Skip to main content

Advertisement

Log in

S-Nitrosylation in Alzheimer's disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

S-Nitrosylation, a redox-mediated posttranslational modification, is a result of the covalent binding nitric oxide (NO)-related species to cysteine residues of target proteins with the formation of nitrosothiols (SNOs). Normally, protein S-nitrosylation could be a cellular signaling mechanism, as is often a reversible and selective process, akin to protein phosphorylation. Emerging evidences have certified that the occurrence of aberrant S-nitrosylation of protein reactions could lead to protein misfolding, mitochondrial fission, synaptic damage, or apoptosis, thus contributing to the pathogenesis of Alzheimer’s disease (AD). In this review, we summarize the recent findings of key S-nitrosylated proteins which play crucial roles in the pathogenesis of AD and discuss how SNO proteins affect the progression of AD. In addition, it has been demonstrated that interference of S-nitrosylation could potentially protect from mitochondrial dysfunction, synaptic loss, or neuronal cell death in AD animal models. Hence, we also present the recent advances and challenges in targeting S-nitrosylated proteins for AD therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. WHO, Alzheimer’s Disease International (2012) Dementia: a public health priority. World Health Organization, Geneva

    Google Scholar 

  2. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S, Lipton SA (2013) Aberrant protein S-nitrosylation in neurodegenerative diseases. Neuron 78(4):596–614. doi:10.1016/j.neuron.2013.05.005

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-Nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324(5923):102–105. doi:10.1126/science.1171091

    Google Scholar 

  4. Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci U S A 108(34):14330–14335. doi:10.1073/pnas.1105172108

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Ho GP, Selvakumar B, Mukai J, Hester LD, Wang Y, Gogos JA, Snyder SH (2011) S-Nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71(1):131–141. doi:10.1016/j.neuron.2011.05.033

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Forstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42(10):1849–1857

    CAS  PubMed  Google Scholar 

  7. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351(6329):714–718. doi:10.1038/351714a0

    CAS  PubMed  Google Scholar 

  8. Fukui H, Moraes CT (2008) The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 31(5):251–256. doi:10.1016/j.tins.2008.02.008

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Canzoniero LM, Granzotto A, Turetsky DM, Choi DW, Dugan LL, Sensi SL (2013) nNOS (+) striatal neurons, a subpopulation spared in Huntington's disease, possess functional NMDA receptors but fail to generate mitochondrial ROS in response to an excitotoxic challenge. Front Physiol 4:112

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Jin P, Kim JA, Choi DY, Lee YJ, Jung HS, Hong JT (2013) Anti-inflammatory and anti-amyloidogenic effects of a small molecule, 2,4-bis(p-hydroxyphenyl)-2-butenal in Tg2576 Alzheimer's disease mice model. J Neuroinflammation 10:2. doi:10.1186/1742-2094-10-2

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Wilcock DM, Lewis MR, Van Nostrand WE, Davis J, Previti ML, Gharkholonarehe N, Vitek MP, Colton CA (2008) Progression of amyloid pathology to Alzheimer's disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2. J Neurosci 28(7):1537–1545. doi:10.1523/JNEUROSCI.5066-07.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Shi ZQ, Sunico CR, McKercher SR, Cui J, Feng GS, Nakamura T, Lipton SA (2013) S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke. Proc Natl Acad Sci U S A 110(8):3137–3142. doi:10.1073/pnas.1215501110

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Nakamura T, Lipton SA (2007) S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding. Cell Death Differ 14(7):1305–1314. doi:10.1038/sj.cdd.4402138

    CAS  PubMed  Google Scholar 

  14. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45(26):263001

    Google Scholar 

  15. Wilkins HM, Kirchhof D, Manning E, Joseph JW, Linseman DA (2013) Mitochondrial glutathione transport is a key determinant of neuronal susceptibility to oxidative and nitrosative stress. J Biol Chem 288(7):5091–5101

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA, Stamler JS (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol 27(6):557–559. doi:10.1038/nbt.1545

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Xue Y, Liu Z, Gao X, Jin C, Wen L, Yao X, Ren J (2010) GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PloS One 5(6):e11290. doi:10.1371/journal.pone.0011290

    PubMed Central  PubMed  Google Scholar 

  18. Cuadrado-Tejedor M, Vilarino M, Cabodevilla F, Del Rio J, Frechilla D, Perez-Mediavilla A (2011) Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer's disease transgenic mice: an insight into the pathogenic effects of amyloid-beta. J Alzheim Dis JAD 23(2):195–206. doi:10.3233/jad-2010-100966

