Skip to main content

Advertisement

Log in

Lipid-induced monokine cyclophilin-A promotes adipose tissue dysfunction implementing insulin resistance and type 2 diabetes in zebrafish and mice models of obesity

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Several studies have implicated obesity-induced macrophage–adipocyte cross-talk in adipose tissue dysfunction and insulin resistance. However, the molecular cues involved in the cross-talk of macrophage and adipocyte causing insulin resistance are currently unknown. Here, we found that a lipid-induced monokine cyclophilin-A (CyPA) significantly attenuates adipocyte functions and insulin sensitivity. Targeted inhibition of CyPA in diet-induced obese zebrafish notably reduced adipose tissue inflammation and restored adipocyte function resulting in improvement of insulin sensitivity. Silencing of macrophage CyPA or pharmacological inhibition of CyPA by TMN355 effectively restored adipocytes’ functions and insulin sensitivity. Interestingly, CyPA incubation markedly increased adipocyte inflammation along with an impairment of adipogenesis, however, mutation of its cognate receptor CD147 at P309A and G310A significantly waived CyPA’s effect on adipocyte inflammation and its differentiation. Mechanistically, CyPA–CD147 interaction activates NF-κB signaling which promotes adipocyte inflammation by upregulating various pro-inflammatory cytokines gene expression and attenuates adipocyte differentiation by inhibiting PPARγ and C/EBPβ expression via LZTS2-mediated downregulation of β-catenin. Moreover, inhibition of CyPA or its receptor CD147 notably restored palmitate or CyPA-induced adipose tissue dysfunctions and insulin sensitivity. All these results indicate that obesity-induced macrophage–adipocyte cross-talk involving CyPA–CD147 could be a novel target for the management of insulin resistance and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Morigny P, Boucher J, Arner P, Langin D (2021) Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 17(5):276–295

    Article  CAS  PubMed  Google Scholar 

  2. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F, Miele C (2019) Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci 20(9):2358

    Article  CAS  PubMed Central  Google Scholar 

  3. Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U (2018) Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev 98:1911–1941

    Article  CAS  PubMed  Google Scholar 

  4. Muir LA, Neeley CK, Meyer KA et al (2016) Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity (Silver Spring) 24(3):597–605

    Article  CAS  Google Scholar 

  5. Liu F, He J, Wang H, Zhu D, Bi Y (2020) Adipose morphology: a critical factor in regulation of human metabolic diseases and adipose tissue dysfunction. Obes Surg 30:5086–5100

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pal D, Dasgupta S, Kundu R et al (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285

    Article  CAS  PubMed  Google Scholar 

  7. McKernan K, Varghese M, Patel R, Singer K (2020) Role of TLR4 in the induction of inflammatory changes in adipocytes and macrophages. Adipocyte 9(1):212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lancaster GI, Langley KG, Berglund NA et al (2018) Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 27:1096–1110

    Article  CAS  PubMed  Google Scholar 

  9. Kriebs A (2021) Accumulation of macrophages in adipose tissue. Nat Rev Endocrinol 17:4

    Article  PubMed  Google Scholar 

  10. Russo L, Lumeng CN (2018) Properties and functions of adipose tissue macrophages in obesity. Immunology 155(4):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng C, Yang Q, Cao J et al (2016) Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis 7:e2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boutens L, Stienstra R (2016) Adipose tissue macrophages: going off track during obesity. Diabetologia 59:879–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guglielmi V, Cardellini M, Cinti F et al (2015) Omental adipose tissue fibrosis and insulin resistance in severe obesity. Nutr Diabetes 5:e175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee CH, Lam KSL (2019) Obesity-induced insulin resistance and macrophage infiltration of the adipose tissue: a vicious cycle. J Diabetes Investig 10(1):29–31

    Article  PubMed  Google Scholar 

  15. Ramkhelawon B, Hennessy EJ, Ménager M et al (2014) Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat Med 20:377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee YS, Olefsky J (2021) Chronic tissue inflammation and metabolic disease. Genes Dev 35:307–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomas D, Apovian CM (2017) Macrophage functions in lean and obese adipose tissue. Metabolism 72:120–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Mei H, Chang X, Chen F, Zhu Y, Han X (2016) Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155. J Mol Cell Biol 8(6):505–517

    Article  CAS  PubMed  Google Scholar 

  19. Orecchioni M, Ghosheh Y, Pramod AB, Ley K (2019) Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Front Immunol 10:1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue C, Sowden MP, Berk BC (2018) Extracellular and intracellular cyclophilin A, native and post-translationally modified, show diverse and specific pathological roles in diseases. Arterioscler Thromb Vasc Biol 38:986–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nigro P, Pompilio G, Capogrossi MC (2013) Cyclophilin A: a key player for human disease. Cell Death Dis 4:e888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramachandran S, Venugopal A, Charles S et al (2012) Proteomic profiling of high glucose primed monocytes identifies cyclophilin A as a potential secretory marker of inflammation in type 2 diabetes. Proteomics 12:2808–2821

