Skip to main content

Advertisement

Log in

α-Enolase reduces cerebrovascular Aβ deposits by protecting Aβ amyloid formation

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cerebral amyloid angiopathy (CAA) is characterized by cerebrovascular amyloid β (Aβ) deposits and causes dementia and cerebral hemorrhage. Although α-enolase (ENO1) was shown to possess multifunctional roles, its exact functions in CAA pathogenesis have not been determined. In this study, we focused on ENO1, a well-known glycolytic enzyme, which was previously identified via a proteomic approach as an upregulated protein in brain samples from patients with Alzheimer's disease (AD). We utilized the thioflavin T fluorescence assay and transmission electron microscopy to monitor the effects of ENO1 on amyloid formation by Aβ peptides. We also cultured murine primary cerebrovascular smooth muscle cells to determine the effects of ENO1 on Aβ cytotoxicity. To investigate the effects of ENO1 in vivo, we infused ENO1 or a vehicle control into the brains of APP23 mice, a transgenic model of AD/CAA, using a continuous infusion system, followed by a cognitive test and pathological and biochemical analyses. We found that novel functions of ENO1 included interacting with Aβ and inhibiting its fibril formation, disrupting Aβ fibrils, and weakening the cytotoxic effects of these fibrils via proteolytic degradation of Aβ peptide. We also demonstrated that infusion of ENO1 into APP23 mouse brains reduced cerebrovascular Aβ deposits and improved cognitive impairment. In addition, we found that enzymatically inactivated ENO1 failed to inhibit Aβ fibril formation and fibril disruption. The proteolytic activity of ENO1 may thus underlie the enzyme’s cytoprotective effect and clearance of Aβ from the brain, and ENO1 may be a therapeutic target in CAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets analyzed in this current study are available from the corresponding author on reasonable request.

Abbreviations

Aβ:

Amyloid β

APP:

Amyloid precursor protein

CAA:

Cerebral amyloid angiopathy

ENO1:

α-Enolase

H2O2 :

Hydrogen peroxide

PBS:

Phosphate-buffered saline

TEM:

Transmission electron microscopy

ThT:

Thioflavin T

References

  1. Yamaguchi H, Yamazaki T, Lemere CA, Frosch MP, Selkoe DJ (1992) Beta amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer’s disease. An immunoelectron microscopic study. Am J Pathol 141:249–259

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy in the elderly. Ann Neurol 70:871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm (Vienna) 109:813–836

    Article  CAS  Google Scholar 

  4. Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC (2016) Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol Cell Proteomics 15:409–425

    Article  CAS  PubMed  Google Scholar 

  5. Drummond E, Wisniewski T (2017) The use of localized proteomics to identify the drivers of Alzheimer’s disease pathogenesis. Neural Regen Res 12:912–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li KW, Ganz AB, Smit AB (2019) Proteomics of neurodegenerative diseases: analysis of human post-mortem brain. J Neurochem 151:435–445

    Article  CAS  PubMed  Google Scholar 

  7. Schonberger SJ, Edgar PF, Kydd R, Faull RL, Cooper GJ (2001) Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease process. Proteomics 1:1519–1528

    Article  CAS  PubMed  Google Scholar 

  8. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB et al (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27:1564–1576

    Article  CAS  PubMed  Google Scholar 

  9. Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB, Merchant M et al (2007) Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J Alzheimers Dis 11:153–164

    Article  CAS  PubMed  Google Scholar 

  10. Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM et al (2009) Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin Appl 3:682–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Domenico F, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C et al (2011) Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer’s disease subjects. J Proteomics 74:1091–1103

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zahid S, Oellerich M, Asif AR, Ahmed N (2012) Phosphoproteome profiling of substantia nigra and cortex regions of Alzheimer’s disease patients. J Neurochem 121:954–963

    Article  CAS  PubMed  Google Scholar 

  13. Butterfield DA, Lange ML (2009) Multifunctional roles of enolase in Alzheimer’s disease brain: beyond altered glucose metabolism. J Neurochem 111:915–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Inoue Y, Ueda M, Tasaki M, Takeshima A, Nagatoshi A, Masuda T et al (2017) Sushi repeat-containing protein 1: a novel disease-associated molecule in cerebral amyloid angiopathy. Acta Neuropathol 134:605–617

    Article  CAS  PubMed  Google Scholar 

  15. Pancholi V (2001) Multifunctional α-enolase: its role in diseases. Cell Mol Life Sci 58:902–920

    Article  CAS  PubMed  Google Scholar 

  16. Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M et al (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508