    CAS  Google Scholar 

  19. Guo J, Gaffrey MJ, Su D, Liu T, Camp DG 2nd, Smith RD, Qian WJ (2014) Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat Protocol 9(1):64–75. doi:10.1038/nprot.2013.161

    CAS  Google Scholar 

  20. Beigi F, Gonzalez DR, Minhas KM, Sun QA, Foster MW, Khan SA, Treuer AV, Dulce RA, Harrison RW, Saraiva RM, Premer C, Schulman IH, Stamler JS, Hare JM (2012) Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc Natl Acad Sci U S A 109(11):4314–4319. doi:10.1073/pnas.1113319109

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Sun N, Hao JR, Li XY, Yin XH, Zong YY, Zhang GY, Gao C (2013) GluR6-FasL-Trx2 mediates denitrosylation and activation of procaspase-3 in cerebral ischemia/reperfusion in rats. Cell Death Dis 4:e771. doi:10.1038/cddis.2013.299

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Jeon GS, Nakamura T, Lee JS, Choi WJ, Ahn SW, Lee KW, Sung JJ, Lipton SA (2013) Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Mol Neurobiol. doi:10.1007/s12035-013-8562-z

    Google Scholar 

  23. Nakamura T, Lipton SA (2013) Emerging role of protein–protein transnitrosylation in cell signaling pathways. Antioxid Redox Signal 18(3):239–249. doi:10.1089/ars.2012.4703

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Odajima J, Wills ZP, Ndassa YM, Terunuma M, Kretschmannova K, Deeb TZ, Geng Y, Gawrzak S, Quadros IM, Newman J, Das M, Jecrois ME, Yu Q, Li N, Bienvenu F, Moss SJ, Greenberg ME, Marto JA, Sicinski P (2011) Cyclin E constrains Cdk5 activity to regulate synaptic plasticity and memory formation. Dev Cell 21(4):655–668. doi:10.1016/j.devcel.2011.08.009

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Cheung ZH, Ip NY (2012) Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 22(3):169–175. doi:10.1016/j.tcb.2011.11.003

    CAS  PubMed  Google Scholar 

  26. Qu J, Nakamura T, Holland EA, McKercher SR, Lipton SA (2012) S-Nitrosylation of Cdk5: potential implications in amyloid-β-related neurotoxicity in Alzheimer disease. Prion 6(4):364–370

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhang P, Yu PC, Tsang AH, Chen Y, Fu AK, Fu WY, Chung KK, Ip NY (2010) S-Nitrosylation of cyclin-dependent kinase 5 (cdk5) regulates its kinase activity and dendrite growth during neuronal development. J Neurosci 30(43):14366–14370. doi:10.1523/JNEUROSCI.3899-10.2010

    CAS  PubMed  Google Scholar 

  28. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 107(43):18670–18675. doi:10.1073/pnas.1006586107

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518. doi:10.1038/nrn2417

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med 14(2):45–53. doi:10.1016/j.molmed.2007.12.002

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang S, Song J, Tan M, Albers KM, Jia J (2012) Mitochondrial fission proteins in peripheral blood lymphocytes are potential biomarkers for Alzheimer's disease. Eur J Neurol 19(7):1015–1022. doi:10.1111/j.1468-1331.2012.03670.x

    CAS  PubMed  Google Scholar 

  32. Wang X, Su B, H-g L, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci 29(28):9090–9103

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Nakamura T, Lipton SA (2013) Emerging role of protein-protein transnitrosylation in cell signaling pathways. Antioxid Redox Signal 18(3):239–249

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Scheper W, Nijholt DA, Hoozemans JJ (2011) The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7(8):910–911

    PubMed Central  PubMed  Google Scholar 

  35. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12(1):105–118. doi:10.1016/s1474-4422(12)70238-7

    CAS  PubMed  Google Scholar 

  36. Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11(11):2807–2850

    CAS  PubMed  Google Scholar 

  37. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA (2006) S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441(7092):513–517. doi:10.1038/nature04782

    CAS  PubMed  Google Scholar 

  38. Gaucher C, Boudier A, Dahboul F, Parent M, Leroy P (2013) S-Nitrosation/denitrosation in cardiovascular pathologies: facts and concepts for the rational design of S-nitrosothiols. Curr Pharm Des 19(3):458–472

