Skip to main content

Advertisement

Log in

IL-17A and IL-17F orchestrate macrophages to promote lung cancer

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Previously, inflammation has been found to be associated with the development of lung cancer. Despite their well-characterized pro-inflammatory functions, the putative roles of interleukin-17 (IL-17) cytokine family members in tumorigenesis have remained controversial. While IL-17A exhibits both pro- and anti-tumor effects, IL-17F has been suggested to serve as a candidate for cancer therapy. Thus, we aimed at clarifying the involvement of IL-17A/F in lung cancer.

Methods

IL-17 receptor expression in human and murine lung cancer cells was assessed using immunofluorescence. The effect of IL-17A/F stimulation on lung cancer cell viability (SRB assay) and metabolism (glucose consumption and lactate production) was evaluated under normoxic and hypoxic conditions. Characterization of IL-17A/F-stimulated macrophages was performed by flow cytometry and ELISA. The effect of conditioned media (CM) from IL-17A/F-stimulated macrophages was evaluated on lung cancer cell migration. The effect of CM-stimulated macrophages on lung tumor growth, proliferation and angiogenesis was evaluated in vivo using a chicken chorioallantoic membrane (CAM) assay.

Results

No alterations in lung cancer cell viability or metabolism were observed upon direct stimulation with IL-17A/F. We found, however, that CM from IL-17A/F-stimulated macrophages promoted both murine and human lung cancer cell progression through an increased migration capacity in vitro and enhanced in vivo tumor growth, proliferation and angiogenesis. These findings were supported by an increased polarization of human macrophages towards a M2-like phenotype.

Conclusions

Our data indicate that IL-17A/F act through immune cell orchestration, i.e., of macrophages, to promote lung cancer cell growth and progression. In addition, our data provide a link between IL-17A/F activity and lung cancer cell-macrophage crosstalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Article  PubMed  Google Scholar 

  2. P.M. Forde, J.E. Chaft, K.N. Smith, V. Anagnostou, T.R. Cottrell, M.D. Hellmann, Neoadjuvant PD-1 Blockade in Resectable. Lung Cancer 378, 1976–1986 (2018)

    CAS  Google Scholar 

  3. M.D. Hellmann, T.E. Ciuleanu, A. Pluzanski, J.S. Lee, G.A. Otterson, C. Audigier-Valette, E. Minenza, H. Linardou, S. Burgers, P. Salman, H. Borghaei, S.S. Ramalingam, J. Brahmer, M. Reck, K.J. O'Byrne, W.J. Geese, G. Green, H. Chang, J. Szustakowski, P. Bhagavatheeswaran, D. Healey, Y. Fu, F. Nathan, L. Paz-Ares, Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 378, 2093–2104 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. L. Cortes-Dericks, D. Galetta, The therapeutic potential of mesenchymal stem cells in lung cancer: benefits, risks and challenges. Cell. Oncol. 42, 727–738 (2019)

  5. A. Quintanal-Villalonga, S. Molina-Pinelo, Epigenetics of lung cancer: a translational perspective, 42 739-756, (2019).

  6. M.E. Ramos-Nino, The role of chronic inflammation in obesity-associated cancers. ISRN Oncol. 2013, 697521 (2013)

    PubMed  PubMed Central  Google Scholar 

  7. N. Azad, Y. Rojanasakul, V. Vallyathan, Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health B Crit. Rev. 11, 1–15 (2008)

    CAS  PubMed  Google Scholar 

  8. E.A. Grimm, A.G. Sikora, S. Ekmekcioglu, Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin. Cancer Res. 19, 5557–5563 (2013)

    CAS  PubMed  Google Scholar 

  9. X. Qian, H. Chen, X. Wu, L. Hu, Q. Huang, Y. Jin, Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine 89, 34–44 (2017)

    CAS  PubMed  Google Scholar 

  10. D.D. Patel, V.K. Kuchroo, Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity 43, 1040–1051 (2015)

    CAS  PubMed  Google Scholar 

  11. D. Artis, H. Spits, The biology of innate lymphoid cells. Nature 517, 293–301 (2015)

    CAS  PubMed  Google Scholar 

  12. J.F. Wright, F. Bennett, B. Li, J. Brooks, D.P. Luxenberg, M.J. Whitters, K.N. Tomkinson, L.J. Fitz, N.M. Wolfman, M. Collins, K. Dunussi-Joannopoulos, M. Chatterjee-Kishore, B.M. Carreno, The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181, 2799–2805 (2008)

