1988) Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem J 252(1):181–189. https://doi.org/10.1042/bj2520181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sahoo SK, Shaikh SA, Sopariwala DH, Bal NC, Periasamy M (2013) Sarcolipin Protein Interaction with Sarco(Endo)Plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA Pump. J Biol Chem 288(10):6881–6889. https://doi.org/10.1074/jbc.M112.436915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Salway JG (2004) Metabolism at a glance. Wiley

    Google Scholar 

  136. Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CFW, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial Sirtuins Sirt3 and Sirt5. J Mol Biol 382(3):790–801. https://doi.org/10.1016/j.jmb.2008.07.048

    Article  CAS  PubMed  Google Scholar 

  137. Schneider K, Valdez J, Nguyen J, Vawter M, Galke B, Kurtz TW, Chan JY (2016) Increased energy expenditure, Ucp1 expression, and resistance to diet-induced obesity in mice lacking nuclear factor-erythroid-2-related transcription factor-2 (Nrf2). J Biol Chem 291(14):7754–7766. https://doi.org/10.1074/jbc.M115.673756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sebaa R, Johnson J, Pileggi C, Norgren M, Xuan J, Sai Y, Tong Q et al (2019) SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Mol Metab 25(juillet):35–49. https://doi.org/10.1016/j.molmet.2019.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shabalina IG, Kramarova TV, Nedergaard J, Cannon B (2006) Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively. Biochem J 399(3):405–414. https://doi.org/10.1042/BJ20060706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shabalina IG, Petrovic N, de Jong JMA, Kalinovich AV, Cannon B, Nedergaard J (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5(5):1196–1203. https://doi.org/10.1016/j.celrep.2013.10.044

    Article  CAS  PubMed  Google Scholar 

  141. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280(14):13560–13567. https://doi.org/10.1074/jbc.M414670200

    Article  CAS  PubMed  Google Scholar 

  142. Slimen I, Belhadj T, Najar AG, Abdrrabba M (2016) Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr 100(3):401–412. https://doi.org/10.1111/jpn.12379

    Article  Google Scholar 

  143. Smith WS, Robert Broadbridge J, East M, Lee AG (2002) Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum. Biochem J 361(Pt 2):277–286. https://doi.org/10.1042/0264-6021:3610277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sone N, Nicholls P (1984) Effect of heat treatment on oxidase activity and proton-pumping capability of proteoliposome-incorporated beef heart cytochrome aa3. Biochemistry 23(26):6550–6554. https://doi.org/10.1021/bi00321a042

    Article  CAS  PubMed  Google Scholar 

  145. Sotoma S, Zhong C, Kah JCY, Yamashita H, Plakhotnik T, Harada Y, Suzuki M (2021) In situ measurements of intracellular thermal conductivity using heater-thermometer hybrid diamond nanosensors. Sci Adv. https://doi.org/10.1126/sciadv.abd7888

    Article  PubMed  PubMed Central  Google Scholar 

  146. Steigmiller S, Turina P, Gräber P (2008) The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. Proc Natl Acad Sci 105(10):3745–3750. https://doi.org/10.1073/pnas.0708356105

    Article  PubMed  PubMed Central  Google Scholar 

  147. Stier A, Bize P, Habold C, Bouillaud F, Massemin S, Criscuolo F (2014) Mitochondrial uncoupling prevents cold-induced oxidative stress: a case study using UCP1 knockout mice. J Exp Biol 217(4):624–630. https://doi.org/10.1242/jeb.092700

    Article  CAS  PubMed  Google Scholar 

  148. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790. https://doi.org/10.1074/jbc.M207217200

    Article  CAS  PubMed  Google Scholar 

  149. Sun Y, Rahbani JF, Jedrychowski MP, Riley CL, Vidoni S, Bogoslavski D, Bo Hu et al (2021) Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature 593(7860):580–585. https://doi.org/10.1038/s41586-021-03533-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Teixeira PFS, dos Santos PB, Pazos-Moura CC (2020) The role of thyroid hormone in metabolism and metabolic syndrome. Therapeutic Adv Endocrinol Metab 11(mai):2042018820917869. https://doi.org/10.1177/2042018820917869

    Article  CAS  Google Scholar 

  151. Tretter L, Adam-Vizi V (2007) Uncoupling is without an effect on the production of reactive oxygen species by in situ synaptic mitochondria. J Neurochem 103(5):1864–1871. https://doi.org/10.1111/j.1471-4159.2007.04891.x

