Skip to main content

Advertisement

Log in

Mechanisms that regulate the activities of TET proteins

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The ten–eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

This is not applicable for this review.

Code availability

This is not applicable for this review.

Abbreviations

TET:

Ten–eleven translocation

α-KG:

α-Ketoglutarate

5mC:

5-Methylcytosine

5hmC:

5-Hydroxymethylcytosine

5fC:

5-Formylcytosine

5caC:

5-Carboxylcytosine

TFs:

Transcription factors

ARCH:

Age-related clonal hematopoiesis

MDS:

Myelodysplastic syndromes

AML:

Acute myeloid leukemia

ALL:

Acute lymphoblastic leukemia

DLBCLs:

Diffuse large B-cell lymphomas

PTCL:

Peripheral T-cell lymphoma

IFN-γ:

Interferon-γ

TNF-α:

Tumor necrosis factor-α

TIS:

Transcriptional initiation sites

DSBH:

Double-stranded beta-helix domain

TDG:

Thymine DNA glycosylase

BER:

Base excision repair

ES:

Embryonic stem cells

IDHs:

Isocitrate dehydrogenases

AP site:

Apyrimidinic site

AID:

Activation-induced cytidine deaminase

5hmU:

5-Hydroxymethyluracil

GC:

Germinal center

CSR:

Class-switch recombination

DSBs:

Double-strand breaks

PGCs:

Primordial germ cells

CGIs:

CpG islands

OGT:

O-linked GlcNAc transferase

SID:

Sin3A interacts with the Sin3-interaction domain

CoA:

Coactivators

PTM:

Post-translational modifications

AMPK:

AMP-activated protein kinase

C/EBPα:

CCAAT/enhancer-binding protein alpha

KLF4:

Kruppel-like factor-4

TFCP2l1:

Transcription factor CP2 like-1

YBX1:

Y box-binding protein-1

FOXK2:

Forkhead box protein K-2

KZF1:

DNA-binding protein Ikaros 1

NFIL3:

Nuclear factor interleukin-3-regulated protein

ATRX:

Alpha-thalassemia/mental retardation syndrome X-linked transcriptional regulator

CUX1:

Homeobox protein cut-like-1

YY2:

Yin and yang-2 transcription factor

IκBζ:

Inhibitory-kappa-B-zeta

References

  1. McKinney-Freeman S et al (2012) The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 11:701–714. https://doi.org/10.1016/j.stem.2012.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167:1170–1187. https://doi.org/10.1016/j.cell.2016.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kulis M et al (2015) Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 47:746–756. https://doi.org/10.1038/ng.3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barwick BG, Scharer CD, Bally APR, Boss JM (2016) Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. Nat Immunol 17:1216–1225. https://doi.org/10.1038/ni.3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220. https://doi.org/10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  6. Apostolou E, Hochedlinger K (2013) Chromatin dynamics during cellular reprogramming. Nature 502:462–471. https://doi.org/10.1038/nature12749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yin Y et al (2017) Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. https://doi.org/10.1126/science.aaj2239

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326. https://doi.org/10.1038/nature14192

    Article  CAS  PubMed  Google Scholar 

  9. Hu S et al (2013) DNA methylation presents distinct binding sites for human transcription factors. Elife 2:e00726. https://doi.org/10.7554/eLife.00726

    Article  PubMed  PubMed Central  Google Scholar 

  10. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97. https://doi.org/10.1016/j.tibs.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  11. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607. https://doi.org/10.1038/s41580-019-0159-6

    Article  CAS  PubMed  Google Scholar 

  12. Yamazaki J et al (2015) TET2 mutations affect non-CpG island DNA methylation at enhancers and transcription factor-binding sites in chronic myelomonocytic leukemia. Cancer Res 75:2833–2843. https://doi.org/10.1158/0008-5472.CAN-14-0739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lea AJ et al (2018) Genome-wide quantification of the effects of DNA methylation on human gene regulation. Elife. https://doi.org/10.7554/eLife.37513

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rasmussen KD et al (2019) TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells. Genome Res 29:564–575. https://doi.org/10.1101/gr.239277.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Z, Zhang Y (2020) Role of mammalian DNA methyltransferases in development. Annu Rev Biochem 89:135–158. https://doi.org/10.1146/annurev-biochem-103019-102815

    Article  CAS  PubMed  Google Scholar 

  16. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534. https://doi.org/10.1038/nrg.2017.33

    Article  CAS  PubMed  Google Scholar 

  17. Broome R et al (2021) TET2 is a component of the estrogen receptor complex and controls 5mC to 5hmC conversion at estrogen receptor cis-regulatory regions. Cell Rep 34:108776. https://doi.org/10.1016/j.celrep.2021.108776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cruz-Rodriguez N, Combita AL, Zabaleta J (2018) Epigenetics in hematological malignancies. Methods Mol Biol 1856:87–101. https://doi.org/10.1007/978-1-4939-8751-1_5

    Article  CAS  PubMed  Google Scholar 

  19. Hu D, Shilatifard A (2016) Epigenetics of hematopoiesis and hematological malignancies. Genes Dev 30:2021–2041. https://doi.org/10.1101/gad.284109.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang Y, Dominguez PM, Melnick AM (2016) The many layers of epigenetic dysfunction in B-cell lymphomas. Curr Opin Hematol 23:377–384. https://doi.org/10.1097/MOH.0000000000000249

    Article  CAS  PubMed  Google Scholar 

  21. Abdel-Wahab O et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–147. https://doi.org/10.1182/blood-2009-03-210039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Delhommeau F et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301. https://doi.org/10.1056/NEJMoa0810069

    Article  PubMed  Google Scholar 

  23. Smith AE et al (2010) Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood 116:3923–3932. https://doi.org/10.1182/blood-2010-03-274704

    Article  CAS  PubMed  Google Scholar 

  24. Kosmider O et al (2009) TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 94:1676–1681. https://doi.org/10.3324/haematol.2009.011205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Swierczek SI et al (2011) Extent of hematopoietic involvement by TET2 mutations in JAK2V(6)(1)(7)F polycythemia vera. Haematologica 96:775–778. https://doi.org/10.3324/haematol.2010.029678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tefferi A et al (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23:905–911. https://doi.org/10.1038/leu.2009.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tefferi A et al (2009) Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 23:1343–1345. https://doi.org/10.1038/leu.2009.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jankowska AM et al (2009) Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 113:6403–6410. https://doi.org/10.1182/blood-2009-02-205690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langemeijer SM et al (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41:838–842. https://doi.org/10.1038/ng.391

    Article  CAS  PubMed  Google Scholar 

  30. Asmar F et al (2013) Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica 98:1912–1920. https://doi.org/10.3324/haematol.2013.088740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reddy A et al (2017) Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171:481–494. https://doi.org/10.1016/j.cell.2017.09.027 (e415)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dominguez PM et al (2018) TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis. Cancer Discov 8:1632–1653. https://doi.org/10.1158/2159-8290.CD-18-0657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Z et al (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118:4509–4518. https://doi.org/10.1182/blood-2010-12-325241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lemonnier F et al (2012) Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120:1466–1469. https://doi.org/10.1182/blood-2012-02-408542

