Skip to main content

Advertisement

Log in

Human lysyl-tRNA synthetase evolves a dynamic structure that can be stabilized by forming complex

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Atomic coordinates and structure factors for the reported crystal structures have been deposited with the Protein Data bank under accession number 5YZX and 7F6W. Other data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Ann Rev Biochem 69:617–650

    Article  CAS  PubMed  Google Scholar 

  2. Carter CW Jr (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62:715–748

    Article  CAS  PubMed  Google Scholar 

  3. Dickman SR, Boll DJ (1977) Differential purification of methionine-tRNA synthetase and lysine-tRNA synthetase from rabbit liver. Biochem Biophys Res Commun 78(4):1191–1197

    Article  CAS  PubMed  Google Scholar 

  4. Hausmann CD, Ibba M (2008) Structural and functional mapping of the archaeal multi-aminoacyl-tRNA synthetase complex. FEBS Lett 582(15):2178–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Godinic-Mikulcic V, Jaric J, Hausmann CD, Ibba M, Weygand-Durasevic I (2011) An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions. J Biol Chem 286(5):3396–3404

    Article  CAS  PubMed  Google Scholar 

  6. Havrylenko S, Mirande M (2015) Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 16(3):6571–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Som K, Hardesty B (1975) Isolation and partial characterization of an aminoacyl-tRNA synthetase complex from rabbit reticulocytes. Arch Biochem Biophys 166(2):507–517

    Article  CAS  PubMed  Google Scholar 

  8. Hele P, Hebert L (1977) Occurrence of a complex of aminoacryl-tRNA synthetases in lactating rat mammary gland. Biochim Biophys Acta 479(3):311–321

    Article  CAS  PubMed  Google Scholar 

  9. Ussery MA, Tanaka WK, Hardesty B (1977) Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells. Eur J Biochem 72(3):491–500

    Article  CAS  PubMed  Google Scholar 

  10. Kim K, Park SJ, Na S, Kim JS, Choi H, Kim YK, Paek E, Lee C (2013) Reinvestigation of aminoacyl-tRNA synthetase core complex by affinity purification-mass spectrometry reveals TARSL2 as a potential member of the complex. PLoS ONE 8(12):e81734

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park SJ, Ahn HS, Kim JS, Lee C (2015) Evaluation of multi-tRNA synthetase complex by multiple reaction monitoring mass spectrometry coupled with size exclusion chromatography. PLoS ONE 10(11):e0142253

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou XL, Chen Y, Zeng QY, Ruan ZR, Fang P, Wang ED (2019) Newly acquired N-terminal extension targets threonyl-tRNA synthetase-like protein into the multiple tRNA synthetase complex. Nucleic Acids Res 47(16):8662–8674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ray PS, Arif A, Fox PL (2007) Macromolecular complexes as depots for releasable regulatory proteins. Trends Biochem Sci 32(4):158–164

    Article  CAS  PubMed  Google Scholar 

  14. Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, Ting SM, Dignam JD, Kim S, Driscoll DM, Fox PL (2004) Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119(2):195–208

    Article  CAS  PubMed  Google Scholar 

  15. Kwon NH, Kang T, Lee JY, Kim HH, Kim HR, Hong J, Oh YS, Han JM, Ku MJ, Lee SY, Kim S (2011) Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc Natl Acad Sci USA 108(49):19635–19640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee JY, Kim DG, Kim BG, Yang WS, Hong J, Kang T, Oh YS, Kim KR, Han BW, Hwang BJ, Kang BS, Kang MS, Kim MH, Kwon NH, Kim S (2014) Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress. J Cell Sci 127(Pt 19):4234–4245

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang P, Zhang HM, Shapiro R, Marshall AG, Schimmel P, Yang XL, Guo M (2011) Structural context for mobilization of a human tRNA synthetase from its cytoplasmic complex. Proc Natl Acad Sci USA 108(20):8239–8244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dias J, Renault L, Perez J, Mirande M (2013) Small-angle X-ray solution scattering study of the multi-aminoacyl-tRNA synthetase complex reveals an elongated and multi-armed particle. J Biol Chem 288(33):23979–23989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M (1999) Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein–protein interactions and characterization of a core protein. J Mol Biol 285(1):183–195

    Article  CAS  PubMed  Google Scholar 

  20. Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I, Shapiro R, Song J, Dagan A, Pozo J, Kim S, Marshall AG, Schimmel P, Yang XL, Nechushtan H, Razin E, Guo M (2013) Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell 49(1):30–42