    CAS  PubMed  Google Scholar 

  39. Sliskovic I, Raturi A, Mutus B (2005) Characterization of the S-denitrosation activity of protein disulfide isomerase. J Biol Chem 280(10):8733–8741. doi:10.1074/jbc.M408080200

    CAS  PubMed  Google Scholar 

  40. Benhar M, Thompson JW, Moseley MA, Stamler JS (2010) Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach. Biochemistry 49(32):6963–6969

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Sato N, Morishita R (2013) Plasma abeta: a possible missing link between Alzheimer disease and diabetes. Diabetes 62(4):1005–1006. doi:10.2337/db12-1549

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ito S, Ohtsuki S, Murata S, Katsukura Y, Suzuki H, Funaki M, Tachikawa M, Terasaki T (2014) Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloid-beta peptide in mouse brain capillary endothelial cells. J Alzheim Dis JAD 38(1):185–200. doi:10.3233/jad-122077

    CAS  Google Scholar 

  43. Kruszelnicka O (2014) Nitric oxide vs insulin secretion, action and clearance. Diabetologia 57(1):257–258. doi:10.1007/s00125-013-3082-y

    PubMed  Google Scholar 

  44. Ralat LA, Ren M, Schilling AB, Tang WJ (2009) Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation. J Biol Chem 284(49):34005–34018. doi:10.1074/jbc.M109.030627

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Arold S, Sullivan P, Bilousova T, Teng E, Miller CA, Poon WW, Vinters HV, Cornwell LB, Saing T, Cole GM, Gylys KH (2012) Apolipoprotein E level and cholesterol are associated with reduced synaptic amyloid beta in Alzheimer's disease and apoE TR mouse cortex. Acta Neuropathol 123(1):39–52. doi:10.1007/s00401-011-0892-1

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang HF, Yu JT, Zhang W, Wang W, Liu QY, Ma XY, Ding HM, Tan L (2012) SORCS1 and APOE polymorphisms interact to confer risk for late-onset Alzheimer's disease in a Northern Han Chinese population. Brain Res 1448:111–116. doi:10.1016/j.brainres.2012.01.067

    CAS  PubMed  Google Scholar 

  47. Lu RC, Wang H, Tan MS, Yu JT, Tan L (2013) TMEM106B and APOE polymorphisms interact to confer risk for late-onset Alzheimer's disease in Han Chinese. J Neural Transm (Vienna, Austria : 1996). doi:10.1007/s00702-013-1106-x

  48. Oikawa N, Hatsuta H, Murayama S, Suzuki A, Yanagisawa K (2014) Influence of APOE genotype and the presence of Alzheimer's pathology on synaptic membrane lipids of human brains. J Neurosci Res. doi:10.1002/jnr.23341

    PubMed  Google Scholar 

  49. Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(2):106–118. doi:10.1038/nrneurol.2012.263

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Abrams AJ, Farooq A, Wang G (2011) S-Nitrosylation of ApoE in Alzheimer's disease. Biochemistry 50(17):3405–3407. doi:10.1021/bi200266v

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Tortosa E, Galjart N, Avila J, Sayas CL (2013) MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells. EMBO J 32(9):1293–1306. doi:10.1038/emboj.2013.76

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Stroissnigg H, Trancikova A, Descovich L, Fuhrmann J, Kutschera W, Kostan J, Meixner A, Nothias F, Propst F (2007) S-Nitrosylation of microtubule-associated protein 1B mediates nitric-oxide-induced axon retraction. Nat Cell Biol 9(9):1035–1045. doi:10.1038/ncb1625

    CAS  PubMed  Google Scholar 

  53. Yonashiro R, Kimijima Y, Shimura T, Kawaguchi K, Fukuda T, Inatome R, Yanagi S (2012) Mitochondrial ubiquitin ligase MITOL blocks S-nitrosylated MAP1B-light chain 1-mediated mitochondrial dysfunction and neuronal cell death. Proc Natl Acad Sci U S A 109(7):2382–2387. doi:10.1073/pnas.1114985109

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, Jaussi R, Hoogenraad CC, Kammerer RA, Janke C, Steinmetz MO (2013) Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol 200(3):259–270. doi:10.1083/jcb.201211017

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Zahid S, Khan R, Oellerich M, Ahmed N, Asif AR (2013) Differential S-nitrosylation of proteins in Alzheimer's disease. Neuroscience 256C:126–136. doi:10.1016/j.neuroscience.2013.10.026