    Article  CAS  PubMed  Google Scholar 

  35. Sakata-Yanagimoto M et al (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46:171–175. https://doi.org/10.1038/ng.2872

    Article  CAS  PubMed  Google Scholar 

  36. Odejide O et al (2014) A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123:1293–1296. https://doi.org/10.1182/blood-2013-10-531509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palomero T et al (2014) Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46:166–170. https://doi.org/10.1038/ng.2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmitz R et al (2018) Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med 378:1396–1407. https://doi.org/10.1056/NEJMoa1801445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soucie E et al (2012) In aggressive forms of mastocytosis, TET2 loss cooperates with c-KITD816V to transform mast cells. Blood 120:4846–4849. https://doi.org/10.1182/blood-2011-12-397588

    Article  CAS  PubMed  Google Scholar 

  40. Tefferi A et al (2009) Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia 23:900–904. https://doi.org/10.1038/leu.2009.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coltro G et al (2020) Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)-a study of 1084 patients. Leukemia 34:1407–1421. https://doi.org/10.1038/s41375-019-0690-7

    Article  CAS  PubMed  Google Scholar 

  42. Yao WQ et al (2020) Angioimmunoblastic T-cell lymphoma contains multiple clonal T-cell populations derived from a common TET2 mutant progenitor cell. J Pathol 250:346–357. https://doi.org/10.1002/path.5376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shih AH, Abdel-Wahab O, Patel JP, Levine RL (2012) The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 12:599–612. https://doi.org/10.1038/nrc3343

    Article  CAS  PubMed  Google Scholar 

  44. Xie M et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478. https://doi.org/10.1038/nm.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaiswal S et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498. https://doi.org/10.1056/NEJMoa1408617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Genovese G et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487. https://doi.org/10.1056/NEJMoa1409405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang CRC et al (2019) Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp Hematol 80:36–41. https://doi.org/10.1016/j.exphem.2019.11.008 (e33)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hormaechea-Agulla D et al (2021) Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNgamma signaling. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.03.002

    Article  PubMed  Google Scholar 

  49. Buscarlet M et al (2017) DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130:753–762. https://doi.org/10.1182/blood-2017-04-777029

    Article  CAS  PubMed  Google Scholar 

  50. Jaiswal S, Ebert BL (2019) Clonal hematopoiesis in human aging and disease. Science. https://doi.org/10.1126/science.aan4673

    Article  PubMed  PubMed Central  Google Scholar 

  51. Steensma DP et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16. https://doi.org/10.1182/blood-2015-03-631747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun D et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14:673–688. https://doi.org/10.1016/j.stem.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang W et al (2016) Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol Cell 64:1062–1073. https://doi.org/10.1016/j.molcel.2016.10.030

    Article  CAS  PubMed  Google Scholar 

  54. Good CR et al (2017) A novel isoform of TET1 that lacks a CXXC domain is overexpressed in cancer. Nucleic Acids Res 45:8269–8281. https://doi.org/10.1093/nar/gkx435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iyer LM, Abhiman S, Aravind L (2011) Natural history of eukaryotic DNA methylation systems. Prog Mol Biol Transl Sci 101:25–104. https://doi.org/10.1016/B978-0-12-387685-0.00002-0

    Article  CAS  PubMed  Google Scholar 

  56. Sohni A et al (2015) Dynamic switching of active promoter and enhancer domains regulates Tet1 and Tet2 expression during cell state transitions between pluripotency and differentiation. Mol Cell Biol 35:1026–1042. https://doi.org/10.1128/MCB.01172-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu N et al (2013) Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules. PLoS One 8:e62755. https://doi.org/10.1371/journal.pone.0062755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ito S et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303. https://doi.org/10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307. https://doi.org/10.1126/science.1210944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ito S et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133. https://doi.org/10.1038/nature09303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu Y et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464. https://doi.org/10.1016/j.molcel.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hahn MA et al (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep 3:291–300. https://doi.org/10.1016/j.celrep.2013.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jin SG et al (2016) Tet3 reads 5-carboxylcytosine through Its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep 14:493–505. https://doi.org/10.1016/j.celrep.2015.12.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shekhawat J et al (2021) Ten-eleven translocase: key regulator of the methylation landscape in cancer. J Cancer Res Clin Oncol 147:1869–1879. https://doi.org/10.1007/s00432-021-03641-3

    Article  CAS  PubMed  Google Scholar 

  65. Kunimoto H, Nakajima H (2021) TET2: a cornerstone in normal and malignant hematopoiesis. Cancer Sci 112:31–40. https://doi.org/10.1111/cas.14688

    Article  CAS  PubMed  Google Scholar 

  66. Bray JK, Dawlaty MM, Verma A, Maitra A (2021) Roles and regulations of TET enzymes in solid tumors. Trends Cancer 7:635–646. https://doi.org/10.1016/j.trecan.2020.12.011

    Article  CAS  PubMed  Google Scholar 

  67. Dziaman T et al (2018) Characteristic profiles of DNA epigenetic modifications in colon cancer and its predisposing conditions-benign adenomas and inflammatory bowel disease. Clin Epigenetics 10:72. https://doi.org/10.1186/s13148-018-0505-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pei YF et al (2016) TET1 inhibits gastric cancer growth and metastasis by PTEN demethylation and re-expression. Oncotarget 7:31322–31335. https://doi.org/10.18632/oncotarget.8900

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wu J et al (2019) TET1-mediated DNA hydroxymethylation activates inhibitors of the Wnt/beta-catenin signaling pathway to suppress EMT in pancreatic tumor cells. J Exp Clin Cancer Res 38:348. https://doi.org/10.1186/s13046-019-1334-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eyres M et al (2021) TET2 drives 5hmc marking of GATA6 and epigenetically defines pancreatic ductal adenocarcinoma transcriptional subtypes. Gastroenterology 161:653–668. https://doi.org/10.1053/j.gastro.2021.04.044 (e616)

    Article  CAS  PubMed  Google Scholar 

  71. Spans L et al (2016) Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget 7:24326–24338. https://doi.org/10.18632/oncotarget.8220

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen Q et al (2017) MicroRNA-29a induces loss of 5-hydroxymethylcytosine and promotes metastasis of hepatocellular carcinoma through a TET-SOCS1-MMP9 signaling axis. Cell Death Dis 8:e2906. https://doi.org/10.1038/cddis.2017.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lian CG et al (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–1146. https://doi.org/10.1016/j.cell.2012.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu J et al (2019) Global DNA 5-hydroxymethylcytosine and 5-formylcytosine contents are decreased in the early stage of hepatocellular carcinoma. Hepatology 69:196–208. https://doi.org/10.1002/hep.30146