    Article  CAS  PubMed  Google Scholar 

  17. Comi GP, Fortunato F, Lucchiari S, Bordoni A, Prelle A, Jann S et al (2001) β-Enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol 50:202–207

    Article  CAS  PubMed  Google Scholar 

  18. Pancholi V, Fischetti VA (1998) α-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515

    Article  CAS  PubMed  Google Scholar 

  19. Takei N, Kondo J, Nagaike K, Ohsawa K, Kato K, Kohsaka S (1991) Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J Neurochem 57:1178–1184

    Article  CAS  PubMed  Google Scholar 

  20. Iida H, Yahara I (1985) Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature 315:688–690

    Article  CAS  Google Scholar 

  21. Aaronson RM, Graven KK, Tucci M, McDonald RJ, Farber HW (1995) Non-neuronal enolase is an endothelial hypoxic stress protein. J Biol Chem 270:27752–27757

    Article  CAS  PubMed  Google Scholar 

  22. Redlitz A, Fowler BJ, Plow EF, Miles LA (1995) The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 227:407–415

    Article  CAS  PubMed  Google Scholar 

  23. Inoue Y, Ueda M, Masuda T, Misumi Y, Yamashita T, Ando Y (2019) Memantine, a noncompetitive N-methyl-D-aspartate receptor antagonist, attenuates cerebral amyloid angiopathy by increasing insulin-degrading enzyme expression. Mol Neurobiol 56:8573–8588

    Article  CAS  PubMed  Google Scholar 

  24. Ono K, Takahashi R, Ikeda T, Yamada M (2012) Cross-seeding effects of amyloid β-protein and α-synuclein. J Neurochem 122:883–890

    Article  CAS  PubMed  Google Scholar 

  25. Tasaki M, Ueda M, Hoshii Y, Mizukami M, Matsumoto S, Nakamura M et al (2019) A novel age-related venous amyloidosis derived from EGF-containing fibulin-like extracellular matrix protein 1. J Pathol 247:444–455

    Article  CAS  PubMed  Google Scholar 

  26. Spencer SG, Brewer JM (1982) Substrate-dependent inhibition of yeast enolase by fluoride. Biochem Biophys Res Commun 106:553–558

    Article  CAS  PubMed  Google Scholar 

  27. Shenolikar S, Nairn AC (1991) Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res 23:1–121

    CAS  PubMed  Google Scholar 

  28. Kanapka JA, Hamilton IR (1971) Fluoride inhibition of enolase activity in vivo and its relationship to the inhibition of glucose-6-P formation in Streptococcus salivarius. Arch Biochem Biophys 146:167–171

    Article  CAS  PubMed  Google Scholar 

  29. Hamilton IR (1977) Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Caries Res 11:262–291

    Article  PubMed  Google Scholar 

  30. Boulay AC, Saubaméa B, Declèves X, Cohen-Salmon M (2015) Purification of mouse brain vessels. J Vis Exp 105:e53208

    Google Scholar 

  31. Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  32. Sarroukh R, Cerf E, Derclaye S, Dufrêne YF, Goormaghtigh E, Ruysschaert JM, Raussens V (2011) Transformation of amyloid β(1–40) oligomers into fibrils is characterized by a major change in secondary structure. Cell Mol Life Sci 68:1429–1438

    Article  CAS  PubMed  Google Scholar 

  33. Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrêne YF, Narayanaswami V, Goormaghtigh E, Ruysschaert JM, Raussens V (2009) Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J 421:415–423

    Article  CAS  PubMed  Google Scholar 

  34. Zhang XY, Sun XZ, Zhang S, Yang JH, Liu FF, Fan J (2019) Comprehensive transcriptome analysis of grafting onto Artemisia scoparia W. to affect the aphid resistance of chrysanthemum (Chrysanthemum morifolium T.). BMC Genomics 20:776

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dentan C, Tselepis AD, Chapman MJ, Ninio E (1996) Pefabloc, 4-[2-aminoethyl]benzenesulfonyl fluoride, is a new, potent nontoxic and irreversible inhibitor of PAF-degrading acetylhydrolase. Biochim Biophys Acta 1299:353–357

    Article  PubMed  Google Scholar 

  36. Nalinanon S, Benjakul S, Visessanguan W, Kishimura H (2008) Tuna pepsin: characteristics and its use for collagen extraction from the skin of threadfin bream (Nemipterus spp.). J Food Sci 73:C413-419

