Skip to main content

Advertisement

Log in

Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Malignant pleural effusion (MPE) is an exudative effusion caused by primary or metastatic pleural carcinosis. Th17 cells and their cytokines are critical components in various disease including MPE. In this review, we summarize current published articles regarding the multifunctional roles of Th17 cells and their related cytokines in MPE. Th17 cells are accumulated in MPE compared with paired serum via certain manners. The upregulation of Th17 cells and the interactions between Th17 cells and other immune cells, such as Th1 cells, Th9 cells, regulatory T cells and B cells, are reported to be involved in the formation and development of MPE. In addition, cytokines, which are elaborated by Th17 cells, including IL-17A, IL-17F, IL-21, IL-22, IL-26, GM-CSF, or associated with Th17 cells differentiation, including IL-1β, IL-6, IL-23, TGF-β, are linked to the pathogenesis of MPE through exerting pro- or anti-tumorigenic functions on their own as well as regulating the generation and differentiation of Th17 cells in MPE. Based on these findings, we proposed that Th17 cells and their cytokines might be diagnostic or prognostic tools and potential therapeutic targets for MPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

This paper is a review and does not involve any primary data.

References

  1. Taghizadeh N, Fortin M, Tremblay A (2017) US hospitalizations for malignant pleural effusions: data from the 2012 national inpatient sample. Chest 151(4):845–854

    Article  PubMed  Google Scholar 

  2. Ryu JS et al (2014) Prognostic impact of minimal pleural effusion in non-small-cell lung cancer. J Clin Oncol 32(9):960–967

    Article  PubMed  Google Scholar 

  3. Postmus PE et al (2007) The IASLC Lung Cancer Staging Project: proposals for revision of the M descriptors in the forthcoming (seventh) edition of the TNM classification of lung cancer. J Thorac Oncol 2(8):686–693

    Article  PubMed  Google Scholar 

  4. Walker S et al (2020) Malignant pleural effusion management: keeping the flood gates shut. Lancet Respir Med 8(6):609–618

    Article  PubMed  Google Scholar 

  5. Murthy P et al (2019) Making cold malignant pleural effusions hot: driving novel immunotherapies. Oncoimmunology 8(4):e1554969

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang F et al (2015) CD163+CD14+ macrophages, a potential immune biomarker for malignant pleural effusion. Cancer Immunol Immunother 64(8):965–976

    Article  CAS  PubMed  Google Scholar 

  7. Li L et al (2016) Impaired T cell function in malignant pleural effusion is caused by TGF-beta derived predominantly from macrophages. Int J Cancer 139(10):2261–2269

    Article  CAS  PubMed  Google Scholar 

  8. Giannou AD et al (2015) Mast cells mediate malignant pleural effusion formation. J Clin Investig 125(6):2317–2334

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yi FS, Zhai K, Shi HZ (2021) Helper T cells in malignant pleural effusion. Cancer Lett 500:21–28

    Article  CAS  PubMed  Google Scholar 

  10. Stathopoulos GT et al (2010) Host-derived interleukin-5 promotes adenocarcinoma-induced malignant pleural effusion. Am J Respir Crit Care Med 182(10):1273–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yeh HH et al (2006) Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 25(31):4300–4309

    Article  CAS  PubMed  Google Scholar 

  12. Ye ZJ et al (2012) Interleukin 22-producing CD4+ T cells in malignant pleural effusion. Cancer Lett 326(1):23–32

    Article  CAS  PubMed  Google Scholar 

  13. Niu Y et al (2021) IL-26 promotes the pathogenesis of malignant pleural effusion by enhancing CD4(+) IL-22(+) T-cell differentiation and inhibiting CD8(+) T-cell cytotoxicity. J Leukoc Biol 110:39–52

    Article  CAS  PubMed  Google Scholar 

  14. Stathopoulos GT, Kalomenidis I (2012) Malignant pleural effusion: tumor-host interactions unleashed. Am J Respir Crit Care Med 186(6):487–492