    Article  CAS  PubMed  Google Scholar 

  75. Zahid OK et al (2021) Solid-state nanopore analysis of human genomic DNA shows unaltered global 5-hydroxymethylcytosine content associated with early-stage breast cancer. Nanomed Nanotechnol Biol Med 35:102407. https://doi.org/10.1016/j.nano.2021.102407

    Article  CAS  Google Scholar 

  76. Haffner MC et al (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2:627–637. https://doi.org/10.18632/oncotarget.316

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kraus TF et al (2015) Loss of 5-hydroxymethylcytosine and intratumoral heterogeneity as an epigenomic hallmark of glioblastoma. Tumour Biol 36:8439–8446. https://doi.org/10.1007/s13277-015-3606-9

    Article  CAS  PubMed  Google Scholar 

  78. Thomson JP et al (2016) Loss of Tet1-associated 5-hydroxymethylcytosine is concomitant with aberrant promoter hypermethylation in liver cancer. Cancer Res 76:3097–3108. https://doi.org/10.1158/0008-5472.CAN-15-1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang H et al (2013) Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32:663–669. https://doi.org/10.1038/onc.2012.67

    Article  CAS  PubMed  Google Scholar 

  80. Tsai KW et al (2015) Reduction of global 5-hydroxymethylcytosine is a poor prognostic factor in breast cancer patients, especially for an ER/PR-negative subtype. Breast Cancer Res Treat 153:219–234. https://doi.org/10.1007/s10549-015-3525-x

    Article  CAS  PubMed  Google Scholar 

  81. Deng M et al (2017) TET-mediated sequestration of miR-26 drives EZH2 expression and gastric carcinogenesis. Cancer Res 77:6069–6082. https://doi.org/10.1158/0008-5472.CAN-16-2964

    Article  CAS  PubMed  Google Scholar 

  82. Chen LY et al (2019) TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2α as a therapeutic target. J Pathol 248:363–376. https://doi.org/10.1002/path.5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Filipczak PT et al (2019) p53-suppressed oncogene TET1 prevents cellular aging in lung cancer. Cancer Res 79:1758–1768. https://doi.org/10.1158/0008-5472.CAN-18-1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muller T et al (2012) Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol 181:675–683. https://doi.org/10.1016/j.ajpath.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  85. Good CR et al (2018) TET1-mediated hypomethylation activates oncogenic signaling in triple-negative breast cancer. Cancer Res 78:4126–4137. https://doi.org/10.1158/0008-5472.CAN-17-2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lio CJ, Yuita H, Rao A (2019) Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. Blood 134:1487–1497. https://doi.org/10.1182/blood.2019791475

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cimmino L et al (2015) TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol 16:653–662. https://doi.org/10.1038/ni.3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morin RD et al (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476:298–303. https://doi.org/10.1038/nature10351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pasqualucci L et al (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43:830–837. https://doi.org/10.1038/ng.892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Okosun J et al (2014) Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 46:176–181. https://doi.org/10.1038/ng.2856

    Article  CAS  PubMed  Google Scholar 

  91. Li H et al (2014) Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 123:1487–1498. https://doi.org/10.1182/blood-2013-05-500264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Keersmaecker K et al (2013) Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 45:186–190. https://doi.org/10.1038/ng.2508

    Article  CAS  PubMed  Google Scholar 

  93. Cancer Genome Atlas Research N et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. New Eng J Med 368:2059–2074. https://doi.org/10.1056/NEJMoa1301689

    Article  CAS  Google Scholar 

  94. Quesada V et al (2012) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44:47–52. https://doi.org/10.1038/ng.1032

    Article  CAS  Google Scholar 

  95. Nickerson ML et al (2017) TET2 binds the androgen receptor and loss is associated with prostate cancer. Oncogene 36:2172–2183. https://doi.org/10.1038/onc.2016.376

    Article  CAS  PubMed  Google Scholar 

  96. Neri F et al (2015) TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. Nucleic Acids Res 43:6814–6826. https://doi.org/10.1093/nar/gkv392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tsai YP et al (2014) TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol 15:513. https://doi.org/10.1186/s13059-014-0513-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang YA et al (2016) FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function. Nucleic Acids Res 44:8153–8164. https://doi.org/10.1093/nar/gkw498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yosefzon Y et al (2017) An epigenetic switch repressing Tet1 in gonadotropes activates the reproductive axis. Proc Natl Acad Sci USA 114:10131–10136. https://doi.org/10.1073/pnas.1704393114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li L et al (2016) Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers. Sci Rep 6:26591. https://doi.org/10.1038/srep26591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Agirre X et al (2015) Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res 25:478–487. https://doi.org/10.1101/gr.180240.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun M et al (2013) HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc Natl Acad Sci USA 110:9920–9925. https://doi.org/10.1073/pnas.1305172110

    Article  PubMed  PubMed Central  Google Scholar 

  103. Forloni M et al (2016) Oncogenic EGFR represses the TET1 DNA demethylase to induce silencing of tumor suppressors in cancer cells. Cell Rep 16:457–471. https://doi.org/10.1016/j.celrep.2016.05.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Collignon E et al (2018) Immunity drives TET1 regulation in cancer through NF-kappaB. Sci Adv 4:eaap7309. https://doi.org/10.1126/sciadv.aap7309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Noreen F et al (2019) DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways. Clin Epigenetics 11:196. https://doi.org/10.1186/s13148-019-0791-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hsu CH et al (2012) TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep 2:568–579. https://doi.org/10.1016/j.celrep.2012.08.030

    Article  CAS  PubMed  Google Scholar 

  107. Teslow EA et al (2019) Obesity-induced MBD2_v2 expression promotes tumor-initiating triple-negative breast cancer stem cells. Mol Oncol 13:894–908. https://doi.org/10.1002/1878-0261.12444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang H et al (2017) MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells. Oncotarget 8:102119–102133. https://doi.org/10.18632/oncotarget.22183

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chen N et al (2018) A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 19:218. https://doi.org/10.1186/s13059-018-1594-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu Y et al (2013) Oct4 and the small molecule inhibitor, SC1, regulates Tet2 expression in mouse embryonic stem cells. Mol Biol Rep 40:2897–2906. https://doi.org/10.1007/s11033-012-2305-5

    Article  CAS  PubMed  Google Scholar 

  111. Koh KP et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8:200–213. https://doi.org/10.1016/j.stem.2011.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fischer AP, Miles SL (2017) Silencing HIF-1alpha induces TET2 expression and augments ascorbic acid induced 5-hydroxymethylation of DNA in human metastatic melanoma cells. Biochem Biophys Res Commun 490:176–181. https://doi.org/10.1016/j.bbrc.2017.06.017

    Article  CAS  PubMed  Google Scholar 

  113. Zhang LY, Li PL, Wang TZ, Zhang XC (2015) Prognostic values of 5-hmC, 5-mC and TET2 in epithelial ovarian cancer. Arch Gynecol Obstet 292:891–897. https://doi.org/10.1007/s00404-015-3704-3

