Skip to main content
Log in

SARM1 can be a potential therapeutic target for spinal cord injury

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Injury to the spinal cord is devastating. Studies have implicated Wallerian degeneration as the main cause of axonal destruction in the wake of spinal cord injury. Therefore, the suppression of Wallerian degeneration could be beneficial for spinal cord injury treatment. Sterile alpha and armadillo motif-containing protein 1 (SARM1) is a key modulator of Wallerian degeneration, and its impediment can improve spinal cord injury to a significant degree. In this report, we analyze the various signaling domains of SARM1, the recent findings on Wallerian degeneration and its relation to axonal insults, as well as its connection to SARM1, the mitogen-activated protein kinase (MAPK) signaling, and the survival factor, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). We then elaborate on the possible role of SARM1 in spinal cord injury and explicate how its obstruction could potentially alleviate the injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Consent for publication

All authors agreed to publish this article.

References

  1. Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A et al (2020) Spinal cord injury: pathophysiology multimolecular interactions and underlying recovery mechanisms. Int J Mol Sci. https://doi.org/10.3390/ijms21207533

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hayta E, Elden H (2018) Acute spinal cord injury: a review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 87:25–31. https://doi.org/10.1016/j.jchemneu.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  3. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG (2017) Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80(3S):S9–S22. https://doi.org/10.1093/neuros/nyw080

    Article  PubMed  Google Scholar 

  4. Yuan J, Botchway BOA, Zhang Y, Tan X, Wang X, Liu X (2019) Curcumin can improve spinal cord injury by inhibiting TGF-beta-SOX9 signaling pathway. Cell Mol Neurobiol 39(5):569–575. https://doi.org/10.1007/s10571-019-00671-x

    Article  CAS  PubMed  Google Scholar 

  5. Geisler S, Huang SX, Strickland A, Doan RA, Summers DW, Mao X et al (2019) Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J Exp Med 216(2):294–303. https://doi.org/10.1084/jem.20181040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu HW, Smith CB, Schmidt MS, Cambronne XA, Cohen MS, Migaud ME et al (2018) Pharmacological bypass of NAD(+) salvage pathway protects neurons from chemotherapy-induced degeneration. Proc Natl Acad Sci USA 115(42):10654–10659. https://doi.org/10.1073/pnas.1809392115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267. https://doi.org/10.1146/annurev-neuro-060909-153248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koliatsos VE, Alexandris AS (2019) Wallerian degeneration as a therapeutic target in traumatic brain injury. Curr Opin Neurol 32(6):786–795. https://doi.org/10.1097/WCO.0000000000000763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradshaw DV Jr, Knutsen AK, Korotcov A, Sullivan GM, Radomski KL, Dardzinski BJ et al (2021) Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures. Acta Neuropathol Commun 9(1):89. https://doi.org/10.1186/s40478-021-01193-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA et al (2016) Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking sarm1. Brain 139(Pt 4):1094–1105. https://doi.org/10.1093/brain/aww001

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peters OM, Lewis EA, Osterloh JM, Weiss A, Salameh JS, Metterville J et al (2018) Loss of sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 27(21):3761–3771. https://doi.org/10.1093/hmg/ddy260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Q, Zhang S, Liu T, Wang H, Liu K, Wang Q et al (2018) Sarm1/Myd88-5 regulates neuronal intrinsic immune response to traumatic axonal injuries. Cell Rep 23(3):716–724. https://doi.org/10.1016/j.celrep.2018.03.071

    Article  CAS  PubMed  Google Scholar 

  13. White MA, Lin Z, Kim E, Henstridge CM, Pena Altamira E, Hunt CK et al (2019) Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathol Commun 7(1):166. https://doi.org/10.1186/s40478-019-0800-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peters OM, Weiss A, Metterville J, Song L, Logan R, Smith GA et al (2021) Genetic diversity of axon degenerative mechanisms in models of Parkinson’s disease. Neurobiol Dis 155:105368. https://doi.org/10.1016/j.nbd.2021.105368