    CAS  PubMed  Google Scholar 

  13. R.E. Kuestner, D.W. Taft, A. Haran, C.S. Brandt, T. Brender, K. Lum, B. Harder, S. Okada, C.D. Ostrander, J.L. Kreindler, S.J. Aujla, B. Reardon, M. Moore, P. Shea, R. Schreckhise, T.R. Bukowski, S. Presnell, P. Guerra-Lewis, J. Parrish-Novak, J.L. Ellsworth, S. Jaspers, K.E. Lewis, M. Appleby, J.K. Kolls, M. Rixon, J.W. West, Z. Gao, S.D. Levin, Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J. Immunol. 179, 5462–5473 (2007)

    CAS  PubMed  Google Scholar 

  14. R. Almahmoudi, A. Salem, Extracellular interleukin-17F has a protective effect in oral tongue squamous cell carcinoma. Head Neck 40, 2155–2165 (2018)

  15. Z.M. Dai, T.S. Zhang, S. Lin, W.G. Zhang, J. Liu, X.M. Cao, H.B. Li, M. Wang, X.H. Liu, K. Liu, S.L. Li, Z.J. Dai, Role of IL-17A rs2275913 and IL-17F rs763780 polymorphisms in risk of cancer development: an updated meta-analysis. Sci. Rep. 6, 20439 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Z. Tong, X.O. Yang, H. Yan, W. Liu, X. Niu, Y. Shi, W. Fang, B. Xiong, Y. Wan, C. Dong, A protective role by interleukin-17F in colon tumorigenesis. PLoS One 7, e34959 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Li, Z.Y. Cao, B. Sun, G.Y. Wang, Z. Fu, Y.M. Liu, Q.F. Kong, J.H. Wang, Y. Zhang, X.Y. Xu, H.L. Li, Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol. Ther. 12, 610–616 (2011)

    CAS  PubMed  Google Scholar 

  18. E.A. Akbay, S. Koyama, Y. Liu, R. Dries, L.E. Bufe, M. Silkes, M.M. Alam, D.M. Magee, R. Jones, M. Jinushi, M. Kulkarni, J. Carretero, X. Wang, T. Warner-Hatten, J.D. Cavanaugh, A. Osa, A. Kumanogoh, G.J. Freeman, M.M. Awad, D.C. Christiani, R. Bueno, P.S. Hammerman, G. Dranoff, K.K. Wong, Interleukin-17A Promotes Lung Tumor Progression through Neutrophil Attraction to Tumor Sites and Mediating Resistance to PD-1 Blockade. J. Thorac. Oncol. 12, 1268–1279 (2017)

    PubMed  PubMed Central  Google Scholar 

  19. L. Wei, H. Wang, F. Yang, Q. Ding, J. Zhao, Interleukin-17 potently increases non-small cell lung cancer growth. Mol. Med. Rep. 13, 1673–1680 (2016)

    CAS  PubMed  Google Scholar 

  20. S.H. Chang, S.G. Mirabolfathinejad, H. Katta, A.M. Cumpian, L. Gong, M.S. Caetano, S.J. Moghaddam, C. Dong, T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Natl. Acad. Sci. U. S. A. 111, 5664–5669 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. I. Kryczek, S. Wei, W. Szeliga, L. Vatan, W. Zou, Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114, 357–359 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. W. Kaabachi, A. ben Amor, S. Kaabachi, A. Rafrafi, K. Tizaoui, K. Hamzaoui, Interleukin-17A and -17F genes polymorphisms in lung cancer. Cytokine 66, 23–29 (2014)

    CAS  PubMed  Google Scholar 

  23. C.R. Correia, J. Gaifem, M.B. Oliveira, R. Silvestre, J.F. Mano, The influence of surface modified poly(l-lactic acid) films on the differentiation of human monocytes into macrophages. Biomater. Sci. 5, 551–560 (2017)

  24. D. Tavares-Valente, F. Baltazar, R. Moreira, O. Queiros, Cancer cell bioenergetics and pH regulation influence breast cancer cell resistance to paclitaxel and doxorubicin. J. Bioenerg. Biomembr. 45, 467–475 (2013)

    CAS  PubMed  Google Scholar 

  25. V. Miranda-Goncalves, D. Cardoso-Carneiro, I. Valbom, F.P. Cury, V.A. Silva, S. Granja, R.M. Reis, F. Baltazar, O. Martinho, Metabolic alterations underlying Bevacizumab therapy in glioblastoma cells. Oncotarget 8, 103657–103670 (2017)

    PubMed  PubMed Central  Google Scholar 

  26. O. Martinho, R. Silva-Oliveira, F.P. Cury, A.M. Barbosa, S. Granja, A.F. Evangelista, F. Marques, V. Miranda-Goncalves, D. Cardoso-Carneiro, F.E. de Paula, M. Zanon, C. Scapulatempo-Neto, M.A. Moreira, F. Baltazar, A. Longatto-Filho, R.M. Reis, HER family receptors are important theranostic biomarkers for cervical cancer: Blocking glucose metabolism enhances the therapeutic effect of HER inhibitors. Theranostics 7, 717–732 (2017)