    Article  PubMed  Google Scholar 

  15. Gaffen SL et al (2014) The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14(9):585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye ZJ et al (2010) Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion. J Immunol 185(10):6348–6354

    Article  CAS  PubMed  Google Scholar 

  17. Marshall EA et al (2016) Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer 15(1):67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Donnelly RP et al (2010) Interleukin-26: an IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev 21(5):393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirota K et al (2018) Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to initiate and augment autoimmune arthritis. Immunity 48(6):1220-1232.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen YM et al (2001) An analysis of cytokine status in the serum and effusions of patients with tuberculous and lung cancer. Lung Cancer 31(1):25–30

    Article  CAS  PubMed  Google Scholar 

  21. Ye ZJ et al (2011) CD39+ regulatory T cells suppress generation and differentiation of Th17 cells in human malignant pleural effusion via a LAP-dependent mechanism. Respir Res 12:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hua CC et al (1999) Proinflammatory cytokines and fibrinolytic enzymes in tuberculous and malignant pleural effusions. Chest 116(5):1292–1296

    Article  CAS  PubMed  Google Scholar 

  23. Harrington LE et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132

    Article  CAS  PubMed  Google Scholar 

  24. Park H et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fouser LA et al (2008) Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev 226:87–102

    Article  CAS  PubMed  Google Scholar 

  26. Chang SH (2019) T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. Arch Pharm Res 42(7):549–559

    Article  CAS  PubMed  Google Scholar 

  27. Kuen DS, Kim BS, Chung Y (2020) IL-17-producing cells in tumor immunity: friends or foes? Immune Netw 20(1):e6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang G et al (2015) Treg/Th17 imbalance in malignant pleural effusion partially predicts poor prognosis. Oncol Rep 33(1):478–484

    Article  CAS  PubMed  Google Scholar 

  29. Lin H et al (2014) Interplay of Th1 and Th17 cells in murine models of malignant pleural effusion. Am J Respir Crit Care Med 189(6):697–706

    Article  CAS  PubMed  Google Scholar 

  30. Gong Y et al (2014) Cell origins and significance of IL-17 in malignant pleural effusion. Clin Transl Oncol 16(9):807–813

    Article  CAS  PubMed  Google Scholar 

  31. Huang ZY, Shao MM, Zhang JC, Yi FS, Du J, Zhou Q, Wu FY, Li S, Li W, Huang XZ, Zhai K, Shi HZ (2021) Single-cell analysis of diverse immune phenotypes in malignant pleural effusion. Nat Commun 12(1):6690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu XZ et al (2018) Activated naive B cells promote development of malignant pleural effusion by differential regulation of TH1 and TH17 response. Am J Physiol Lung Cell Mol Physiol 315(3):L443–L455

    Article  CAS  PubMed  Google Scholar 

  33. Yi FS et al (2020) TSAd plays a major role in Myo9b-mediated suppression of malignant pleural effusion by regulating TH1/TH17 cell response. J Immunol 205(10):2926–2935

    Article  CAS  PubMed  Google Scholar 

  34. McCall KD, Muccioli M, Benencia F (2020) Toll-like receptors signaling in the tumor microenvironment. Adv Exp Med Biol 1223:81–97

    Article  CAS  PubMed  Google Scholar 

  35. Kashani B et al (2021) The role of toll-like receptor 4 (TLR4) in cancer progression: a possible therapeutic target? J Cell Physiol 236(6):4121–4137

    Article  CAS  PubMed  Google Scholar 

  36. Di Lorenzo A et al (2020) Toll-like receptor 2 at the crossroad between cancer cells, the immune system, and the microbiota. Int J Mol Sci 21(24):9418

    Article  PubMed Central  CAS  Google Scholar 

  37. Xu QQ et al (2015) Toll-like receptor 4 signaling inhibits malignant pleural effusion by altering Th1/Th17 responses. Cell Biol Int 39(10):1120–1130

    Article  CAS  PubMed  Google Scholar 

  38. Wu XZ et al (2017) Immune regulation of toll-like receptor 2 engagement on CD4(+) T cells in murine models of malignant pleural effusion. Am J Respir Cell Mol Biol 56(3):342–352