    Article  CAS  PubMed  Google Scholar 

  15. Fernandes KA, Mitchell KL, Patel A, Marola OJ, Shrager P, Zack DJ et al (2018) Role of SARM1 and DR6 in retinal ganglion cell axonal and somal degeneration following axonal injury. Exp Eye Res 171:54–61. https://doi.org/10.1016/j.exer.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turkiew E, Falconer D, Reed N, Hoke A (2017) Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J Peripher Nerv Syst 22(3):162–171. https://doi.org/10.1111/jns.12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu H, Zhang J, Xu X, Lu S, Yang D, Xie C et al (2021) SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-kappaB signaling. Theranostics 11(9):4187–4206. https://doi.org/10.7150/thno.49054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng Y, Liu J, Luan Y, Liu Z, Lai H, Zhong W et al (2019) Sarm1 gene deficiency attenuates diabetic peripheral neuropathy in mice. Diabetes 68(11):2120–2130. https://doi.org/10.2337/db18-1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J (2017) The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD(+) cleavage activity that promotes pathological axonal degeneration. Neuron 93(6):1334–1343. https://doi.org/10.1016/j.neuron.2017.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hughes RO, Bosanac T, Mao X, Engber TM, DiAntonio A, Milbrandt J et al (2021) Small molecule SARM1 inhibitors recapitulate the SARM1(-/-) phenotype and allow recovery of a metastable pool of axons fated to degenerate. Cell Rep 34(1):108588. https://doi.org/10.1016/j.celrep.2020.108588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A (2022) Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Mol Neurodegener 17(1):1. https://doi.org/10.1186/s13024-021-00511-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun Y, Wang Q, Wang Y, Ren W, Cao Y, Li J, Zhou X, Fu W, Yang J (2021) Sarm1-mediated neurodegeneration within the enteric nervous system protects against local inflammation of the colon. Protein Cell 12(8):621–638. https://doi.org/10.1007/s13238-021-00835-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uccellini MB, Bardina SV, Sanchez-Aparicio MT, White KM, Hou YJ, Lim JK et al (2020) Passenger mutations confound phenotypes of SARM1-deficient mice. Cell Rep 31(1):107498. https://doi.org/10.1016/j.celrep.2020.03.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerdts J, Summers DW, Sasaki Y, DiAntonio A, Milbrandt J (2013) Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33(33):13569–13580. https://doi.org/10.1523/JNEUROSCI.1197-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang Y, Liu T, Lee CH, Chang Q, Yang J, Zhang Z (2020) The NAD(+)-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature 588(7839):658–663. https://doi.org/10.1038/s41586-020-2862-z

    Article  CAS  PubMed  Google Scholar 

  26. Shen C, Vohra M, Zhang P, Mao X, Figley MD, Zhu J et al (2021) Multiple domain interfaces mediate SARM1 autoinhibition. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2023151118

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sasaki Y, Zhu J, Shi Y, Gu W, Kobe B, Ve T, DiAntonio A, Milbrandt J (2021) Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection. Exp Neurol 345:113842. https://doi.org/10.1016/j.expneurol.2021.113842

    Article  CAS  PubMed  Google Scholar 

  28. Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, Qi T et al (2019) NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365(6455):793–799. https://doi.org/10.1126/science.aax1911

    Article  CAS  PubMed  Google Scholar 

  29. Sporny M, Guez-Haddad J, Lebendiker M, Ulisse V, Volf A, Mim C et al (2019) Structural evidence for an octameric ring arrangement of SARM1. J Mol Biol 431(19):3591–3605. https://doi.org/10.1016/j.jmb.2019.06.030

    Article  CAS  PubMed  Google Scholar 

  30. Ve T, Williams SJ, Kobe B (2015) Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Apoptosis 20(2):250–261. https://doi.org/10.1007/s10495-014-1064-2

    Article  CAS  PubMed  Google Scholar 

  31. Guse AH (2020) 25 years of collaboration with a genius: deciphering adenine nucleotide Ca(2+) mobilizing second messengers together with professor barry potter. Molecules. https://doi.org/10.3390/molecules25184220