    Google Scholar 

  56. Kamnev A, Muhar M, Preinreich M, Ammer H, Propst F (2013) Difficulties in generating specific antibodies for immunohistochemical detection of nitrosylated tubulins. PloS One 8(6):e68168. doi:10.1371/journal.pone.0068168

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Sirover MA (2013) GAPDH: β-amyloid mediated iron accumulation in Alzheimer’s disease: a new paradigm for oxidative stress induction in neurodegenerative disorders. In: Pratico D et al (eds) Studies on Alzheimer's disease. Springer, New York, pp 25–40

    Google Scholar 

  58. Sengupta R, Holmgren A (2013) Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal 18(3):259–269. doi:10.1089/ars.2012.4716

    CAS  PubMed  Google Scholar 

  59. Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B, Dawson TM, Dawson VL, Snyder SH, Sawa A (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10(7):866–873. doi:10.1038/ncb1747

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Sen N, Snyder SH (2011) Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation. Proc Natl Acad Sci U S A 108(50):20178–20183. doi:10.1073/pnas.1117820108

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Lee SB, Kim CK, Lee KH, Ahn JY (2012) S-Nitrosylation of B23/nucleophosmin by GAPDH protects cells from the SIAH1-GAPDH death cascade. J Cell Biol 199(1):65–76. doi:10.1083/jcb.201205015

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Sen N, Hara MR, Ahmad AS, Cascio MB, Kamiya A, Ehmsen JT, Agrawal N, Hester L, Dore S, Snyder SH, Sawa A (2009) GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63(1):81–91. doi:10.1016/j.neuron.2009.05.024

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD, Snyder SH (2010) GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 12(11):1094–1100. doi:10.1038/ncb2114

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Chakravarti R, Aulak KS, Fox PL, Stuehr DJ (2010) GAPDH regulates cellular heme insertion into inducible nitric oxide synthase. Proc Natl Acad Sci U S A 107(42):18004–18009. doi:10.1073/pnas.1008133107

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Jia J, Arif A, Willard B, Smith JD, Stuehr DJ, Hazen SL, Fox PL (2012) Protection of extraribosomal RPL13a by GAPDH and dysregulation by S-nitrosylation. Mol Cell 47(4):656–663. doi:10.1016/j.molcel.2012.06.006

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Manczak M, Reddy PH (2012) Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. Hum Mol Genet 21(23):5131–5146. doi:10.1093/hmg/dds360

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Yoo BC, Fountoulakis M, Cairns N, Lubec G (2001) Changes of voltage-dependent anion-selective channel proteins VDAC1 and VDAC2 brain levels in patients with Alzheimer's disease and Down syndrome. Electrophoresis 22(1):172–179. doi:10.1002/1522-2683(200101)22:1<172::AID-ELPS172>3.0.CO;2-P

    CAS  PubMed  Google Scholar 

  68. Arbel N, Shoshan-Barmatz V (2010) Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J Biol Chem 285(9):6053–6062. doi:10.1074/jbc.M109.082990

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM (2012) Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. PloS One 7(3):e31510

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Hyman BT, Yuan J (2012) Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 13(6):395–406. doi:10.1038/nrn3228

    CAS  PubMed  Google Scholar 

  71. Du H, Guo L, Wu X, Sosunov AA, McKhann GM, Chen JX, Yan SS (2013) Cyclophilin D deficiency rescues Abeta-impaired PKA/CREB signaling and alleviates synaptic degeneration. Biochim Biophys Acta. doi:10.1016/j.bbadis.2013.03.004

    PubMed Central  Google Scholar 

  72. Reddy PH (2013) Amyloid beta-induced glycogen synthase kinase 3beta phosphorylated VDAC1 in Alzheimer's disease: implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta 1832(12):1913–1921. doi:10.1016/j.bbadis.2013.06.012

    CAS  PubMed  Google Scholar 

  73. Manczak M, Sheiko T, Craigen WJ, Reddy PH (2013) Reduced VDAC1 protects against Alzheimer's disease, mitochondria, and synaptic deficiencies. J Alzheim Dis JAD 37(4):679–690. doi:10.3233/jad-130761

    CAS  Google Scholar 

  74. Herrera JL, Fernandez C, Diaz M, Cury D, Marin R (2011) Estradiol and tamoxifen differentially regulate a plasmalemmal voltage-dependent anion channel involved in amyloid-beta induced neurotoxicity. Steroids 76(9):840–844. doi:10.1016/j.steroids.2011.02.014