    Article  CAS  PubMed  Google Scholar 

  114. Tucker DW et al (2018) Epigenetic reprogramming strategies to reverse global loss of 5-hydroxymethylcytosine, a prognostic factor for poor survival in high-grade serous ovarian cancer. Clin Cancer Res 24:1389–1401. https://doi.org/10.1158/1078-0432.CCR-17-1958

    Article  CAS  PubMed  Google Scholar 

  115. Rawluszko-Wieczorek AA et al (2015) Clinical significance of DNA methylation mRNA levels of TET family members in colorectal cancer. J Cancer Res Clin Oncol 141:1379–1392. https://doi.org/10.1007/s00432-014-1901-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Carella A et al (2020) Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis. Int J Cancer 146:373–387. https://doi.org/10.1002/ijc.32520

    Article  CAS  PubMed  Google Scholar 

  117. Mo HY, An CH, Choi EJ, Yoo NJ, Lee SH (2020) Somatic mutation and loss of expression of a candidate tumor suppressor gene TET3 in gastric and colorectal cancers. Pathol Res Pract 216:152759. https://doi.org/10.1016/j.prp.2019.152759

    Article  CAS  PubMed  Google Scholar 

  118. Ye Z et al (2016) TET3 inhibits TGF-beta1-induced epithelial-mesenchymal transition by demethylating miR-30d precursor gene in ovarian cancer cells. J Exp Clin Cancer Res 35:72. https://doi.org/10.1186/s13046-016-0350-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cao T, Pan W, Sun X, Shen H (2019) Increased expression of TET3 predicts unfavorable prognosis in patients with ovarian cancer-a bioinformatics integrative analysis. J Ovarian Res 12:101. https://doi.org/10.1186/s13048-019-0575-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Song SJ et al (2013) MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154:311–324. https://doi.org/10.1016/j.cell.2013.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cheng J et al (2013) An extensive network of TET2-targeting microRNAs regulates malignant hematopoiesis. Cell Rep 5:471–481. https://doi.org/10.1016/j.celrep.2013.08.050

    Article  CAS  PubMed  Google Scholar 

  122. Fu X et al (2013) MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Proc Natl Acad Sci USA 110:17892–17897. https://doi.org/10.1073/pnas.1317397110

    Article  PubMed  PubMed Central  Google Scholar 

  123. Loriot A et al (2014) A novel cancer-germline transcript carrying pro-metastatic miR-105 and TET-targeting miR-767 induced by DNA hypomethylation in tumors. Epigenetics 9:1163–1171. https://doi.org/10.4161/epi.29628

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chuang KH et al (2015) MicroRNA-494 is a master epigenetic regulator of multiple invasion-suppressor microRNAs by targeting ten eleven translocation 1 in invasive human hepatocellular carcinoma tumors. Hepatology 62:466–480. https://doi.org/10.1002/hep.27816

    Article  CAS  PubMed  Google Scholar 

  125. Zhang W et al (2015) MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA. Biochem Biophys Res Commun 460:793–798. https://doi.org/10.1016/j.bbrc.2015.03.108

    Article  CAS  PubMed  Google Scholar 

  126. Song SJ et al (2013) The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13:87–101. https://doi.org/10.1016/j.stem.2013.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Takeshima H et al (2020) TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest 130:5370–5379. https://doi.org/10.1172/JCI124070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Scherm MG et al (2019) miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nat Commun 10:5697. https://doi.org/10.1038/s41467-019-13587-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jiang S, Yan W, Wang SE, Baltimore D (2019) Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proc Natl Acad Sci USA 116:12416–12421. https://doi.org/10.1073/pnas.1811040116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338. https://doi.org/10.1074/jbc.C111.284620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cortellino S et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67–79. https://doi.org/10.1016/j.cell.2011.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bhutani N et al (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042–1047. https://doi.org/10.1038/nature08752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Popp C et al (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101–1105. https://doi.org/10.1038/nature08829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nawy T (2013) Dynamics of DNA demethylation. Nat Methods 10:466. https://doi.org/10.1038/nmeth.2506

    Article  CAS  PubMed  Google Scholar 

  135. Muramatsu M et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563. https://doi.org/10.1016/s0092-8674(00)00078-7

    Article  CAS  PubMed  Google Scholar 

  136. Xu Z, Zan H, Pone EJ, Mai T, Casali P (2012) Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 12:517–531. https://doi.org/10.1038/nri3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Barreto G et al (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675. https://doi.org/10.1038/nature05515

    Article  CAS  PubMed  Google Scholar 

  138. Schmitz KM et al (2009) TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33:344–353. https://doi.org/10.1016/j.molcel.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  139. Ma DK et al (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074–1077. https://doi.org/10.1126/science.1166859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hajkova P et al (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329:78–82. https://doi.org/10.1126/science.1187945

    Article  CAS  PubMed  Google Scholar 

  141. Dominguez PM et al (2015) DNA methylation dynamics of germinal center B cells are mediated by AID. Cell Rep 12:2086–2098. https://doi.org/10.1016/j.celrep.2015.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lio CJ et al (2019) TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer. Sci Immunol. https://doi.org/10.1126/sciimmunol.aau7523

    Article  PubMed  PubMed Central  Google Scholar 

  143. Delker RK, Fugmann SD, Papavasiliou FN (2009) A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol 10:1147–1153. https://doi.org/10.1038/ni.1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kunimoto H et al (2017) Aid is a key regulator of myeloid/erythroid differentiation and DNA methylation in hematopoietic stem/progenitor cells. Blood 129:1779–1790. https://doi.org/10.1182/blood-2016-06-721977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bachman M et al (2014) 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 6:1049–1055. https://doi.org/10.1038/nchem.2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bachman M et al (2015) 5-Formylcytosine can be a stable DNA modification in mammals. Nat Chem Biol 11:555–557. https://doi.org/10.1038/nchembio.1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wu H, Wu X, Shen L, Zhang Y (2014) Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat Biotechnol 32:1231–1240. https://doi.org/10.1038/nbt.3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Spruijt CG et al (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–1159. https://doi.org/10.1016/j.cell.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  149. Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417–1430. https://doi.org/10.1016/j.cell.2012.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Takai H et al (2014) 5-Hydroxymethylcytosine plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex. Cell Rep 9:48–60. https://doi.org/10.1016/j.celrep.2014.08.071

    Article  CAS  PubMed  Google Scholar 

  151. Yildirim O et al (2011) Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147:1498–1510. https://doi.org/10.1016/j.cell.2011.11.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen R et al (2017) The 5-hydroxymethylcytosine (5hmC) reader UHRF2 is required for normal levels of 5hmC in mouse adult brain and spatial learning and memory. J Biol Chem 292:4533–4543. https://doi.org/10.1074/jbc.M116.754580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tsagaratou A et al (2014) Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc Natl Acad Sci U S A 111:E3306-3315. https://doi.org/10.1073/pnas.1412327111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pastor WA et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–397. https://doi.org/10.1038/nature10102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54. https://doi.org/10.1186/gb-2011-12-6-r54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Williams K et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–348. https://doi.org/10.1038/nature10066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Madzo J et al (2014) Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep 6:231–244. https://doi.org/10.1016/j.celrep.2013.11.044