  27. S. Granja, F. Morais-Santos, V. Miranda-Goncalves, M. Viana-Ferreira, R. Nogueira, C. Nogueira-Silva, J. Correia-Pinto, F. Baltazar, The monocarboxylate transporter inhibitor alpha-cyano-4-hydroxycinnamic acid disrupts rat lung branching. Cell. Physiol. Biochem. 32, 1845–1856 (2013)

    CAS  PubMed  Google Scholar 

  28. L. Abusleme, N.M. Moutsopoulos, IL-17: overview and role in oral immunity and microbiome. Oral Dis. 23, 854–865 (2017)

    CAS  PubMed  Google Scholar 

  29. S.R. McKeown, Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol. 87, 20130676 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Chouaib, V. Umansky, C. Kieda, The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Contemp. Oncol. (Pozn.) 22, 7–13 (2018)

    Google Scholar 

  31. S. Granja, C. Pinheiro, R.M. Reis, O. Martinho, F. Baltazar, Glucose addiction in cancer therapy: advances and drawbacks. Curr. Drug Metab. 16, 221–242 (2015)

    CAS  PubMed  Google Scholar 

  32. G. van Niekerk, A.M. Engelbrecht, Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target. Cell. Oncol. 41, 343–351 (2018)

  33. Q. Guo, Z. Jin, New mechanisms of tumor-associated macrophages on promoting tumor progression: Recent research advances and potential targets for tumor immunotherapy. J. Immunol. Res. 2016, 9720912 (2016)

  34. A. Salmaninejad, S.F. Valilou, A. Soltani, S. Ahmadi, Y.J. Abarghan, R.J. Rosengren, A. Sahebkar, Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell. Oncol. 42, 591–608 (2019)

  35. H. Cheng, Z. Wang, L. Fu, T. Xu, Macrophage polarization in the development and progression of ovarian cancers: An overview. Front. Oncol. 9, 421 (2019)

  36. K. Gu, M.M. Li, J. Shen, F. Liu, J.Y. Cao, S. Jin, Y. Yu, Interleukin-17-induced EMT promotes lung cancer cell migration and invasion via NF-kappaB/ZEB1 signal pathway. Am. J. Cancer Res. 5, 1169–1179 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Nishikawa, N. Seo, M. Torii, N. Ma, D. Muraoka, I. Tawara, M. Masuya, K. Tanaka, Y. Takei, H. Shiku, N. Katayama, T. Kato, Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation. PLoS One 9, e108494 (2014)

    PubMed  PubMed Central  Google Scholar 

  38. C. Erbel, M. Akhavanpoor, D. Okuyucu, S. Wangler, A. Dietz, L. Zhao, K. Stellos, K.M. Little, F. Lasitschka, A. Doesch, M. Hakimi, T.J. Dengler, T. Giese, E. Blessing, H.A. Katus, C.A. Gleissner, IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J. Immunol. 193, 4344–4355 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. M. de la Paz Sanchez-Martinez, F. Blanco-Favela, M.D. Mora-Ruiz, A.K. Chavez-Rueda, M. Bernabe-Garcia, L. Chavez-Sanchez, IL-17-differentiated macrophages secrete pro-inflammatory cytokines in response to oxidized low-density lipoprotein. Lipids Health Dis. 16, 196 (2017)

  40. D. Cruceriu, O. Baldasici, O. Balacescu, The dual role of tumor necrosis factor-alpha (TNF-alpha) in breast cancer: molecular insights and therapeutic approaches. Cell. Oncol. 43, 1–18 (2020)

  41. P. Berraondo, M.F. Sanmamed, M.C. Ochoa, I. Etxeberria, M.A. Aznar, J.L. Perez-Gracia, M.E. Rodriguez-Ruiz, M. Ponz-Sarvise, E. Castanon, I. Melero, Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019)

    CAS  PubMed  Google Scholar 

  42. Y. Sun, J. Pan, S. Mao, J. Jin, IL-17/miR-192/IL-17Rs regulatory feedback loop facilitates multiple myeloma progression. PLoS One 9, e114647 (2014)

    PubMed  PubMed Central  Google Scholar 

  43. J.G. Chen, J.C. Xia, X.T. Liang, K. Pan, W. Wang, L. Lv, J.J. Zhao, Q.J. Wang, Y.Q. Li, S.P. Chen, J. He, L.X. Huang, M.L. Ke, Y.B. Chen, H.Q. Ma, Z.W. Zeng, Z.W. Zhou, A.E. Chang, Q. Li, Intratumoral expression of IL-17 and its prognostic role in gastric adenocarcinoma patients. Int. J. Biol. Sci. 7, 53–60 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. B. Wang, L. Li, Y. Liao, J. Li, X. Yu, Y. Zhang, J. Xu, H. Rao, S. Chen, L. Zhang, L. Zheng, Mast cells expressing interleukin 17 in the muscularis propria predict a favorable prognosis in esophageal squamous cell carcinoma. Cancer Immunol. Immunother. 62, 1575–1585 (2013)