    Article  PubMed  Google Scholar 

  39. Wu XZ et al (2019) IL-10 promotes malignant pleural effusion in mice by regulating TH1- and TH 17-cell differentiation and migration. Eur J Immunol 49(4):653–665

    Article  CAS  PubMed  Google Scholar 

  40. Marazioti A, Blackwell TS, Stathopoulos GT (2014) The lymphatic system in malignant pleural effusion. Drain or immune switch? Am J Respir Crit Care Med 189(6):626–627

    Article  CAS  PubMed  Google Scholar 

  41. Chen W, Konkel JE (2010) TGF-beta and “adaptive” Foxp3(+) regulatory T cells. J Mol Cell Biol 2(1):30–36

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Q et al (2014) In vitro generated Th17 cells support the expansion and phenotypic stability of CD4(+) Foxp3(+) regulatory T cells in vivo. Cytokine 65(1):56–64

    Article  CAS  PubMed  Google Scholar 

  43. Ye LL et al (2020) Accumulation of TNFR2-expressing regulatory T cells in malignant pleural effusion of lung cancer patients is associated with poor prognosis. Ann Transl Med 8(24):1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye ZJ et al (2012) Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am J Respir Crit Care Med 186(11):1168–1179

    Article  CAS  PubMed  Google Scholar 

  45. Lu Y et al (2016) Interleukin-17 inhibits development of malignant pleural effusion via interleukin-9-dependent mechanism. Sci China Life Sci 59(12):1297–1304

    Article  CAS  PubMed  Google Scholar 

  46. Aggarwal S, Gurney AL (2002) IL-17: prototype member of an emerging cytokine family. J Leukoc Biol 71(1):1–8

    CAS  PubMed  Google Scholar 

  47. McGeachy MJ, Cua DJ, Gaffen SL (2019) The IL-17 family of cytokines in health and disease. Immunity 50(4):892–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu C et al (2014) Elevated pleural effusion IL-17 is a diagnostic marker and outcome predictor in lung cancer patients. Eur J Med Res 19:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nieto JC et al (2019) Migrated T lymphocytes into malignant pleural effusions: an indicator of good prognosis in lung adenocarcinoma patients. Sci Rep 9(1):2996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dong X, Yang J (2015) High IL-35 pleural expression in patients with tuberculous pleural effusion. Med Sci Monit 21:1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kollintza A et al (2013) Interleukin-17A is involved in bacteria-related acute pleural inflammation. Respirology 18(3):488–494

    Article  PubMed  Google Scholar 

  52. Li S et al (2015) Immune regulation of interleukin-27 in malignant pleural effusion. Chin Med J (Engl) 128(14):1932–1941

    Article  CAS  Google Scholar 

  53. Wei XS et al (2019) IL-17A-producing gammadeltaT cells inhibit the formation of malignant pleural effusions. Am J Respir Cell Mol Biol 61(2):174–184

    Article  CAS  PubMed  Google Scholar 

  54. Ferreira N et al (2020) IL-17A and IL-17F orchestrate macrophages to promote lung cancer. Cell Oncol (Dordr) 43(4):643–654

    Article  CAS  Google Scholar 

  55. Davis MR et al (2015) The role of IL-21 in immunity and cancer. Cancer Lett 358(2):107–114

    Article  CAS  PubMed  Google Scholar 

  56. Bunjhoo H et al (2012) Diagnostic value of interleukin 21 and carcinoembryonic antigen levels in malignant pleural effusions. Asian Pac J Cancer Prev 13(7):3495–3499

    Article  PubMed  Google Scholar 

  57. Dudakov JA, Hanash AM, van den Brink MR (2015) Interleukin-22: immunobiology and pathology. Annu Rev Immunol 33:747–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hernandez P, Gronke K, Diefenbach A (2018) A catch-22: Interleukin-22 and cancer. Eur J Immunol 48(1):15–31