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee HC, Zhao YJ (2019) Resolving the topological enigma in Ca(2+) signaling by cyclic ADP-ribose and NAADP. J Biol Chem 294(52):19831–19843. https://doi.org/10.1074/jbc.REV119.009635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DiAntonio A, Milbrandt J, Figley MD (2021) The SARM1 TIR NADase: mechanistic similarities to bacterial phage defense and toxin-antitoxin systems. Front Immunol 12:752898. https://doi.org/10.3389/fimmu.2021.752898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A (2019) SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med 216(4):743–756. https://doi.org/10.1084/jem.20171885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Waller TJ, Collins CA (2021) An NAD+/NMN balancing act by SARM1 and NMNAT2 controls axonal degeneration. Neuron 109(7):1067–1069. https://doi.org/10.1016/j.neuron.2021.03.021

    Article  CAS  PubMed  Google Scholar 

  36. Figley MD, Gu W, Nanson JD, Shi Y, Sasaki Y, Cunnea K et al (2021) SARM1 is a metabolic sensor activated by an increased NMN/NAD(+) ratio to trigger axon degeneration. Neuron 109(7):1118–1136. https://doi.org/10.1016/j.neuron.2021.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bratkowski M, Xie T, Thayer DA, Lad S, Mathur P, Yang YS et al (2020) Structural and mechanistic regulation of the pro-degenerative NAD hydrolase SARM1. Cell Rep 32(5):107999. https://doi.org/10.1016/j.celrep.2020.107999

    Article  CAS  PubMed  Google Scholar 

  38. Qiao F, Bowie JU (2005) The many faces of SAM. Sci STKE 2005(286):re7. https://doi.org/10.1126/stke.2862005re7

    Article  PubMed  Google Scholar 

  39. Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J et al (2019) NAD(+) cleavage activity by animal and plant TIR domains in cell death pathways. Science 365(6455):793–799. https://doi.org/10.1126/science.aax1911

    Article  CAS  PubMed  Google Scholar 

  40. Loring HS, Thompson PR (2020) Emergence of SARM1 as a potential therapeutic target for wallerian-type diseases. Cell Chem Biol 27(1):1–13. https://doi.org/10.1016/j.chembiol.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  41. Chen YH, Sasaki Y, DiAntonio A, Milbrandt J (2021) SARM1 is required in human derived sensory neurons for injury-induced and neurotoxic axon degeneration. Exp Neurol 339:113636. https://doi.org/10.1016/j.expneurol.2021.113636

    Article  CAS  PubMed  Google Scholar 

  42. Summers DW, Gibson DA, DiAntonio A, Milbrandt J (2016) SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc Natl Acad Sci USA 113(41):E6271–E6280. https://doi.org/10.1073/pnas.1601506113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loring HS, Parelkar SS, Mondal S, Thompson PR (2020) Identification of the first noncompetitive SARM1 inhibitors. Bioorg Med Chem 28(18):115644. https://doi.org/10.1016/j.bmc.2020.115644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao YJ, He WM, Zhao ZY, Li WH, Wang QW, Hou YN et al (2021) Acidic pH irreversibly activates the signaling enzyme SARM1. FEBS J. https://doi.org/10.1111/febs.16104

    Article  PubMed  Google Scholar 

  45. Carty M, Bowie AG (2019) SARM: From immune regulator to cell executioner. Biochem Pharmacol 161:52–62. https://doi.org/10.1016/j.bcp.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  46. Killackey SA, Rahman MA, Soares F, Zhang AB, Abdel-Nour M, Philpott DJ et al (2019) The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem 453(1–2):187–196. https://doi.org/10.1007/s11010-018-3444-3

    Article  CAS  PubMed  Google Scholar 

  47. Mukherjee P, Winkler CW, Taylor KG, Woods TA, Nair V, Khan BA, Peterson KE (2015) SARM1, not MyD88, mediates TLR7/TLR9-induced apoptosis in neurons. J Immunol 195(10):4913–4921. https://doi.org/10.4049/jimmunol.1500953

    Article  CAS  PubMed  Google Scholar 

  48. Huppke P, Wegener E, Gilley J, Angeletti C, Kurth I, Drenth JPH et al (2019) Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Exp Neurol 320:112958. https://doi.org/10.1016/j.expneurol.2019.112958