    Article  CAS  PubMed  Google Scholar 

  23. Mao M, Yu X, Ge X et al (2017) Acetylated cyclophilin A is a major mediator in hypoxia-induced autophagy and pulmonary vascular angiogenesis. J Hypertens 35(4):798–809

    Article  CAS  PubMed  Google Scholar 

  24. Yang W, Bai X, Luan X et al (2022) Delicate regulation of IL-1β-mediated inflammation by cyclophilin A. Cell Rep 38:110513

    Article  CAS  PubMed  Google Scholar 

  25. Satoh K, Nigro P, Berk BC (2010) Oxidative stress and vascular smooth muscle cell growth: a mechanistic linkage by cyclophilin A. Antioxid Redox Signal 12(5):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muramatsu T (2016) Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem 159(5):481–490

    Article  CAS  PubMed  Google Scholar 

  27. Yurchenko V, Zybarth G, O’Connor M et al (2002) Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem 277:22959–22965

    Article  CAS  PubMed  Google Scholar 

  28. Anandan V, Thulaseedharan T, Suresh Kumar A et al (2021) Cyclophilin A impairs efferocytosis and accelerates atherosclerosis by overexpressing CD47 and down-Regulating calreticulin. Cells 10:3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramachandran S, Venugopal A, Kutty VR et al (2014) Plasma level of cyclophilin A is increased in patients with type 2 diabetes mellitus and suggests presence of vascular disease. Cardiovasc Diabetol 13:1–8

    Article  CAS  Google Scholar 

  30. Ramachandran S, Vinitha A, Kartha CC (2016) Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus. Cardiovasc Diabetol 15:1–19

    Article  CAS  Google Scholar 

  31. Zang L, Shimada Y, Nishimura N (2017) Development of a novel zebrafish model for type 2 diabetes mellitus. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  32. Babaei F, Ramalingam R, Tavendale A et al (2013) Novel blood collection method allows plasma proteome analysis from single zebrafish. J Proteome Res 12:1580–1590

    Article  CAS  PubMed  Google Scholar 

  33. Dasgupta S, Bhattacharya S, Maitra S et al (2011) Mechanism of lipid induced insulin resistance: activated PKCε is a key regulator. Biochim Biophys Acta Mol Basis Dis 1812:495–506

    Article  CAS  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  35. Kearney AL, Norris DM, Ghomlaghi M et al (2021) Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. eLife 10:e66942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Di Camillo B, Eduati F, Nair SK, Avogaro A, Toffolo GM (2014) Leucine modulates dynamic phosphorylation events in insulin signalling pathway and enhances insulin-dependent glycogen synthesis in human skeletal muscle cells. BMC Cell Biol 15:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chanda A, Kalita B, Patra A, Senevirathne WDST, Mukherjee AK (2019) Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev Proteom 16:171–184

    Article  CAS  Google Scholar 

  38. Mukherjee S, Chattopadhyay M, Bhattacharya S, Dasgupta S, Hussain S et al (2017) A small insulinomimetic molecule also improves insulin sensitivity in diabetic mice. PLoS ONE 12:e0169809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Arora K, Gwinn WM, Bower MA et al (2005) Extracellular cyclophilins contribute to the regulation of inflammatory responses. J Immunol 175:517–522

    Article  CAS  PubMed  Google Scholar 

  40. Wu H, Ballantyne CM (2020) Metabolic inflammation and insulin resistance in obesity. Circ Res 126:1549–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  CAS  PubMed  Google Scholar 

  42. Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15:635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Napetschnig J, Wu H (2013) Molecular basis of NF-κB signaling. Annu Rev Biophys 42:443–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu Q, Leiva M, Fischkoff S, Handschumacher R, Lyttle C (1992) Leukocyte chemotactic activity of cyclophilin. J Biol Chem 267:11968–11971

    Article  CAS  PubMed  Google Scholar 

  45. Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schlegel J, Redzic JS, Porter CC et al (2009) Solution characterization of the extracellular region of CD147 and its interaction with its enzyme ligand cyclophilin A. J Mol Biol 391:518–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A (2009) Adipogenesis and WNT signalling. Trends Endocrinol Metab 20:16–24

    Article  CAS  PubMed  Google Scholar 

  48. Ma B, Hottiger MO (2016) Crosstalk between Wnt/β-catenin and NF-κB Signaling pathway during inflammation. Front Immunol 7:378