    CAS  PubMed  Google Scholar 

  75. Murakami K, Shimizu T (2012) Cytoplasmic superoxide radical: a possible contributing factor to intracellular Abeta oligomerization in Alzheimer disease. Commun Integr Biol 5(3):255–258. doi:10.4161/cib.19548

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. doi:10.1089/ars.2011.3999

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Flynn JM, Melov S (2013) SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 62:4–12. doi:10.1016/j.freeradbiomed.2013.05.027

    CAS  PubMed  Google Scholar 

  78. Bitner BR, Perez-Torres CJ, Hu L, Inoue T, Pautler RG (2012) Improvements in a mouse model of Alzheimer's disease through SOD2 overexpression are due to functional and not structural alterations. Magn Reson Insights 5:1–6. doi:10.4137/mri.s9352

    PubMed Central  PubMed  Google Scholar 

  79. Ye N, Liu S, Lin Y, Rao P (2011) Protective effects of intraperitoneal injection of TAT-SOD against focal cerebral ischemia/reperfusion injury in rats. Life Sci 89(23–24):868–874. doi:10.1016/j.lfs.2011.09.015

    CAS  PubMed  Google Scholar 

  80. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823(3):648–655. doi:10.1016/j.bbamcr.2011.07.018

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Ghosh A, Chawla-Sarkar M, Stuehr DJ (2011) Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. FASEB J 25(6):2049–2060. doi:10.1096/fj.10-180554

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL (2013) The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease. Ageing Res Rev 12(3):757–763. doi:10.1016/j.arr.2013.03.002

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Thompson AD, Scaglione KM, Prensner J, Gillies AT, Chinnaiyan A, Paulson HL, Jinwal UK, Dickey CA, Gestwicki JE (2012) Analysis of the tau-associated proteome reveals that exchange of Hsp70 for Hsp90 is involved in tau degradation. ACS Chem Biol 7(10):1677–1686. doi:10.1021/cb3002599

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Gouras GK, Greengard P, Xu H (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A 100(2):721–726. doi:10.1073/pnas.242720499

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Koren J, Inda MC, Riolo M, Uddin M, Alonso-Sabadell R, Chiosis G (2013) Blood-brain-barrier–permeable Hsp90 inhibitor reduces soluble tau burden in a mouse model of Alzheimer's disease. Alzheimers Dement 9(4):P305–P305

    Google Scholar 

  86. Blair LJ, Nordhues BA, Hill SE, Scaglione KM, O'Leary JC 3rd, Fontaine SN, Breydo L, Zhang B, Li P, Wang L, Cotman C, Paulson HL, Muschol M, Uversky VN, Klengel T, Binder EB, Kayed R, Golde TE, Berchtold N, Dickey CA (2013) Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Investig 123(10):4158–4169. doi:10.1172/jci69003

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Evans CG, Wisen S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 281(44):33182–33191. doi:10.1074/jbc.M606192200

    CAS  PubMed  Google Scholar 

  88. Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, Kessler H, Buchner J (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10(10):1147–1153. doi:10.1038/embor.2009.153

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Moskovitz J (2014) Detection and localization of methionine sulfoxide residues of specific proteins in brain tissue. Protein Pept lett 21(1):52–55

    CAS  PubMed  Google Scholar 

  90. Firouzi Z, Lari P, Rashedinia M, Ramezani M, Iranshahi M, Abnous K (2014) Proteomics screening of molecular targets of curcumin in mouse brain. Life Sci. doi:10.1016/j.lfs.2013.12.200

    PubMed  Google Scholar 

  91. Xiao H, Run X, Cao X, Su Y, Sun Z, Tian C, Sun S, Liang Z (2013) Temperature control can abolish anesthesia-induced tau hyperphosphorylation and partly reverse anesthesia-induced cognitive impairment in old mice. Psychiatry Clin Neurosci 67(7):493–500. doi:10.1111/pcn.12091

    CAS  PubMed  Google Scholar 

  92. Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA (2006) Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis 22(1):76–87. doi:10.1016/j.nbd.2005.10.004

    CAS  PubMed  Google Scholar 

  93. Korhonen K, Pastorekova S (2012) Meningiomas: role of carbonic anhydrase II. In: Hayat MA (ed) Tumors of the central nervous system, vol 7. Springer, Dordrecht, pp 11–15