    Article  CAS  PubMed  Google Scholar 

  49. Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J et al (2019) Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp Neurol 320:112961. https://doi.org/10.1016/j.expneurol.2019.112961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A et al (2016) NMNAT2:HSP90 complex mediates proteostasis in proteinopathies. PLoS Biol 14(6):e1002472. https://doi.org/10.1371/journal.pbio.1002472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gerdts J, Summers DW, Milbrandt J, DiAntonio A (2016) Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron 89(3):449–460. https://doi.org/10.1016/j.neuron.2015.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Figley MD, DiAntonio A (2020) The SARM1 axon degeneration pathway: control of the NAD(+) metabolome regulates axon survival in health and disease. Curr Opin Neurobiol 63:59–66. https://doi.org/10.1016/j.conb.2020.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ozaki E, Gibbons L, Neto NG, Kenna P, Carty M, Humphries M et al (2020) SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration. Life Sci Alliance. https://doi.org/10.26508/lsa.201900618

    Article  PubMed  PubMed Central  Google Scholar 

  54. Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH et al (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337(6093):481–484. https://doi.org/10.1126/science.1223899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS et al (2015) Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160(1–2):161–176. https://doi.org/10.1016/j.cell.2014.11.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A (2017) MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. Elife. https://doi.org/10.7554/eLife.22540

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ding C, Hammarlund M (2019) Mechanisms of injury-induced axon degeneration. Curr Opin Neurobiol 57:171–178. https://doi.org/10.1016/j.conb.2019.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Summers DW, Frey E, Walker LJ, Milbrandt J, DiAntonio A (2020) DLK activation synergizes with mitochondrial dysfunction to downregulate axon survival factors and promote SARM1-dependent axon degeneration. Mol Neurobiol 57(2):1146–1158. https://doi.org/10.1007/s12035-019-01796-2

    Article  CAS  PubMed  Google Scholar 

  59. Gilley J, Orsomando G, Nascimento-Ferreira I, Coleman MP (2015) Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep 10(12):1974–1981. https://doi.org/10.1016/j.celrep.2015.02.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Babetto E, Beirowski B, Russler EV, Milbrandt J, DiAntonio A (2013) The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction. Cell Rep 3(5):1422–1429. https://doi.org/10.1016/j.celrep.2013.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Milde S, Gilley J, Coleman MP (2013) Subcellular localization determines the stability and axon protective capacity of axon survival factor Nmnat2. PLoS Biol 11(4):e1001539. https://doi.org/10.1371/journal.pbio.1001539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Milde S, Coleman MP (2014) Identification of palmitoyltransferase and thioesterase enzymes that control the subcellular localization of axon survival factor nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). J Biol Chem 289(47):32858–32870. https://doi.org/10.1074/jbc.M114.582338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA (2010) Protein turnover of the wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 191(1):211–223. https://doi.org/10.1083/jcb.201006039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murata H, Khine CC, Nishikawa A, Yamamoto KI, Kinoshita R, Sakaguchi M (2018) c-Jun N-terminal kinase (JNK)-mediated phosphorylation of SARM1 regulates NAD(+) cleavage activity to inhibit mitochondrial respiration. J Biol Chem 293(49):18933–18943. https://doi.org/10.1074/jbc.RA118.004578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gilley J, Coleman MP (2010) Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol 8(1):e1000300. https://doi.org/10.1371/journal.pbio.1000300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gilley J, Adalbert R, Yu G, Coleman MP (2013) Rescue of peripheral and CNS axon defects in mice lacking NMNAT2. J Neurosci 33(33):13410–13424. https://doi.org/10.1523/JNEUROSCI.1534-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coleman MP, Hoke A (2020) Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci 21(4):183–196. https://doi.org/10.1038/s41583-020-0269-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ko KW, Milbrandt J, DiAntonio A (2020) SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J Cell Biol. https://doi.org/10.1083/jcb.201912047