    Article  CAS  PubMed  Google Scholar 

  59. Zhang W et al (2008) Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts. Clin Cancer Res 14(20):6432–6439

    Article  CAS  PubMed  Google Scholar 

  60. Jin D et al (2011) Diagnostic value of interleukin 22 and carcinoembryonic antigen in tuberculous and malignant pleural effusions. Exp Ther Med 2(6):1205–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Larochette V et al (2019) IL-26, a cytokine with roles in extracellular DNA-induced inflammation and microbial defense. Front Immunol 10:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun H et al (2019) Natural killer cell-derived exosomal miR-3607-3p inhibits pancreatic cancer progression by targeting IL-26. Front Immunol 10:2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. You W et al (2013) IL-26 promotes the proliferation and survival of human gastric cancer cells by regulating the balance of STAT1 and STAT3 activation. PLoS One 8(5):e63588

    Article  PubMed  PubMed Central  Google Scholar 

  64. Itoh T et al (2021) IL-26 mediates epidermal growth factor receptor-tyrosine kinase inhibitor resistance through endoplasmic reticulum stress signaling pathway in triple-negative breast cancer cells. Cell Death Dis 12(6):520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aliper AM et al (2014) A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med 3(4):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hong IS (2016) Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 48(7):e242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yan WL et al (2017) Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy 9(4):347–360

    Article  CAS  PubMed  Google Scholar 

  68. Koski A et al (2010) Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther 18(10):1874–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanborn RE et al (2017) A pilot study of an autologous tumor-derived autophagosome vaccine with docetaxel in patients with stage IV non-small cell lung cancer. J Immunother Cancer 5(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nakamura Y et al (1990) Eosinophil colony-stimulating factor induced by administration of interleukin-2 into the pleural cavity of patients with malignant pleurisy. Am J Respir Cell Mol Biol 3(4):291–300

    Article  CAS  PubMed  Google Scholar 

  71. Mantovani A et al (2019) Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50(4):778–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mantovani A, Barajon I, Garlanda C (2018) IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev 281(1):57–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu KM et al (2020) Expression of IL-1beta, HMGB1, HO-1, and LDH in malignant and non-malignant pleural effusions. Respir Physiol Neurobiol 272:103330

    Article  CAS  PubMed  Google Scholar 

  74. Gao J et al (2019) Clinical value of haptoglobin and soluble CD163 testing for the differential diagnosis of tuberculous and malignant pleural effusions. Medicine (Baltimore) 98(42):e17416

    Article  CAS  Google Scholar 

  75. Wu DW et al (2017) Vascular endothelial growth factor and protein level in pleural effusion for differentiating malignant from benign pleural effusion. Oncol Lett 14(3):3657–3662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ma Y et al (2018) Up-regulated HMGB1 in the pleural effusion of non-small cell lung cancer (NSCLC) patients reduces the chemosensitivity of NSCLC cells. Tumori 104(5):338–343

    Article  CAS  PubMed  Google Scholar 

  77. Momi H et al (2002) Vascular endothelial growth factor and proinflammatory cytokines in pleural effusions. Respir Med 96(10):817–822

    Article  PubMed  Google Scholar 

  78. Smits AJ et al (2012) EGFR and KRAS mutations in lung carcinomas in the Dutch population: increased EGFR mutation frequency in malignant pleural effusion of lung adenocarcinoma. Cell Oncol (Dordr) 35(3):189–196

    Article  CAS  Google Scholar 

  79. Tsai TH et al (2012) RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer. Eur Respir J 39(3):677–684

    Article  CAS  PubMed  Google Scholar 

  80. Marazioti A et al (2018) Myeloid-derived interleukin-1beta drives oncogenic KRAS-NF-kappaBeta addiction in malignant pleural effusion. Nat Commun 9(1):672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wu MF et al (2021) The M1/M2 spectrum and plasticity of malignant pleural effusion-macrophage in advanced lung cancer. Cancer Immunol Immunother 70(5):1435–1450

    Article  CAS  PubMed  Google Scholar 

  82. Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5):448–457

    Article  CAS  PubMed  Google Scholar 

  83. Bougen-Zhukov NM et al (2020) PI3K catalytic subunits alpha and beta modulate cell death and IL-6 secretion induced by talc particles in human lung carcinoma cells. Am J Respir Cell Mol Biol 62(3):331–341