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Matsuoka H, Mitamura T, Horii T (2002) Characterization of proteases involved in the processing of Plasmodium falciparum serine repeat antigen (SERA). Mol Biochem Parasitol 120:177–186

    Article  CAS  PubMed  Google Scholar 

  38. Sun Q, Zhang B, Yan QJ, Jiang ZQ (2016) Comparative analysis on the distribution of protease activities among fruits and vegetable resources. Food Chem 213:708–713

    Article  CAS  PubMed  Google Scholar 

  39. Tsukagoshi H, Sun J, Kwon O, Barnes PJ, Chung KF (1995) Role of neutral endopeptidase in bronchial hyperresponsiveness to bradykinin induced by IL-1 beta. J Appl Physiol 78:921–927

    Article  CAS  PubMed  Google Scholar 

  40. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu N, Zhang Y, Li H, Gao Z (2010) Oxidative and nitrative modifications of α-enolase in cardiac proteins from diabetic rats. Free Radic Biol Med 48:873–881

    Article  CAS  PubMed  Google Scholar 

  42. Kawai S, Takagi Y, Kaneko S, Kurosawa T (2011) Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp Anim 60:481–487

    Article  CAS  PubMed  Google Scholar 

  43. Qi XM, Wang C, Chu XK, Li G, Ma JF (2018) Intraventricular infusion of clusterin ameliorated cognition and pathology in Tg6799 model of Alzheimer’s disease. BMC Neurosci 19:2

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Castro BM, Pereira GS, Magalhães V, Rossato JI, De Jaeger X, Martins-Silva C et al (2009) Reduced expression of the vesicular acetylcholine transporter causes learning deficits in mice. Genes Brain Behav 8:23–35

    Article  PubMed  Google Scholar 

  45. Huang SM, Mouri A, Kokubo H, Nakajima R, Suemoto T, Higuchi M et al (2006) Neprilysin-sensitive synapse-associated amyloid-β peptide oligomers impair neuronal plasticity and cognitive function. J Biol Chem 281:17941–17951

    Article  CAS  PubMed  Google Scholar 

  46. Davis J, Cribbs DH, Cotman CW, Van Nostrand WE (1999) Pathogenic amyloid β-protein induces apoptosis in cultured human cerebrovascular smooth muscle cells. Amyloid 6:157–164

    Article  CAS  PubMed  Google Scholar 

  47. Mizukami Y, Iwamatsu A, Aki T, Kimura M, Nakamura K, Nao T et al (2004) ERK1/2 regulates intracellular ATP levels through α-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem 279:50120–50131

    Article  CAS  PubMed  Google Scholar 

  48. Dai J, Zhou Q, Chen J, Rexius-Hall ML, Rehman J, Zhou G (2018) Alpha-enolase regulates the malignant phenotype of pulmonary artery smooth muscle cells via the AMPK-Akt pathway. Nat Commun 9:3850

    Article  PubMed  PubMed Central  Google Scholar 

  49. Naiki H, Gejyo F (1999) Kinetic analysis of amyloid fibril formation. Methods Enzymol 309:305–318

    Article  CAS  PubMed  Google Scholar 

  50. LeVine H 3rd (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bastidas OH, Green B, Sprague M, Peters MH (2016) Few Ramachandran angle changes provide interaction strength increase in Aβ42 versus Aβ40 amyloid fibrils. Sci Rep 6:36499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang P, Mariman E, Keijer J, Bouwman F, Noben JP, Robben J et al (2004) Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell Mol Life Sci 61:2405–2417

    Article  CAS  PubMed  Google Scholar 

  53. Qiu WQ, Borth W, Ye Z, Haass C, Teplow DB, Selkoe DJ (1996) Degradation of amyloid β-protein by a serine protease-α2-macroglobulin complex. J Biol Chem 271:8443–8451

    Article  CAS  PubMed  Google Scholar 

  54. Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS (2012) PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem 359:347–358

    Article  CAS  PubMed  Google Scholar 

  55. Li RC, Pouranfar F, Lee SK, Morris MW, Wang Y, Gozal D (2008) Neuroglobin protects PC12 cells against β-amyloid-induced cell injury. Neurobiol Aging 29:1815–1822

    Article  CAS  PubMed  Google Scholar 

  56. Oh Y, Kim EY, Kim Y, Jin J, Jin BK, Jahng GH et al (2011) Neuroprotective effects of overexpressed cyclophilin B against Aβ-induced neurotoxicity in PC12 cells. Free Radic Biol Med 51:905–920