    Article  PubMed  PubMed Central  Google Scholar 

  69. Summers DW, Milbrandt J, DiAntonio A (2018) Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc Natl Acad Sci USA 115(37):E8746–E8754. https://doi.org/10.1073/pnas.1806933115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Desbois M, Crawley O, Evans PR, Baker ST, Masuho I, Yasuda R et al (2018) PAM forms an atypical SCF ubiquitin ligase complex that ubiquitinates and degrades NMNAT2. J Biol Chem 293(36):13897–13909. https://doi.org/10.1074/jbc.RA118.002176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamagishi Y, Tessier-Lavigne M (2016) An atypical SCF-like ubiquitin ligase complex promotes wallerian degeneration through regulation of axonal Nmnat2. Cell Rep 17(3):774–782. https://doi.org/10.1016/j.celrep.2016.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brace EJ, Wu C, Valakh V, DiAntonio A (2014) SkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury. J Neurosci 34(25):8398–8410. https://doi.org/10.1523/JNEUROSCI.4715-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xiong X, Hao Y, Sun K, Li J, Li X, Mishra B et al (2012) The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol 10(12):e1001440. https://doi.org/10.1371/journal.pbio.1001440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A (2009) A dual leucine kinase-dependent axon self-destruction program promotes wallerian degeneration. Nat Neurosci 12(4):387–389. https://doi.org/10.1038/nn.2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Di Stefano M, Loreto A, Orsomando G, Mori V, Zamporlini F, Hulse RP et al (2017) NMN deamidase delays wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr Biol 27(6):784–794. https://doi.org/10.1016/j.cub.2017.01.070

    Article  CAS  PubMed  Google Scholar 

  76. Di Stefano M, Nascimento-Ferreira I, Orsomando G, Mori V, Gilley J, Brown R et al (2015) A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ 22(5):731–742. https://doi.org/10.1038/cdd.2014.164

    Article  CAS  PubMed  Google Scholar 

  77. Cohen MS (2017) Axon degeneration: too much NMN is actually bad? Curr Biol 27(8):R310–R312. https://doi.org/10.1016/j.cub.2017.02.058

    Article  CAS  PubMed  Google Scholar 

  78. Loreto A, Di Stefano M, Gering M, Conforti L (2015) Wallerian degeneration is executed by an NMN-SARM1-dependent late Ca(2+) influx but only modestly influenced by mitochondria. Cell Rep 13(11):2539–2552. https://doi.org/10.1016/j.celrep.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  79. Zhao ZY, Xie XJ, Li WH, Liu J, Chen Z, Zhang B et al (2019) A cell permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. Iscience. https://doi.org/10.1016/j.isci.2019.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J (2015) SARM1 activation triggers axon degeneration locally via NAD(+) destruction. Science 348(6233):453–457. https://doi.org/10.1126/science.1258366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sasaki Y, Nakagawa T, Mao X, DiAntonio A, Milbrandt J (2016) NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD(+) depletion. Elife. https://doi.org/10.7554/eLife.19749

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sporny M, Guez-Haddad J, Khazma T, Yaron A, Dessau M, Shkolnisky Y et al (2020) Structural basis for SARM1 inhibition and activation under energetic stress. Elife. https://doi.org/10.7554/eLife.62021

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nikiforov A, Kulikova V, Ziegler M (2015) The human NAD metabolome: Functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol 50(4):284–297. https://doi.org/10.3109/10409238.2015.1028612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Viar K, Njoku D, Secor McVoy J, Oh U (2020) Sarm1 knockout protects against early but not late axonal degeneration in experimental allergic encephalomyelitis. PLoS ONE 15(6):e0235110. https://doi.org/10.1371/journal.pone.0235110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ziogas NK, Koliatsos VE (2018) Primary traumatic axonopathy in mice subjected to impact acceleration: a reappraisal of pathology and mechanisms with high-resolution anatomical methods. J Neurosci 38(16):4031–4047. https://doi.org/10.1523/JNEUROSCI.2343-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marion CM, McDaniel DP, Armstrong RC (2019) Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury. Exp Neurol 321:113040. https://doi.org/10.1016/j.expneurol.2019.113040