    Google Scholar 

  94. Sun MK, Alkon DL (2002) Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol Sci 23(2):83–89

    CAS  PubMed  Google Scholar 

  95. Cao Z, Zhang R, Li J, Huang H, Zhang D, Zhang J, Gao J, Chen J, Huang C (2013) X-linked inhibitor of apoptosis protein (XIAP) regulation of cyclin D1 protein expression and cancer cell anchorage-independent growth via its E3 ligase-mediated protein phosphatase 2A/c-Jun axis. J Biol Chem 288(28):20238–20247

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Unsain N, Higgins JM, Parker KN, Johnstone AD, Barker PA (2013) XIAP regulates caspase activity in degenerating axons. Cell Rep 4(4):751–763. doi:10.1016/j.celrep.2013.07.015

    CAS  PubMed  Google Scholar 

  97. Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Chung KK (2009) S-Nitrosylation of XIAP compromises neuronal survival in Parkinson's disease. Proc Natl Acad Sci U S A 106(12):4900–4905. doi:10.1073/pnas.0810595106

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA, Clemente AT, Okamoto S, Salvesen GS, Riek R, Yates JR 3rd, Lipton SA (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39(2):184–195. doi:10.1016/j.molcel.2010.07.002

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Los MJ (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49. doi:10.1016/j.pneurobio.2013.10.004

    CAS  PubMed  Google Scholar 

  100. Kim YM, Kim JH, Kwon HM, Lee DH, Won MH, Kwon YG, Kim YM (2013) Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation. J Ginseng Res 37(4):413–424. doi:10.5142/jgr.2013.37.413

    PubMed Central  PubMed  Google Scholar 

  101. Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B (2001) S-Nitrosylation of mitochondrial caspases. J Cell Biol 154(6):1111–1116. doi:10.1083/jcb.200104008

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Lai YC, Pan KT, Chang GF, Hsu CH, Khoo KH, Hung CH, Jiang YJ, Ho FM, Meng TC (2011) Nitrite-mediated S-nitrosylation of caspase-3 prevents hypoxia-induced endothelial barrier dysfunction. Circ Res 109(12):1375–1386. doi:10.1161/circresaha.111.256479

    CAS  PubMed  Google Scholar 

  103. Barglow KT, Knutson CG, Wishnok JS, Tannenbaum SR, Marletta MA (2011) Site-specific and redox-controlled S-nitrosation of thioredoxin. Proc Natl Acad Sci U S A 108(35):E600–E606. doi:10.1073/pnas.1110736108

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, Lipton SA (2000) Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3(1):15–21. doi:10.1038/71090

    CAS  PubMed  Google Scholar 

  105. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. doi:10.1038/nrn3504

    CAS  PubMed  Google Scholar 

  106. Takahashi H, Shin Y, Cho SJ, Zago WM, Nakamura T, Gu Z, Ma Y, Furukawa H, Liddington R, Zhang D, Tong G, Chen HS, Lipton SA (2007) Hypoxia enhances S-nitrosylation-mediated NMDA receptor inhibition via a thiol oxygen sensor motif. Neuron 53(1):53–64. doi:10.1016/j.neuron.2006.11.023

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Mullard A (2012) Sting of Alzheimer's failures offset by upcoming prevention trials. Nat Rev Drug Disc 11(9):657–660. doi:10.1038/nrd3842

    CAS  Google Scholar 

  108. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Disc 10(9):698–712. doi:10.1038/nrd3505

    CAS  Google Scholar 

  109. Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, Dziewczapolski G, Nakamura T, Cao G, Pratt AE, Kang YJ, Tu S, Molokanova E, McKercher SR, Hires SA, Sason H, Stouffer DG, Buczynski MW, Solomon JP, Michael S, Powers ET, Kelly JW, Roberts A, Tong G, Fang-Newmeyer T, Parker J, Holland EA, Zhang D, Nakanishi N, Chen HS, Wolosker H, Wang Y, Parsons LH, Ambasudhan R, Masliah E, Heinemann SF, Pina-Crespo JC, Lipton SA (2013) Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A 110(27):E2518–E2527. doi:10.1073/pnas.1306832110

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81000544, 81171209, 81371406) and Shandong Provincial Natural Science Foundation, China (ZR2010HQ004, ZR2011HZ001).

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Tai Yu or Lan Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, QF., Yu, JT. & Tan, L. S-Nitrosylation in Alzheimer's disease. Mol Neurobiol 51, 268–280 (2015). https://doi.org/10.1007/s12035-014-8672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8672-2

Keywords

Navigation