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cho HH, Song JS, Yu JM et al (2008) Differential effect of NF-κB activity on β-catenin/Tcf pathway in various cancer cells. FEBS lett 582:616–622

    Article  CAS  PubMed  Google Scholar 

  50. Chang J, Liu F, Lee M et al (2013) NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci USA 110:9469–9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10:252–256

    Article  CAS  PubMed  Google Scholar 

  52. Kinkel MD, Prince VE (2009) On the diabetic menu: zebrafish as a model for pancreas development and function. Bioessays 31:139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oka T, Nishimura Y, Zang L et al (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10:1–13

    Article  CAS  Google Scholar 

  54. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547

    Article  CAS  PubMed  Google Scholar 

  55. Colgan J, Asmal M, Yu B, Luban J (2005) Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine. J Immunol 174:6030–6038

    Article  CAS  PubMed  Google Scholar 

  56. Sweeney ZK, Fu J, Wiedmann B (2014) From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds. J Med Chem 57:7145–7159

    Article  CAS  PubMed  Google Scholar 

  57. Baugh J, Gallay P (2012) Cyclophilin involvement in the replication of hepatitis C virus and other viruses. Biol Chem 393:579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davra VK, Saleh T, Geng K et al (2020) Cyclophilin A inhibitor Debio-025 targets Crk, reduces metastasis, and induces tumor immunogenicity in breast cancer. Mol Cancer Res 18:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuo J, Bobardt M, Chatterji U et al (2019) A pan-cyclophilin inhibitor, CRV431, decreases fibrosis and tumor development in chronic liver disease models. J Pharmacol Exp Ther 371:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boden G (2011) Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes 18:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  62. Liang C-P, Han S, Senokuchi T, Tall AR (2007) The macrophage at the crossroads of insulin resistance and atherosclerosis. Circ Res 100:1546–1555

    Article  CAS  PubMed  Google Scholar 

  63. Odegaard JI, Chawla A (2012) Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med 2:a007724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Coats BR, Schoenfelt KQ, Barbosa-Lorenzi VC et al (2017) Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep 20(13):3149–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hill DA, Lim HW, Kim YH et al (2018) Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc Natl Acad Sci USA 15(22):E5096–E5105

    Google Scholar 

  67. Jaitin DA, Adlung L, Thaiss CA et al (2019) Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178(3):686–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Biswas C, Zhang Y, DeCastro R et al (1995) The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55:434–439

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D. B. and S. R. expresses their gratitude to the DBT for the award of Research Fellowship. D. B. and A. S. acknowledges the ‘Research and Innovation Grant (DoRD/RIG/10-73/1592-A)’ from Tezpur University. De. P. acknowledges IIT Ropar and MHRD for his Research Fellowship. We thank Dr. R. Mukhopadhyay, Department of MBBT, Tezpur University, for the gift of THP-1 monocyte cell line and the National Center for Cell Science (NCCS), Pune for providing RAW264.7 macrophage cell line. We are also thankful to the Head, Department of MBBT, Tezpur University, the Head, Department of BME, Indian Institute of Technology Ropar, the Head, Department of Pharmacology and Toxicology, NIPER S.A.S. Nagar, and the Dean, College of Fisheries, Assam Agricultural University for extending the facilities required for the present investigation. Financial support in the form of UGC-SAP-DRS-II, and DST-FIST-I to the Department of MBBT, Tezpur University is also acknowledged.

Funding

This work was supported by the “DBT-Twinning Grant” from the Department of Biotechnology (DBT), New Delhi (Grant number: BT/PR24700/NER/95/819/2017)” to S.D.G. (Tezpur University) and D.P. (IIT Ropar). The SERB-Early Career Research Grant from the Science and Engineering Research Board (SERB), New Delhi (Grant number: ECR/2017/000892) to D.P. also supported this work.

Author information

Authors and Affiliations

Authors

Contributions

SDG, DP, and DB conceived and designed the experiments. DB, DeP, AS, SR, RP, RS performed the experiments. SDG, DP, KT, DB, and DeP analyzed the data. RS, RD, and SKB developed obese diabetic zebrafish model and helped in experiments. RP and KT developed mice models and helped in experiments. SDG, DP, and DB wrote the manuscript. SDG and DP supervised the study. All authors read and approved the final manuscript. SDG is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Durba Pal or Suman Dasgupta.

Ethics declarations

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 548 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, D., Patra, D., Sinha, A. et al. Lipid-induced monokine cyclophilin-A promotes adipose tissue dysfunction implementing insulin resistance and type 2 diabetes in zebrafish and mice models of obesity. Cell. Mol. Life Sci. 79, 282 (2022). https://doi.org/10.1007/s00018-022-04306-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04306-1

Keywords

Navigation