    Article  CAS  PubMed  Google Scholar 

  57. Park L, Anrather J, Forster C, Kazama K, Carlson GA, Iadecola C (2004) Aβ-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J Cereb Blood Flow Metab 24:334–342

    Article  CAS  PubMed  Google Scholar 

  58. Tabner BJ, El-Agnaf OM, Turnbull S, German MJ, Paleologou KE, Hayashi Y et al (2005) Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 280:35789–35792

    Article  CAS  PubMed  Google Scholar 

  59. Sharma NK, Sethy NK, Bhargava K (2013) Comparative proteome analysis reveals differential regulation of glycolytic and antioxidant enzymes in cortex and hippocampus exposed to short-term hypobaric hypoxia. J Proteomics 79:277–298

    Article  CAS  PubMed  Google Scholar 

  60. Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB et al (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22:223–232

    Article  CAS  PubMed  Google Scholar 

  61. Law A, Gauthier S, Quirion R (2001) Say NO to Alzheimer’s disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Brain Res Rev 35:73–96

    Article  CAS  PubMed  Google Scholar 

  62. Zhao QF, Yu JT, Tan L (2015) S-Nitrosylation in Alzheimer’s disease. Mol Neurobiol 51:268–280

    Article  CAS  PubMed  Google Scholar 

  63. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S, Lipton SA (2013) Aberrant protein S-nitrosylation in neurodegenerative diseases. Neuron 78:596–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001

    Article  Google Scholar 

  65. Chung YA, Hyun O J, Kim JY, Kim KJ, Ahn KJ (2009) Hypoperfusion and ischemia in cerebral amyloid angiopathy documented by 99mTc-ECD brain perfusion SPECT. J Nucl Med 50:1969–1974

    Article  PubMed  Google Scholar 

  66. Malek AM, Izumo S, Alper SL (1999) Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells. Neurosurgery 45:334–344 (discussion 344–345)

    Article  CAS  PubMed  Google Scholar 

  67. Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B, Jucker M (1998) Neuron loss in APP transgenic mice. Nature 395:755–775

    Article  CAS  PubMed  Google Scholar 

  68. Gravina SA, Ho L, Eckman CB, Long KE, Otvos L Jr, Younkin LH, Suzuki N, Younkin SG (1995) Amyloid β protein (Aβ) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 or Aβ42(43). J Biol Chem 270:7013–7016

    Article  CAS  PubMed  Google Scholar 

  69. Liu H, Ojha B, Morris C, Jiang M, Wojcikiewicz EP, Rao PP, Du D (2015) Positively charged chitosan and N-trimethyl chitosan inhibit Aβ40 fibrillogenesis. Biomacromol 16:2363–2373

    Article  CAS  Google Scholar 

  70. Tomic JL, Pensalfini A, Head E, Glabe CG (2009) Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis 35:352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeon GS, Nakamura T, Lee JS, Choi WJ, Ahn SW, Lee KW, Sung JJ, Lipton SA (2014) Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Mol Neurobiol 49:796–807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Ms. Hiroko Katsura and Ms. Mika Oka for their technical support during histopathological investigations. We are indebted to Ms. Judith B. Gandy for providing professional English editing of the manuscript.

Funding

This research was supported by a Grant-in-Aid for Young Scientists (19K16919) from the Japan Society for the Promotion of Science (JSPS), a fund for the Promotion of Joint International Research (Fostering Joint International Research (A)) (19KK0410) from JSPS, the Japan Foundation of Applied Enzymology, Kanae Foundation for Life and Socio-Medical Science, The Uehara Memorial Foundation, Kobayashi Magobe Memorial Medical Foundation, Takeda Science Foundation, Daiwa Health Foundation, The Osaka Medical Research Foundation for Intractable Diseases, Mochida Memorial Foundation for Medical and Pharmaceutical Research, and SENSHIN Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

YI, YA, and MU designed the experiments. YI contributed to writing the draft of the text and preparation of the figures. YI, MT, and TN performed the experiments, and TM and YM assisted with tissue analysis. YI wrote the main manuscript text and prepared the figures. All authors discussed the data and participated in the editing. MU supervised the study. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yasuteru Inoue.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethics approval and consent to participate

The Animal Care and Use Committee of Kumamoto University School of Medicine approved the protocols for the animal experiments.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, Y., Tasaki, M., Masuda, T. et al. α-Enolase reduces cerebrovascular Aβ deposits by protecting Aβ amyloid formation. Cell. Mol. Life Sci. 79, 462 (2022). https://doi.org/10.1007/s00018-022-04493-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04493-x

Keywords

Navigation