Skip to main content
Log in

ConA induced changes in energy metabolism of rat thymocytes

  • Short Papers
  • Published:
Bioscience Reports

Abstract

The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In constrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ardawi, M. S. M., and Newsholme, E. A. (1985)Essays Biochem. 21: 1–44.

    Google Scholar 

  2. Sauers, L. J., Wierda, D., and Reasor, M. J.Immunopharm. Immunotox. (1988)10: 1–19.

    Google Scholar 

  3. Sugiura, T. and Waku, K. (1984)Biochim. Biophys. Acta 796: 190–197.

    Google Scholar 

  4. Hui, D. Y. and Harmony, J. A. (1980)Biochem. J. 192: 91–98.

    Google Scholar 

  5. Stanley, J. B., Gorczynski, R., Huang, C. K., Love, J., and Mills, G. B. (1990)J. Immunol. 145: 2189–2198.

    Google Scholar 

  6. Roosnek, E., Tunnacliffe, A., and Lanzavecchia, A. (1990)Eur. J. Immun. 20:1393–1396.

    Google Scholar 

  7. Siems, W., Dubiel, W., Dumdey, R., Müller, M., and Rapoport, S. M. (1984).Eur. J. Biochem. 139: 101–117.

    Google Scholar 

  8. Müller, M., Siems, W., Buttgereit, F., Dumdey, R., and Rapoport, S. M. (1986)Eur. J. Biochem. 161: 701–705.

    Google Scholar 

  9. Buttgereit, F., Müller, M., and Rapoport, S. M. (1991)Biochem. Int. 24: 59–67.

    Google Scholar 

  10. Newholme, E. A. and Leech, A. R. (1983)Biochemistry for the Medical Sciences. John Wiley, Chichester.

    Google Scholar 

  11. Meyerhof, O. (1945).J. Biol. Chem. 157: 105–117.

    Google Scholar 

  12. Lakin-Thomas, P. L. and Brand, M. D. (1988)Biochem. J. 256: 167–173.

    Google Scholar 

  13. Nobes, C. D., Lakin-Thomas, P. L., and Brand, M. D. (1989)Biochim. Biophys. Acta 976: 241–245.

    Google Scholar 

  14. Nobes, C. D., Hay, W. W., and Brand, M. D. (1990)J. Biol. Chem. 265: 12910–12915.

    Google Scholar 

  15. Eagle, H. (1955)Proc. Soc. Exp. Biol. Med. 89: 362–364.

    Google Scholar 

  16. Borsook, H., Jiggens, S., and Wilson, R. T. (1971)Nature 230: 328–330.

    Google Scholar 

  17. Ardawi, M. S. M., and Newsholme, E. A. (1983)Biochem. J. 212: 835–842.

    Google Scholar 

  18. Corps, A. N. (1982) Ph.D. thesis, University of Cambridge.

  19. Schmidt, H., Siems, W., Müller, M., Dumdey, R., Jakstadt, M., and Rapoport, S. M. (1989)Biochem. Int. 19: 985–992.

    Google Scholar 

  20. Brand, M. D. (1990)Biochim. Biophys. Acta 1018: 128–133.

    Google Scholar 

  21. Nobes, C. D., Brown, G. C., Olive, P. N., and Brand, M. D. (1990)J. Biol. Chem. 265: 12903–12909.

    Google Scholar 

  22. Lakin-Thomas, P. L. and Brand, M. D. (1987)Biochem. J. 246: 173–177.

    Google Scholar 

  23. Taylor, M. V., hesketh, T. R., and Metcalfe, J. C. (1988)Biochem. J. 249: 847–855.

    Google Scholar 

  24. Brand, M. D. and Felber, S. M. (1984)Biochem. J. 217: 453–459.

    Google Scholar 

  25. Baumgarten, E., Brand, M. D., and Pozzan, T. (1983)Biochem. J. 216: 359–369.

    Google Scholar 

  26. Felber, S. M. and Brand, M. D. (1983)Biochem. J. 210: 893–897.

    Google Scholar 

  27. Hesketh, T. R., Smith, G. A., Moore, J. P., Taylor, M. V., and Metcalfe, J. C. (1983)J. Biol. Chem. 258: 4876–4882.

    Google Scholar 

  28. Vandenberghe, P. A. and Ceuppens, J. L. (1990)J. Immunol. Methods 127: 197–205.

    Google Scholar 

  29. Kay, J. E. (1976)Biochem. Soc. Trans. 4: 1120–1122.

    Google Scholar 

  30. Prasad, K. V. S., Severini, A., and Kaplan, J. G. (1987)Arch. Biochem. Biophys. 252: 515–525.

    Google Scholar 

  31. Mitsomoto, Y., Sato, K., and Mohri, T. (1988)Biochim. Biophys. Acta 968: 353–358.

    Google Scholar 

  32. Koch, B., Schröder, M., Schäfer, G., and Schauder, P. (1990)J. Cell. Phys. 143: 94–99.

    Google Scholar 

  33. Jagus-Smith, R. and Kay, J. E. (1976)Biochem. Soc. Trans. 4: 783–785.

    Google Scholar 

  34. Pospelova, T. V. and Zhadanova, N. S. (1974)Tsitologiya 16: 49–55.

    Google Scholar 

  35. Bladon, T., Brosch, K., Brown, D. L., and Setterfield, G. (1988)Biochem. Cell Biol. 66: 40–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttgereit, F., Brand, M.D. & Müller, M. ConA induced changes in energy metabolism of rat thymocytes. Biosci Rep 12, 381–386 (1992). https://doi.org/10.1007/BF01121501

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01121501

Key Words

Navigation