    Article  CAS  PubMed  Google Scholar 

  158. Guilhamon P et al (2013) Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nat Commun 4:2166. https://doi.org/10.1038/ncomms3166

    Article  CAS  PubMed  Google Scholar 

  159. Mellen M, Ayata P, Heintz N (2017) 5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes. Proc Natl Acad Sci USA 114:E7812–E7821. https://doi.org/10.1073/pnas.1708044114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. He B et al (2021) Tissue-specific 5-hydroxymethylcytosine landscape of the human genome. Nat Commun 12:4249. https://doi.org/10.1038/s41467-021-24425-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dawlaty MM et al (2014) Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 29:102–111. https://doi.org/10.1016/j.devcel.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Li C et al (2015) Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep 12:1133–1143. https://doi.org/10.1016/j.celrep.2015.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dawlaty MM et al (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24:310–323. https://doi.org/10.1016/j.devcel.2012.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hu L et al (2015) Structural insight into substrate preference for TET-mediated oxidation. Nature 527:118–122. https://doi.org/10.1038/nature15713

    Article  CAS  PubMed  Google Scholar 

  165. Huang Y et al (2014) Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl Acad Sci USA 111:1361–1366. https://doi.org/10.1073/pnas.1322921111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139:1895–1902. https://doi.org/10.1242/dev.070771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Song CX et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72. https://doi.org/10.1038/nbt.1732

    Article  CAS  PubMed  Google Scholar 

  168. Putiri EL et al (2014) Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biol 15:R81. https://doi.org/10.1186/gb-2014-15-6-r81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yamaguchi S, Shen L, Liu Y, Sendler D, Zhang Y (2013) Role of Tet1 in erasure of genomic imprinting. Nature 504:460–464. https://doi.org/10.1038/nature12805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156:45–68. https://doi.org/10.1016/j.cell.2013.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gu TP et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610. https://doi.org/10.1038/nature10443

    Article  CAS  PubMed  Google Scholar 

  172. Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341–356. https://doi.org/10.1038/nrm3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dawlaty MM et al (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9:166–175. https://doi.org/10.1016/j.stem.2011.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu H et al (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389–393. https://doi.org/10.1038/nature09934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hon GC et al (2014) 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 56:286–297. https://doi.org/10.1016/j.molcel.2014.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fidalgo M et al (2016) Zfp281 coordinates opposing functions of Tet1 and Tet2 in pluripotent states. Cell Stem Cell 19:355–369. https://doi.org/10.1016/j.stem.2016.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Piccolo FM et al (2013) Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol Cell 49:1023–1033. https://doi.org/10.1016/j.molcel.2013.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jin C et al (2014) TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res 42:6956–6971. https://doi.org/10.1093/nar/gku372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–1710. https://doi.org/10.4161/cc.8.11.8580

    Article  CAS  PubMed  Google Scholar 

  180. Frauer C et al (2011) Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS One 6:e16627. https://doi.org/10.1371/journal.pone.0016627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang H et al (2010) TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res 20:1390–1393. https://doi.org/10.1038/cr.2010.156

    Article  PubMed  Google Scholar 

  182. Greer CB et al (2021) Tet1 isoforms differentially regulate gene expression, synaptic transmission, and memory in the mammalian brain. J Neurosci 41:578–593. https://doi.org/10.1523/JNEUROSCI.1821-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chandru A, Bate N, Vuister GW, Cowley SM (2018) Sin3A recruits Tet1 to the PAH1 domain via a highly conserved Sin3-Interaction Domain. Sci Rep 8:14689. https://doi.org/10.1038/s41598-018-32942-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhu F et al (2018) Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res 46:6026–6040. https://doi.org/10.1093/nar/gky347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Vella P et al (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell 49:645–656. https://doi.org/10.1016/j.molcel.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  186. Deplus R et al (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655. https://doi.org/10.1038/emboj.2012.357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen Q, Chen Y, Bian C, Fujiki R, Yu X (2013) TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561–564. https://doi.org/10.1038/nature11742

    Article  CAS  PubMed  Google Scholar 

  188. Hrit J et al (2018) OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development. Elife. https://doi.org/10.7554/eLife.34870

    Article  PubMed  PubMed Central  Google Scholar 

  189. Teif VB et al (2014) Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res 24:1285–1295. https://doi.org/10.1101/gr.164418.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dubois-Chevalier J et al (2014) A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Res 42:10943–10959. https://doi.org/10.1093/nar/gku780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wiehle L et al (2019) DNA (de)methylation in embryonic stem cells controls CTCF-dependent chromatin boundaries. Genome Res 29:750–761. https://doi.org/10.1101/gr.239707.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Perera A et al (2015) TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell Rep 11:283–294. https://doi.org/10.1016/j.celrep.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  193. Ko M et al (2013) Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497:122–126. https://doi.org/10.1038/nature12052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ayaz G et al (2020) CXXC5 as an unmethylated CpG dinucleotide binding protein contributes to estrogen-mediated cellular proliferation. Sci Rep 10:5971. https://doi.org/10.1038/s41598-020-62912-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ravichandran M et al (2019) Rinf regulates pluripotency network genes and TET enzymes in embryonic stem cells. Cell Rep 28:1993–2003. https://doi.org/10.1016/j.celrep.2019.07.080 (e1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Abbas S, Erpelinck-Verschueren CA, Goudswaard CS, Lowenberg B, Valk PJ (2010) Mutant Wilms’ tumor 1 (WT1) mRNA with premature termination codons in acute myeloid leukemia (AML) is sensitive to nonsense-mediated RNA decay (NMD). Leukemia 24:660–663. https://doi.org/10.1038/leu.2009.265

    Article  CAS  PubMed  Google Scholar 

  197. Wang Y et al (2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 57:662–673. https://doi.org/10.1016/j.molcel.2014.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rampal R et al (2014) DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep 9:1841–1855. https://doi.org/10.1016/j.celrep.2014.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Pan F, Weeks O, Yang FC, Xu M (2015) The TET2 interactors and their links to hematological malignancies. IUBMB Life 67:438–445. https://doi.org/10.1002/iub.1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lazarenkov A, Sardina JL (2022) Dissecting TET2 regulatory networks in blood differentiation and cancer. Cancers (Basel). https://doi.org/10.3390/cancers14030830