    Article  CAS  PubMed  Google Scholar 

  152. Urbani A, Elena P, Andrea C, Vanessa C, Ildikò S (2021) Mitochondrial ion channels of the inner membrane and their regulation in cell death signaling. Front Cell Dev Biol 8(janvier):620081. https://doi.org/10.3389/fcell.2020.620081

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wakatsuki T, Hirata F, Ohno H, Yamamoto M, Sato Y, Ohira Y (1996) Thermogenic responses to high-energy phosphate contents and/or hindlimb suspension in rats. Jpn J Physiol 46(2):171–175

    Article  CAS  PubMed  Google Scholar 

  154. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(1):21–40. https://doi.org/10.1042/bj2810021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wallimann T, Tokarska-Schlattner M, Neumann D, Epand RM, Epand RF, Andres RH, Widmer HR et al (2007) The phosphocreatine circuit: molecular and cellular physiology of creatine kinases, sensitivity to free radicals, and enhancement by creatine supplementation. Mol Syst Bioenergetics. https://doi.org/10.1002/9783527621095.ch7 (Wiley-VCH Verlag GmbH & Co. KGaA)

    Article  Google Scholar 

  156. Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40(5):1271–1296. https://doi.org/10.1007/s00726-011-0877-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang Q, Sun J, Liu M, Zhou Y, Zhang L, Li Y (2021) The new role of AMP-activated protein kinase in regulating fat metabolism and energy expenditure in adipose tissue. Biomolecules 11(12):1757. https://doi.org/10.3390/biom11121757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang S-B, Brian Foster D, Rucker J, O’Rourke B, Kass DA, Van Eyk JE (2011) Redox regulation of mitochondrial ATP synthase. Circ Res 109(7):750–757. https://doi.org/10.1161/CIRCRESAHA.111.246124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci 107(39):16823–16827. https://doi.org/10.1073/pnas.1011099107

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wescott AP, Kao JPY, Lederer WJ, Boyman L (2019) Voltage-energized calcium-sensitive ATP production by mitochondria. Nat Metab 1(10):975–984. https://doi.org/10.1038/s42255-019-0126-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wikström M, Springett R (2020) Thermodynamic efficiency, reversibility, and degree of coupling in energy conservation by the mitochondrial respiratory chain. Commun Biol. https://doi.org/10.1038/s42003-020-01192-w

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yagi T, Hatefi Y (1987) Thiols in oxidative phosphorylation: Thiols in the F0 of ATP synthase essential for ATPase activity. Arch Biochem Biophys 254(1):102–109. https://doi.org/10.1016/0003-9861(87)90085-3

    Article  CAS  PubMed  Google Scholar 

  163. Yamada K (2017) Energetics of muscle contraction: further trials. J Physiol Sci 67(1):19–43. https://doi.org/10.1007/s12576-016-0470-3

    Article  CAS  PubMed  Google Scholar 

  164. Yamashita H, Ohira Y, Wakatsuki T, Yamamoto M, Kizaki T, Oh-ishi S, Ohno H (1995) Increased growth of brown adipose tissue but its reduced thermogenic activity in creatine-depleted rats fed β-guanidinopropionic acid. Biochimica et Biophysica Acta (BBA) 1230(1):69–73. https://doi.org/10.1016/0005-2728(95)00067-S

    Article  Google Scholar 

  165. Yehuda-Shnaidman E, Kalderon B, Bar-Tana J (2014) Thyroid hormone, thyromimetics, and metabolic efficiency. Endocr Rev 35(1):35–58. https://doi.org/10.1210/er.2013-1006

    Article  CAS  PubMed  Google Scholar 

  166. Yu XX, Mao W, Zhong A, Schow P, Brush J, Sherwood SW, Adams SH, Pan G (2000) Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J 14(11):1611–1618. https://doi.org/10.1096/fj.99-0834com

    Article  CAS  PubMed  Google Scholar 

  167. Zanotti F, Guerrieri F, Capozza G, Fiermonte M, Berden J, Papa S (1992) Role of F0 and F1 subunits in the gating and coupling function of mitochondrial H+-ATP synthase. Eur J Biochem 208(1):9–16. https://doi.org/10.1111/j.1432-1033.1992.tb17153.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to warmly thank the french Direction Générale pour l'Armement and the Région Pays de la Loire for supporting this project.

Funding

This study was funded by ANR (ANR-ASTRID TEMPO-MITO Project N° ANR-21-ASTR-0010) and DGA/MinDef. FB is supported by a PhD. fellowship from DGA/Région Pays de la Loire.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the redaction and edition of the manuscript.