    Article  CAS  PubMed  Google Scholar 

  87. Geisler S, Doan RA, Cheng GC, Cetinkaya-Fisgin A, Huang SX, Hoke A et al (2019) Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight. https://doi.org/10.1172/jci.insight.129920

    Article  PubMed  PubMed Central  Google Scholar 

  88. Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139(Pt 12):3092–3108. https://doi.org/10.1093/brain/aww251

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lin H, Kang Z, Li S, Zeng J, Zhao J (2021) Sarm1 is essential for anesthesia-induced neuroinflammation and cognitive impairment in aged mice. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-020-01037-4

    Article  PubMed  Google Scholar 

  90. Michael FM, Chandran P, Chandramohan K, Iyer K, Jayaraj K, Sundaramoorthy R et al (2019) Prospects of siRNA cocktails as tools for modifying multiple gene targets in the injured spinal cord. Exp Biol Med (Maywood) 244(13):1096–1110. https://doi.org/10.1177/1535370219871868

    Article  CAS  Google Scholar 

  91. Loring HS, Czech VL, Icso JD, O’Connor L, Parelkar SS, Byrne AB, Thompson PR (2021) A phase transition enhances the catalytic activity of SARM1, an NAD+ glycohydrolase involved in neurodegeneration. Elife 10:e66694. https://doi.org/10.7554/eLife.66694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Krauss R, Bosanac T, Devraj R, Engber T, Hughes RO (2020) Axons matter: the promise of treating neurodegenerative disorders by targeting SARM1-mediated axonal degeneration. Trends Pharm Sci 41(4):281–293. https://doi.org/10.1016/j.tips.2020.01.006

    Article  CAS  PubMed  Google Scholar 

  93. Fischer T, Stern C, Freund P, Schubert M, Sutter R (2021) Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study. Eur Radiol 31(5):2923–2932. https://doi.org/10.1007/s00330-020-07388-2

    Article  PubMed  Google Scholar 

  94. Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A (2020) Effects of curcumin on neurological diseases: focus on astrocytes. Pharm Rep 72(4):769–782. https://doi.org/10.1007/s43440-020-00112-3

    Article  CAS  Google Scholar 

  95. Lin B, Xu Y, Zhang B, He Y, Yan Y, He MC (2014) MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor function in rats following spinal cord injury. Exp Ther Med 7(1):66–72. https://doi.org/10.3892/etm.2013.1371

    Article  CAS  PubMed  Google Scholar 

  96. Xu L, Botchway BOA, Zhang S, Zhou J, Liu X (2018) Inhibition of NF-kappaB signaling pathway by resveratrol improves spinal cord injury. Front Neurosci 12:690. https://doi.org/10.3389/fnins.2018.00690

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pan ZG, An XS (2018) SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation. Biochem Biophys Res Commun 498(3):416–423. https://doi.org/10.1016/j.bbrc.2018.02.115

    Article  CAS  PubMed  Google Scholar 

  98. Gurtler C, Carty M, Kearney J, Schattgen SA, Ding A, Fitzgerald KA et al (2014) SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J Immunol 192(10):4821–4832. https://doi.org/10.4049/jimmunol.1302980

    Article  CAS  PubMed  Google Scholar 

  99. Li H, Yang J, Wang Y, Liu Q, Cheng J, Wang F (2019) Neuroprotective effects of increasing levels of HSP70 against neuroinflammation in Parkinson’s disease model by inhibition of NF-kappaB and STAT3. Life Sci 234:116747. https://doi.org/10.1016/j.lfs.2019.116747

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (no. LY19H170001).

Author information

Authors and Affiliations

Authors

Contributions

XL designed the study. QL, BOAB, YZ, TJ and XL prepared the first draft of the manuscript. QL, YZ, BOAB and XL revised the manuscript. All authors approved the final paper.

Corresponding author

Correspondence to Xuehong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Botchway, B.O.A., Zhang, Y. et al. SARM1 can be a potential therapeutic target for spinal cord injury. Cell. Mol. Life Sci. 79, 161 (2022). https://doi.org/10.1007/s00018-022-04195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04195-4

Keywords

Navigation