    Article  Google Scholar 

  201. Muller U, Bauer C, Siegl M, Rottach A, Leonhardt H (2014) TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Res 42:8592–8604. https://doi.org/10.1093/nar/gku552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cartron PF et al (2013) Identification of TET1 partners that control Its DNA-demethylating function. Genes Cancer 4:235–241. https://doi.org/10.1177/1947601913489020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Costa Y et al (2013) NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495:370–374. https://doi.org/10.1038/nature11925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zheng L et al (2016) Modification of Tet1 and histone methylation dynamics in dairy goat male germline stem cells. Cell Prolif 49:163–172. https://doi.org/10.1111/cpr.12245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zheng L et al (2016) The modification of Tet1 in male germline stem cells and interact with PCNA, HDAC1 to promote their self-renewal and proliferation. Sci Rep 6:37414. https://doi.org/10.1038/srep37414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhang X, Yang C, Peng X, Chen X, Feng Y (2017) Acute WT1-positive promyelocytic leukemia with hypogranular variant morphology, bcr-3 isoform of PML-RARalpha and Flt3-ITD mutation: a rare case report. Sao Paulo medical journal = Revista paulista de medicina 135:179–184. https://doi.org/10.1590/1516-3180.2016.020104102016

    Article  PubMed  Google Scholar 

  207. Zhang Q et al (2015) Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525:389–393. https://doi.org/10.1038/nature15252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chen LL et al (2018) SNIP1 recruits TET2 to regulate c-MYC target genes and cellular DNA damage response. Cell Rep 25:1485–1500. https://doi.org/10.1016/j.celrep.2018.10.028 (e1484)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sardina JL et al (2018) Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate. Cell Stem Cell 23:905–906. https://doi.org/10.1016/j.stem.2018.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang YW et al (2017) Acetylation enhances TET2 function in protecting against abnormal DNA methylation during oxidative stress. Mol Cell 65:323–335. https://doi.org/10.1016/j.molcel.2016.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Song C et al (2018) PML recruits TET2 to regulate DNA modification and cell proliferation in response to chemotherapeutic agent. Cancer Res 78:2475–2489. https://doi.org/10.1158/0008-5472.CAN-17-3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nakagawa T et al (2015) CRL4(VprBP) E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases. Mol Cell 57:247–260. https://doi.org/10.1016/j.molcel.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  213. Qiao Y et al (2015) AF9 promotes hESC neural differentiation through recruiting TET2 to neurodevelopmental gene loci for methylcytosine hydroxylation. Cell Discovery 1:15017. https://doi.org/10.1038/celldisc.2015.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lio CW et al (2016) Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. Elife. https://doi.org/10.7554/eLife.18290

    Article  PubMed  PubMed Central  Google Scholar 

  215. de la Rica L et al (2013) PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation. Genome Biol 14:R99. https://doi.org/10.1186/gb-2013-14-9-r99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Suzuki T et al (2017) RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv 1:1699–1711. https://doi.org/10.1182/bloodadvances.2017005710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zeng Y et al (2016) Lin28A binds active promoters and recruits Tet1 to regulate gene expression. Mol Cell 61:153–160. https://doi.org/10.1016/j.molcel.2015.11.020

    Article  CAS  PubMed  Google Scholar 

  218. Sun Z et al (2019) EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nat Commun 10:3892. https://doi.org/10.1038/s41467-019-11905-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Guan W et al (2017) Methylcytosine dioxygenase TET3 interacts with thyroid hormone nuclear receptors and stabilizes their association to chromatin. Proc Natl Acad Sci USA 114:8229–8234. https://doi.org/10.1073/pnas.1702192114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Fujiki K et al (2013) PPARgamma-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat Commun 4:2262. https://doi.org/10.1038/ncomms3262

    Article  CAS  PubMed  Google Scholar 

  221. Baubec T, Ivanek R, Lienert F, Schubeler D (2013) Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153:480–492. https://doi.org/10.1016/j.cell.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  222. Peng L et al (2016) MBD3L2 promotes Tet2 enzymatic activity for mediating 5-methylcytosine oxidation. J Cell Sci 129:1059–1071. https://doi.org/10.1242/jcs.179044

    Article  CAS  PubMed  Google Scholar 

  223. Okashita N et al (2014) PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development 141:269–280. https://doi.org/10.1242/dev.099622

    Article  CAS  PubMed  Google Scholar 

  224. Soufi A et al (2015) Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161:555–568. https://doi.org/10.1016/j.cell.2015.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Boller S et al (2016) Pioneering activity of the C-terminal domain of EBF1 shapes the chromatin landscape for B Cell programming. Immunity 44:527–541. https://doi.org/10.1016/j.immuni.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  226. Liu Y et al (2014) Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Res 42:4859–4867. https://doi.org/10.1093/nar/gku134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hashimoto H et al (2014) Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev 28:2304–2313. https://doi.org/10.1101/gad.250746.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Vanzan L et al (2021) High throughput screening identifies SOX2 as a super pioneer factor that inhibits DNA methylation maintenance at its binding sites. Nat Commun 12:3337. https://doi.org/10.1038/s41467-021-23630-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Quenneville S et al (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372. https://doi.org/10.1016/j.molcel.2011.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wang D et al (2017) MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma. Nucleic Acids Res 45:2396–2407. https://doi.org/10.1093/nar/gkw1184

    Article  CAS  PubMed  Google Scholar 

  231. Domcke S et al (2015) Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528:575–579. https://doi.org/10.1038/nature16462

    Article  CAS  PubMed  Google Scholar 

  232. Xiong J et al (2016) Cooperative action between SALL4A and TET proteins in stepwise oxidation of 5-methylcytosine. Mol Cell 64:913–925. https://doi.org/10.1016/j.molcel.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  233. Looney TJ et al (2014) Systematic mapping of occluded genes by cell fusion reveals prevalence and stability of cis-mediated silencing in somatic cells. Genome Res 24:267–280. https://doi.org/10.1101/gr.143891.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Polo JM et al (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151:1617–1632. https://doi.org/10.1016/j.cell.2012.11.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Okashita N et al (2016) PRDM14 drives OCT3/4 recruitment via active demethylation in the transition from primed to naive pluripotency. Stem Cell Reports 7:1072–1086. https://doi.org/10.1016/j.stemcr.2016.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Iwafuchi-Doi M, Zaret KS (2016) Cell fate control by pioneer transcription factors. Development 143:1833–1837. https://doi.org/10.1242/dev.133900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Mayran A, Drouin J (2018) Pioneer transcription factors shape the epigenetic landscape. J Biol Chem 293:13795–13804. https://doi.org/10.1074/jbc.R117.001232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Larson ED, Marsh AJ, Harrison MM (2021) Pioneering the developmental frontier. Mol Cell 81:1640–1650. https://doi.org/10.1016/j.molcel.2021.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Balsalobre A, Drouin J (2022) Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-022-00464-z

    Article  PubMed  Google Scholar 

  240. Iwafuchi-Doi M (2019) The mechanistic basis for chromatin regulation by pioneer transcription factors. Wiley Interdisciplin Rev 11:e1427. https://doi.org/10.1002/wsbm.1427