Corresponding authors

Correspondence to Florian Beignon or Guy Lenaers.

Ethics declarations

Conflict of interest

The authors declare that there are no relevant financial or non-financial competing interests to report.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adenine nucleotide translocase (ANT)

Mitochondrial ADP/ATP carrier that exchanges ATP with ADP across the inner mitochondrial membrane, also called AAC for ADP/ATP carrier protein

Adenosine triphosphate (ATP) / Adenosine diphosphate (ADP)

Key molecules in the management of cellular energy. The hydrolysis of ATP to ADP provides energy to drive most chemical reactions involved in all cellular processes

Brown adipose tissue (BAT)

Adipose tissue subtype which main function is to ensure thermogenesis, through lipolysis of adipocytes, in mammals

Calcium (Ca2+)

Ions that participate in many signaling pathways, as a second messenger regulating biological functions, such as muscle contraction, nerve conduction, and metabolism

Exertional Heat Stroke (EHS)

Severe pathological life-threatening reaction characterized by a drastic increase in body temperature during a physical exertion, high external temperatures, or both

Endoplasmic reticulum (ER)/Sarcoplasmic reticulum (SR)

Organelles involved in protein synthesis and folding, and lipid synthesis, which also constitute the main intracellular Ca2+ store, essential for muscular cell contraction

Electron-transferring flavoprotein (ETF)

Flavoprotein that functions as an electron acceptor for dehydrogenases

Heat shock protein (HSP)

Family of proteins involved in cellular stress response, such as un-physiological heat, cold, UV light, or tissue damages

Inositol triphosphate receptor 3 (IP3R)

Membrane glycoprotein complex localized in ER/SR that acts as a Ca2+ channel activated by inositol trisphosphate (IP3)

Malignant Hyperthermia (MHT)

Severe reaction in response to volatile anesthetic agents whose symptoms result in pathological muscle rigidity, fever, and heart rate

Mitochondrial calcium uniporter (MCU)

Mitochondrial transmembrane protein described as the main actor in mitochondrial Ca2+ uptake

Nicotinamide adenine dinucleotide (NADH/NAD+)

Reduced and oxidized form of a coenzyme involved in redox reactions that carry electrons from one reaction to another

Non-shivering thermogenesis (NST)

Process related to an increase in metabolic heat production that is not associated with muscle activity

Oxidative phosphorylation (OXPHOS)

An aerobic metabolic pathway where NADH and FADH2 are oxidized by a series of protein complexes within the mitochondria to produce ATP

P/O

Defines the stoichiometric efficiency of OXPHOS, which is the amount of inorganic phosphate (Pi) incorporated into ATP per amount of consumed oxygen

Mechanistic P/O is the maximal P/O ratio, in the absence of proton leak or other uncoupling reactions, and is equivalent to the combination of the H+/O and ATP/O ratios

Effective P/O is the ratio of mitochondrial ATP synthesis to oxygen consumed in tissue or cells, in different metabolic conditions. It differs from the mechanistic P/O mainly according to mitochondrial proton leak or other uncoupling reactions, and by the energetic demand corresponding to the mitochondrial ATP synthesis rate

Proton gradient (Δp)

Gradient associated to the higher H+ concentration in the intra-membrane space than in the matrix, which results from the respiratory chain activity and serving as the driving force for ATP synthesis by the mitochondrial ATP synthase

Reactive oxygen species (ROS)

Reactive chemicals formed from O2, such as O2•−, that play a role in cell signaling and homeostasis, in addition to causing cellular damages by altering DNA, proteins, or lipids, when over-produced

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)

A Ca2+ ATPase that transports Ca2+ from the cytosol into the ER/SR lumen by hydrolyzing ATP

Sarcolipin (Sln)

Small peptide regulating SERCA activity

Sirtuin 3 (SIRT3)

A NAD-dependent deacetylase localized in mitochondria regulating many metabolic functions

Tricarboxylic acid cycle (TCA cycle)

A series of chemical reactions occurring in the mitochondrial matrix where the oxidation of acetyl-CoA, derived from carbohydrates, lipids, and proteins, provides reduced cofactors to feed the OXPHOS

Uncoupling proteins (UCPs)

Mitochondrial inner membrane proteins acting as transporters to dissipate H+ gradient and generate heat, leading to mitochondrial stimulation

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beignon, F., Gueguen, N., Tricoire-Leignel, H. et al. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cell. Mol. Life Sci. 79, 525 (2022). https://doi.org/10.1007/s00018-022-04523-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04523-8

Keywords

Navigation