    CAS  PubMed  Google Scholar 

  45. I. Kryczek, M. Banerjee, P. Cheng, L. Vatan, W. Szeliga, S. Wei, E. Huang, E. Finlayson, D. Simeone, T.H. Welling, A. Chang, G. Coukos, R. Liu, W. Zou, Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114, 1141–1149 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. P. Jain, M. Javdan, F.K. Feger, P.Y. Chiu, C. Sison, R.N. Damle, T.A. Bhuiya, F. Sen, L.V. Abruzzo, J.A. Burger, A. Rosenwald, S.L. Allen, J.E. Kolitz, K.R. Rai, N. Chiorazzi, B. Sherry, Th17 and non-Th17 interleukin-17-expressing cells in chronic lymphocytic leukemia: delineation, distribution, and clinical relevance. Haematologica 97, 599–607 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. S. Punt, M.E. van Vliet, V.M. Spaans, C.D. de Kroon, G.J. Fleuren, A. Gorter, E.S. Jordanova, FoxP3(+) and IL-17(+) cells are correlated with improved prognosis in cervical adenocarcinoma. Cancer Immunol. Immunother. 64, 745–753 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. R. You, F.J. DeMayo, J. Liu, S.N. Cho, B.M. Burt, C.J. Creighton, R.F. Casal, D.R. Lazarus, IL17A Regulates Tumor Latency and Metastasis in Lung Adeno and Squamous SQ.2b and AD.1 Cancer, 6 645-657, (2018).

  49. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    CAS  PubMed  Google Scholar 

  50. M. Veldhoen, Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol. 18, 612–621 (2017)

    CAS  PubMed  Google Scholar 

  51. D.S. Straus, TNFalpha and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells. Mol. Cancer 12, 78 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. D. Huang, C. Li, H. Zhang, Hypoxia and cancer cell metabolism. Acta Biochim. Biophys. Sin. 46, 214–219 (2014)

    CAS  PubMed  Google Scholar 

  53. S. Samarpita, H.M. Doss, R. Ganesan, M. Rasool, Interleukin 17 under hypoxia mimetic condition augments osteoclast mediated bone erosion and expression of HIF-1alpha and MMP-9. Cell. Immunol. 332, 39–50 (2018)

    CAS  PubMed  Google Scholar 

  54. K. Shan, R. Pang, C. Zhao, X. Liu, W. Gao, J. Zhang, D. Zhao, Y. Wang, W. Qiu, IL-17-triggered downregulation of miR-497 results in high HIF-1alpha expression and consequent IL-1beta and IL-6 production by astrocytes in EAE mice, Cell. Mol. Immunol., (2017).

  55. J.W. Kim, I. Tchernyshyov, G.L. Semenza, C.V. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006)

    PubMed  Google Scholar 

  56. G.P. Elvidge, L. Glenny, R.J. Appelhoff, P.J. Ratcliffe, J. Ragoussis, J.M. Gleadle, Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J. Biol. Chem. 281, 15215–15226 (2006)

    CAS  PubMed  Google Scholar 

  57. D.V. Jovanovic, J.A. Di Battista, J. Martel-Pelletier, F.C. Jolicoeur, Y. He, M. Zhang, F. Mineau, J.P. Pelletier, IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J. Immunol. 160, 3513–3521 (1998)

    CAS  PubMed  Google Scholar 

  58. N. Kumari, B.S. Dwarakanath, A. Das, A.N. Bhatt, Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37, 11553–11572 (2016)

    CAS  PubMed  Google Scholar 

  59. S. Namkoong, S.J. Lee, C.K. Kim, Y.M. Kim, H.T. Chung, H. Lee, J.A. Han, K.S. Ha, Y.G. Kwon, Y.M. Kim, Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp. Mol. Med. 37, 588–600 (2005)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out under the scope of the project NORTE-01-0145-FEDER- 000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020) under the Portugal Partnership Agreement, through the European Regional Development Fund (FEDER), and through the Competitiveness Factors Operational Programme (COMPETE) and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038. SG and IM received fellowships from FCT, ref. SFRH/BPD/117858/2016, and SFRH/BD/120127/2016 respectively. RS received a contract from FCT ref. IF/00021/2014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ricardo Silvestre or Sara Granja.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 7234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, N., Mesquita, I., Baltazar, F. et al. IL-17A and IL-17F orchestrate macrophages to promote lung cancer. Cell Oncol. 43, 643–654 (2020). https://doi.org/10.1007/s13402-020-00510-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00510-y

Keywords

Navigation