    Article  CAS  Google Scholar 

  241. Chronis C et al (2017) Cooperative binding of transcription factors orchestrates reprogramming. Cell 168:442–459. https://doi.org/10.1016/j.cell.2016.12.016 (e420)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Mayran A et al (2019) Pioneer and nonpioneer factor cooperation drives lineage specific chromatin opening. Nat Commun 10:3807. https://doi.org/10.1038/s41467-019-11791-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sonmezer C et al (2021) Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol Cell 81:255–267. https://doi.org/10.1016/j.molcel.2020.11.015 (e256)

    Article  CAS  PubMed  Google Scholar 

  244. Rishi V et al (2010) CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate some tissue-specific genes. Proc Natl Acad Sci USA 107:20311–20316. https://doi.org/10.1073/pnas.1008688107

    Article  PubMed  PubMed Central  Google Scholar 

  245. van Oevelen C et al (2015) C/EBPα activates pre-existing and de novo macrophage enhancers during induced pre-B cell transdifferentiation and myelopoiesis. Stem Cell Reports 5:232–247. https://doi.org/10.1016/j.stemcr.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Xue S et al (2016) TET3 inhibits type I IFN production independent of DNA demethylation. Cell Rep 16:1096–1105. https://doi.org/10.1016/j.celrep.2016.06.068

    Article  CAS  PubMed  Google Scholar 

  247. Zhong J et al (2017) TET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function. Nucleic Acids Res 45:672–684. https://doi.org/10.1093/nar/gkw919

    Article  CAS  PubMed  Google Scholar 

  248. Bauer C et al (2015) Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-Linked N-acetylglucosamine transferase (OGT). J Biol Chem 290:4801–4812. https://doi.org/10.1074/jbc.m114.605881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Li X et al (2021) SIRT1 deacetylates TET2 and promotes its ubiquitination degradation to achieve neuroprotection against parkinson’s disease. Front Neurol 12:652882. https://doi.org/10.3389/fneur.2021.652882

    Article  PubMed  PubMed Central  Google Scholar 

  250. Wu D et al (2018) Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559:637–641. https://doi.org/10.1038/s41586-018-0350-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Rao VK et al (2020) Phosphorylation of Tet3 by cdk5 is critical for robust activation of BRN2 during neuronal differentiation. Nucleic Acids Res 48:1225–1238. https://doi.org/10.1093/nar/gkz1144

    Article  CAS  PubMed  Google Scholar 

  252. Coulter JB et al (2017) TET1 deficiency attenuates the DNA damage response and promotes resistance to DNA damaging agents. Epigenetics 12:854–864. https://doi.org/10.1080/15592294.2017.1359452

    Article  PubMed  PubMed Central  Google Scholar 

  253. Zhang T et al (2019) Phosphorylation of TET2 by AMPK is indispensable in myogenic differentiation. Epigenetics Chromatin 12:32. https://doi.org/10.1186/s13072-019-0281-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Fiedler EC, Shaw RJ (2018) AMPK regulates the epigenome through phosphorylation of TET2. Cell Metab 28:534–536. https://doi.org/10.1016/j.cmet.2018.09.015

    Article  CAS  PubMed  Google Scholar 

  255. Chen H et al (2019) TET2 stabilization by 14-3-3 binding to the phosphorylated Serine 99 is deregulated by mutations in cancer. Cell Res 29:248–250. https://doi.org/10.1038/s41422-018-0132-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kundu A et al (2020) 14–3-3 proteins protect AMPK-phosphorylated ten-eleven translocation-2 (TET2) from PP2A-mediated dephosphorylation. J Biol Chem 295:1754–1766. https://doi.org/10.1074/jbc.RA119.011089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Giovannucci E et al (2010) Diabetes and cancer: a consensus report. Cancer J Clin 60:207–221. https://doi.org/10.3322/caac.20078

    Article  Google Scholar 

  258. Brower V (2012) Illuminating the diabetes-cancer link. J Natl Cancer Inst 104:1048–1050. https://doi.org/10.1093/jnci/djs322

    Article  PubMed  Google Scholar 

  259. Wang T et al (2021) Diabetes risk reduction diet and survival after breast cancer diagnosis. Cancer Res 81:4155–4162. https://doi.org/10.1158/0008-5472.CAN-21-0256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Jeong JJ et al (2019) Cytokine-regulated phosphorylation and activation of TET2 by JAK2 in hematopoiesis. Cancer Discov 9:778–795. https://doi.org/10.1158/2159-8290.CD-18-1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Jin Z et al (2020) FGFR3 big up tri, open7-9 promotes tumor progression via the phosphorylation and destabilization of ten-eleven translocation-2 in human hepatocellular carcinoma. Cell Death Dis 11:903. https://doi.org/10.1038/s41419-020-03089-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Mancini M et al (2012) Cytoplasmatic compartmentalization by Bcr-Abl promotes TET2 loss-of-function in chronic myeloid leukemia. J Cell Biochem 113:2765–2774. https://doi.org/10.1002/jcb.24154

    Article  CAS  PubMed  Google Scholar 

  263. Jiang D, Wei S, Chen F, Zhang Y, Li J (2017) TET3-mediated DNA oxidation promotes ATR-dependent DNA damage response. EMBO Rep 18:781–796. https://doi.org/10.15252/embr.201643179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Ito R et al (2014) TET3-OGT interaction increases the stability and the presence of OGT in chromatin. Genes Cells 19:52–65. https://doi.org/10.1111/gtc.12107

    Article  CAS  PubMed  Google Scholar 

  265. Zhang Q et al (2014) Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT). J Biol Chem 289:5986–5996. https://doi.org/10.1074/jbc.M113.524140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Shi FT et al (2013) Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288:20776–20784. https://doi.org/10.1074/jbc.M113.460386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lv L et al (2018) Vpr targets TET2 for degradation by CRL4(VprBP) E3 ligase to sustain IL-6 expression and enhance HIV-1 replication. Mol Cell 70:961–970. https://doi.org/10.1016/j.molcel.2018.05.007 (e965)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Sun J et al (2018) SIRT1 activation disrupts maintenance of myelodysplastic syndrome stem and progenitor cells by restoring TET2 function. Cell Stem Cell 23:355–369. https://doi.org/10.1016/j.stem.2018.07.018 (e359)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Wang Y, Zhang Y (2014) Regulation of TET protein stability by calpains. Cell Rep 6:278–284. https://doi.org/10.1016/j.celrep.2013.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Bamezai S et al (2021) TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia 35:389–403. https://doi.org/10.1038/s41375-020-0864-3

    Article  CAS  PubMed  Google Scholar 

  271. Ciccarone F et al (2014) Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription. Oncotarget 5:10356–10367. https://doi.org/10.18632/oncotarget.1905

    Article  PubMed  PubMed Central  Google Scholar 

  272. Ciccarone F, Valentini E, Zampieri M, Caiafa P (2015) 5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme. Oncotarget 6:24333–24347. https://doi.org/10.18632/oncotarget.4476