    Article  CAS  PubMed  Google Scholar 

  84. Yeh HH et al (2013) Upregulation of tissue factor by activated Stat3 contributes to malignant pleural effusion generation via enhancing tumor metastasis and vascular permeability in lung adenocarcinoma. PLoS One 8(9):e75287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Daniil ZD et al (2007) Discrimination of exudative pleural effusions based on multiple biological parameters. Eur Respir J 30(5):957–964

    Article  CAS  PubMed  Google Scholar 

  86. Duysinx BC et al (2008) Diagnostic value of interleukine-6, transforming growth factor-beta 1 and vascular endothelial growth factor in malignant pleural effusions. Respir Med 102(12):1708–1714

    Article  PubMed  Google Scholar 

  87. Xirouchaki N et al (2002) Diagnostic value of interleukin-1alpha, interleukin-6, and tumor necrosis factor in pleural effusions. Chest 121(3):815–820

    Article  CAS  PubMed  Google Scholar 

  88. Dalil RN et al (2021) Potential diagnostic value of pleural fluid cytokines levels for tuberculous pleural effusion. Sci Rep 11(1):660

    Article  CAS  Google Scholar 

  89. Yan J, Smyth MJ, Teng M (2018) Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer. Cold Spring Harb Perspect Biol 10(7):a028530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Morikawa M, Derynck R, Miyazono K (2016) TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5):a021873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Maeda J et al (1994) Transforming growth factor-beta 1 (TGF-beta 1)- and beta 2-like activities in malignant pleural effusions caused by malignant mesothelioma or primary lung cancer. Clin Exp Immunol 98(2):319–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. DeLong P et al (2005) Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther 4(3):342–346

    Article  CAS  PubMed  Google Scholar 

  93. Cheng D et al (2000) Vascular endothelial growth factor level correlates with transforming growth factor-beta isoform levels in pleural effusions. Chest 118(6):1747–1753

    Article  CAS  PubMed  Google Scholar 

  94. Ceyhan BB et al (2003) Transforming growth factor beta-1 level in pleural effusion. Respirology 8(3):321–325

    Article  PubMed  Google Scholar 

  95. Braunschweig T et al (2015) Assessment of a panel of tumor markers for the differential diagnosis of benign and malignant effusions by well-based reverse phase protein array. Diagn Pathol 10:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wada J et al (2010) Surface-bound TGF-beta1 on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T-cells in malignant effusions. Anticancer Res 30(9):3747–3757

    CAS  PubMed  Google Scholar 

  97. Budna J et al (2018) Enhanced suppressive activity of regulatory T cells in the microenvironment of malignant pleural effusions. J Immunol Res 2018:9876014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Qi J et al (2013) Native soluble carcinoembryonic antigen is not involved in the impaired activity of CD56 natural killer cells in malignant pleural effusion. Respiration 86(3):216–223

    Article  CAS  PubMed  Google Scholar 

  99. Wang D et al (2019) Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett 452:244–253

    Article  CAS  PubMed  Google Scholar 

  100. Mulet M et al (2020) Platelet factor 4 regulates T cell effector functions in malignant pleural effusions. Cancer Lett 491:78–86

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is founded by National Natural Science Foundation of China (No. 81973990 and 81900096).

Author information

Authors and Affiliations

Authors

Contributions

QZ had the idea for the article. YN searched the literatures and drafted the manuscript. QZ revised it critically for important intellectual content and gave a final approval of the version to be submitted.

Corresponding author

Correspondence to Qiong Zhou.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethics approval

The ethical approval was waived, because this paper is a bibliographic review.

Consent to participate

The consent to participate from patients was waived, because this paper is a bibliographic review.

Consent to publish

The consent to publish from patients was waived, because this paper is a bibliographic review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Zhou, Q. Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion. Cell. Mol. Life Sci. 79, 194 (2022). https://doi.org/10.1007/s00018-022-04227-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04227-z

Keywords

Navigation