Skip to main content
Log in

Mechanosensors control skeletal muscle mass, molecular clocks, and metabolism

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Background

Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism.

Methods

We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes.

Results

Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model.

Conclusions

Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be made available from the corresponding author upon reasonable request.

References

  1. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Behav Genet 45:183–195

    Google Scholar 

  2. Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45:2200–2208

    CAS  PubMed  Google Scholar 

  3. Bodine SC, Latres E, Baumhueter S, Lai VKM, Nunez L, Clarke BA et al (2001) Identification of ubiquitin ligases required for skeletal Muscle Atrophy. Science (80) 294:1704–1708

    CAS  Google Scholar 

  4. Otto A, Patel K (2010) Signalling and the control of skeletal muscle size. Exp Cell Res 316:3059–3066

    CAS  PubMed  Google Scholar 

  5. Giudice J, Taylor JM (2017) Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol 34:49–55

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pedersen L, Hojman P (2012) Muscle-to-organ cross talk mediated by myokines. Adipocyte 1:164–167

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mathes S, Vanmunster M, Bloch W, Suhr F (2019) Evidence for skeletal muscle fiber type-specific expressions of mechanosensors. Cell Mol Life Sci 76:2987–3004

    CAS  PubMed  Google Scholar 

  8. Gabriel BM, Zierath JR (2019) Circadian rhythms and exercise—re-setting the clock in metabolic disease. Nat Rev Endocrinol 15:197–206

    PubMed  Google Scholar 

  9. Harfmann BD, Schroder EA, Esser KA (2015) Circadian rhythms, the molecular clock, and skeletal muscle. J Biol Rhythms 30:84–94

    CAS  PubMed  Google Scholar 

  10. Pingel J, Suhr F (2017) Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures? J Muscle Res Cell Motil 38:317–330

    CAS  PubMed  Google Scholar 

  11. Dowling JJ, Vreede AP, Kim S, Golden J, Feldman EL (2008) Kindlin-2 is required for myocyte elongation and is essential for myogenesis. BMC Cell Biol 9:1–16

    Google Scholar 

  12. Conti FJ, Monkley SJ, Wood MR, Critchley DR, Müller U (2009) Talin 1 and 2 are required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions. Development 136:3597–3606

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shear CR, Bloch RJ (1985) Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J Cell Biol 101:240–256

    CAS  PubMed  Google Scholar 

  14. Legate KR, Montañez E, Kudlacek O, Fässler R (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7:20–32

    CAS  PubMed  Google Scholar 

  15. Schroder EA, Esser KA (2013) Circadian rhythms, skeletal muscle molecular clocks, and exercise. Exerc Sport Sci Rev 41:224–229

    PubMed  Google Scholar 

  16. Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B et al (2010) CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA 107:19090–19095

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chatterjee S, Barquero N, Li L, Ma K (2011) Circadian clock gene, Bmal1, regulates skeletal muscle metabolism and development. Endocr Rev 32:P3-434

    Google Scholar 

  18. Chatterjee S, Nam D, Guo B, Kim JM, Winnier GE, Lee J et al (2013) Brain and muscle Arnt-like 1 is a key regulator of myogenesis. J Cell Sci 126:2213–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dyar KA, Ciciliot S, Wright LE, Biensø RS, Tagliazucchi GM, Patel VR et al (2014) Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 3:29–41

    CAS  PubMed  Google Scholar 

  20. Harfmann BD, Schroder EA, Kachman MT, Hodge BA, Zhang X, Esser KA (2016) Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle 6:1–13

    Google Scholar 

  21. Nakao R, Yamamoto S, Horikawa K, Yasumoto Y, Nikawa T, Mukai C et al (2015) Atypical expression of circadian clock genes in denervated mouse skeletal muscle. Chronobiol Int 32:486–496

    CAS  PubMed  Google Scholar 

  22. Yang N, Williams J, Pekovic-Vaughan V, Wang P, Olabi S, McConnell J et al (2017) Cellular mechano-environment regulates the mammary circadian clock. Nat Commun 8:1–13

    Google Scholar 

  23. Qi L, Boateng SY (2006) The circadian protein Clock localizes to the sarcomeric Z-disk and is a sensor of myofilament cross-bridge activity in cardiac myocytes. Biochem Biophys Res Commun 351:1054–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92:1367–1377

    PubMed  Google Scholar 

  25. Greiwe L, Vinck M, Suhr F (2016) The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments. Acta Physiol 217:61–79

    CAS  Google Scholar 

  26. Wen Y, Murach KA, Vechetti IJ, Fry CS, Vickery C, Peterson CA et al (2018) MyoVision: Software for automated high-content analysis of skeletal muscle immunohistochemistry. J Appl Physiol 124:40–51

    CAS  PubMed  Google Scholar 

  27. Suhr F, Braun K, Vanmunster M, Bloch W (2019) Acute skeletal muscle contractions orchestrate signaling mechanisms to trigger nuclear NFATc1 shuttling and epigenetic histone modifications. Cell Physiol Biochem 52:633–652