    Article  PubMed  PubMed Central  Google Scholar 

  273. Thienpont B et al (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537:63–68. https://doi.org/10.1038/nature19081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Cimmino L et al (2017) Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170:1079–1095. https://doi.org/10.1016/j.cell.2017.07.032 (e1020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Chen J et al (2013) Vitamin C modulates TET1 function during somatic cell reprogramming. Nat Genet 45:1504–1509. https://doi.org/10.1038/ng.2807

    Article  CAS  PubMed  Google Scholar 

  276. Yin R et al (2013) Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc 135:10396–10403. https://doi.org/10.1021/ja4028346

    Article  CAS  PubMed  Google Scholar 

  277. Tahiliani M et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Hu L et al (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555. https://doi.org/10.1016/j.cell.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  279. Sciacovelli M et al (2016) Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537:544–547. https://doi.org/10.1038/nature19353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Bledea R et al (2019) Functional and topographic effects on DNA methylation in IDH1/2 mutant cancers. Sci Rep 9:16830. https://doi.org/10.1038/s41598-019-53262-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Morin A et al (2020) TET-mediated hypermethylation primes SDH-deficient cells for HIF2α-driven mesenchymal transition. Cell Rep 30:4551–4566. https://doi.org/10.1016/j.celrep.2020.03.022 (e4557)

    Article  CAS  PubMed  Google Scholar 

  282. Chen LL et al (2022) Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nat Cell Biol 24:353–363. https://doi.org/10.1038/s41556-022-00853-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Jakubek M et al (2019) Hydrazones as novel epigenetic modulators: correlation between TET 1 protein inhibition activity and their iron(II) binding ability. Bioorg Chem 88:102809. https://doi.org/10.1016/j.bioorg.2019.02.034

    Article  CAS  PubMed  Google Scholar 

  284. Vissers MCM, Das AB (2018) Potential mechanisms of action for vitamin C in cancer: reviewing the evidence. Front Physiol 9:809. https://doi.org/10.3389/fphys.2018.00809

    Article  PubMed  PubMed Central  Google Scholar 

  285. Brabson JP, Leesang T, Mohammad S, Cimmino L (2021) Epigenetic regulation of genomic stability by vitamin C. Front Genet 12:675780. https://doi.org/10.3389/fgene.2021.675780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Lee Chong T, Ahearn EL, Cimmino L (2019) Reprogramming the epigenome with vitamin C. Front Cell Dev Biol 7:128. https://doi.org/10.3389/fcell.2019.00128

    Article  PubMed  PubMed Central  Google Scholar 

  287. Agathocleous M et al (2017) Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549:476–481. https://doi.org/10.1038/nature23876

    Article  PubMed  PubMed Central  Google Scholar 

  288. Chrysanthou S et al (2022) The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity. Nucleic Acids Res 50:3169–3189. https://doi.org/10.1093/nar/gkac089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Ito K et al (2019) Non-catalytic roles of Tet2 are essential to regulate hematopoietic stem and progenitor cell homeostasis. Cell Rep 28:2480–2490. https://doi.org/10.1016/j.celrep.2019.07.094 (e2484)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Ko M et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843. https://doi.org/10.1038/nature09586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Rasmussen KD et al (2015) Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev 29:910–922. https://doi.org/10.1101/gad.260174.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Thurman RE et al (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82. https://doi.org/10.1038/nature11232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Neri F et al (2015) TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. Oncogene 34:4168–4176. https://doi.org/10.1038/onc.2014.356

    Article  CAS  PubMed  Google Scholar 

  294. Prasad P, Mittal SA, Chongtham J, Mohanty S, Srivastava T (2017) Hypoxia-mediated epigenetic regulation of stemness in brain tumor cells. Stem Cells 35:1468–1478. https://doi.org/10.1002/stem.2621

    Article  CAS  PubMed  Google Scholar 

  295. Herrmann A et al (2020) Integrin alpha6 signaling induces STAT3-TET3-mediated hydroxymethylation of genes critical for maintenance of glioma stem cells. Oncogene 39:2156–2169. https://doi.org/10.1038/s41388-019-1134-6

    Article  CAS  PubMed  Google Scholar 

  296. Wu MZ et al (2015) Hypoxia drives breast tumor malignancy through a TET-TNFα-p38-MAPK signaling axis. Cancer Res 75:3912–3924. https://doi.org/10.1158/0008-5472.CAN-14-3208

    Article  CAS  PubMed  Google Scholar 

  297. Puig I et al (2018) TET2 controls chemoresistant slow-cycling cancer cell survival and tumor recurrence. J Clin Invest 128:3887–3905. https://doi.org/10.1172/JCI96393

    Article  PubMed  PubMed Central  Google Scholar 

  298. Su PH et al (2019) TET1 promotes 5hmC-dependent stemness, and inhibits a 5hmC-independent epithelial-mesenchymal transition, in cervical precancerous lesions. Cancer Lett 450:53–62. https://doi.org/10.1016/j.canlet.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  299. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022. https://doi.org/10.1038/nature05815

    Article  CAS  PubMed  Google Scholar 

  300. Fujiki R et al (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480:557–560. https://doi.org/10.1038/nature10656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Maury JJ et al (2015) RING1B O-GlcNAcylation regulates gene targeting of polycomb repressive complex 1 in human embryonic stem cells. Stem Cell Res 15:182–189. https://doi.org/10.1016/j.scr.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  302. Chu CS et al (2014) O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci USA 111:1355–1360. https://doi.org/10.1073/pnas.1323226111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Capotosti F et al (2011) O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144:376–388. https://doi.org/10.1016/j.cell.2010.12.030

    Article  CAS  PubMed  Google Scholar 

  304. Li HJ et al (2021) Roles of ten-eleven translocation family proteins and their O-linked β-N-acetylglucosaminylated forms in cancer development. Oncol Lett 21:1. https://doi.org/10.3892/ol.2020.12262

    Article  CAS  PubMed  Google Scholar 

  305. Iwafuchi-Doi M, Zaret KS (2014) Pioneer transcription factors in cell reprogramming. Genes Dev 28:2679–2692. https://doi.org/10.1101/gad.253443.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by NIH grants R01 HL133560 and R01 CA223194 through Loyola University Chicago, as well as Loyola program development funds to Jiwang Zhang.

Author information

Authors and Affiliations

Authors

Contributions

Kanak Joshi and Shanhui Liu drafted the first version of this review. All of the authors contributed to the writing of this manuscript. Peter Breslin did the final editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiwang Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing financial or professional interests.

Ethics approval

This is not applicable for this review.

Consent to participate

This is not applicable for this review.

Consent for publication

This is not applicable for this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, K., Liu, S., Breslin S.J., P. et al. Mechanisms that regulate the activities of TET proteins. Cell. Mol. Life Sci. 79, 363 (2022). https://doi.org/10.1007/s00018-022-04396-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04396-x

Keywords

Navigation