    CAS  PubMed  Google Scholar 

  28. Dalle S, Van Roie E, Hiroux C, Vanmunster M, Coudyzer W, Suhr F et al (2020) Omega-3 supplementation improves isometric strength but not muscle anabolic and catabolic signaling in response to resistance exercise in healthy older adults. J Gerontol Ser A. https://doi.org/10.1093/gerona/glaa309

    Article  Google Scholar 

  29. Maki T, Yamamoto D, Nakanishi S, Iida K, Iguchi G, Takahashi Y et al (2012) Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutr Res 32:676–683

    CAS  PubMed  Google Scholar 

  30. Solomon V, Goldberg AL (1996) Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271:26690–26697

    CAS  PubMed  Google Scholar 

  31. Ussar S, Wang HV, Linder S, Fässler R, Moser M (2006) The Kindlins: subcellular localization and expression during murine development. Exp Cell Res 312:3142–3151

    CAS  PubMed  Google Scholar 

  32. Watt KI, Turner BJ, Hagg A, Zhang X, Davey JR, Qian H et al (2015) The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nat Commun 6:1–13

    Google Scholar 

  33. Sinacore DR, Gulve EA (1993) The role of skeletal muscle in glucose transport, glucose homeostasis, and insulin resistance: implications for physical therapy. Phys Ther 73:878–891

    CAS  PubMed  Google Scholar 

  34. Stöckli J, Meoli CC, Hoffman NJ, Fazakerley DJ, Pant H, Cleasby ME et al (2015) The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle. Diabetes 64:1914–1922

    PubMed  Google Scholar 

  35. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H et al (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152:1106–1118

    CAS  PubMed  Google Scholar 

  37. Wirianto M, Yang J, Kim E, Gao S, Paudel KR, Choi JM et al (2020) The GSK-3β-FBXL21 axis contributes to circadian TCAP degradation and skeletal muscle function. Cell Rep 32:108140

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K et al (1998) The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol. 143(4):1013–1027. https://doi.org/10.1083/jcb.143.4.1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flück M, Carson JA, Gordon SE, Ziemiecki A, Booth FW (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol Cell Physiol 277:C152–162

    Google Scholar 

  40. Nardone G, Oliver-De La Cruz J, Vrbsky J, Martini C, Pribyl J, Skládal P et al (2017) YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun 8:15321

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fischer M, Rikeit P, Knaus P, Coirault C (2016) YAP-mediated mechanotransduction in skeletal muscle. Front Physiol 7:1–12

    Google Scholar 

  42. Gardetto PR, Schluter JM, Fitts RH (1989) Contractile function of single muscle fibers after hindlimb suspension. J Appl Physiol 66:2739–2749

    CAS  PubMed  Google Scholar 

  43. Augusto V, Padovani CR, Gerson E, Rocha C (2004) Skeletal muscle fiber types in C57BL6J Mice. Braz J Morphol Sci 21:89–94

    Google Scholar 

  44. Stein TP, Wade CE (2005) Metabolic consequences of muscle disuse atrophy. J Nutr 135:1824S-1828S

    CAS  PubMed  Google Scholar 

  45. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    CAS  PubMed  Google Scholar 

  46. Sun L, Fan G, Shan P, Qiu X, Dong S, Liao L et al (2016) Regulation of energy homeostasis by the ubiquitin-independent REGγ 3 proteasome. Nat Commun 7:1–15

    Google Scholar 

  47. Payne SH (2015) The utility of protein and mRNA correlation. Trends Biochem Sci 40:1–3

    CAS  PubMed  Google Scholar 

  48. de Sousa AR, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol Biosyst 5:1512–1526

    Google Scholar 

  49. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Monique Ramaekers for technical assistance during the tissue collections.

Funding

Mathias Vanmunster is a recipient of an FWO Fundamental Research PhD scholarship (Project Number 1186720N). Sebastiaan Dalle has received a postdoctoral fellowship (12Z8622N) from Research Foundation Flanders (FWO). The project was funded by a KU Leuven grant (Project Number C14/19/092) as well as an FWO grant (Project Number: G056521N) to Frank Suhr.

Author information

Authors and Affiliations

Authors

Contributions

Project design: FS; Performing experiments: MV, AVRG, AP, SD; Data analysis: FS, MV; Provided reagents: FS, KK; Drafting the manuscript: FS, MV; Final approval of the manuscript: MV, AVRG, AP, SD, KK, FS.

Corresponding author

Correspondence to Frank Suhr.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1016 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanmunster, M., Rojo Garcia, A.V., Pacolet, A. et al. Mechanosensors control skeletal muscle mass, molecular clocks, and metabolism. Cell. Mol. Life Sci. 79, 321 (2022). https://doi.org/10.1007/s00018-022-04346-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04346-7

Keywords

Navigation