    Article  CAS  PubMed  Google Scholar 

  21. Hei Z, Wu S, Liu Z, Wang J, Fang P (2019) Retractile lysyl-tRNA synthetase-AIMP2 assembly in the human multi-aminoacyl-tRNA synthetase complex. J Biol Chem 294(13):4775–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yannay-Cohen N, Carmi-Levy I, Kay G, Yang CM, Han JM, Kemeny DM, Kim S, Nechushtan H, Razin E (2009) LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol Cell 34(5):603–611

    Article  CAS  PubMed  Google Scholar 

  23. Kleiman L, Jones CP, Musier-Forsyth K (2010) Formation of the tRNALys packaging complex in HIV-1. FEBS Lett 584(2):359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mirande M, Kellermann O, Waller JP (1982) Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II. Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit. J Biol Chem 257(18):11049–11055

    Article  CAS  PubMed  Google Scholar 

  25. Charezinski M, Borkowski T (1981) Occurrence of aminoacyl-tRNA synthetase complexes in calf brain. Arch Biochem Biophys 207(2):241–247

    Article  CAS  PubMed  Google Scholar 

  26. Kim DG, Choi JW, Lee JY, Kim H, Oh YS, Lee JW, Tak YK, Song JM, Razin E, Yun SH, Kim S (2012) Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. FASEB J 26(10):4142–4159

    Article  CAS  PubMed  Google Scholar 

  27. Kim DG, Lee JY, Kwon NH, Fang P, Zhang Q, Wang J, Young NL, Guo M, Cho HY, Mushtaq AU, Jeon YH, Choi JW, Han JM, Kang HW, Joo JE, Hur Y, Kang W, Yang H, Nam DH, Lee MS, Lee JW, Kim ES, Moon A, Kim K, Kim D, Kang EJ, Moon Y, Rhee KH, Han BW, Yang JS, Han G, Yang WS, Lee C, Wang MW, Kim S (2014) Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction. Nat Chem Biol 10(1):29–34

    Article  CAS  PubMed  Google Scholar 

  28. Ribo P, Guo Y, Aranda J, Ainsua-Enrich E, Navines-Ferrer A, Guerrero M, Pascal M, de la Cruz C, Orozco M, Munoz-Cano R, Martin M (2021) Mutation in KARS: a novel mechanism for severe anaphylaxis. J Allergy Clin Immunol 147(5):1855-1864 e1859

    Article  CAS  PubMed  Google Scholar 

  29. Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122

    Article  CAS  PubMed  Google Scholar 

  30. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  31. Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang X, Pootoolal J, Chua G, Lopez A, Trochesset M, Morse D, Krogan NJ, Hiley SL, Li Z, Morris Q, Grigull J, Mitsakakis N, Roberts CJ, Greenblatt JF, Boone C, Kaiser CA, Andrews BJ, Hughes TR (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118(1):31–44

    Article  CAS  PubMed  Google Scholar 

  32. Zhou XL, Zhu B, Wang ED (2008) The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing. J Biol Chem 283(52):36608–36616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou XL, Du DH, Tan M, Lei HY, Ruan LL, Eriani G, Wang ED (2011) Role of tRNA amino acid-accepting end in aminoacylation and its quality control. Nucleic Acids Res 39(20):8857–8868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mondal S, Hsiao K, Goueli SA (2017) Utility of adenosine monophosphate detection system for monitoring the activities of diverse enzyme reactions. Assay Drug Dev Technol 15(7):330–341

    Article  CAS  PubMed  Google Scholar 

  35. Ding W, Zhao H, Chen Y, Zhang B, Yang Y, Zang J, Wu J, Lin S (2020) Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion. Nat Commun 11(1):3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Q-S, Zhang K-H, Cui Y, Wang Z-J, Pan Q-Y, Liu K, Sun B, Zhou H, Li M-J, Xu Q, Xu C-Y, Yu F, He J-H (2018) Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nucl Sci Tech 29(5):68

    Article  Google Scholar 

  37. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276(Macromolecular Crystallography, Part A):307–326

    Article  CAS  PubMed  Google Scholar 

  38. Kabsch W (2010) Xds. Acta Crystallogr Sect D Biol Crystallogr 66(Pt 2):125–132

    Article  CAS  Google Scholar 

  39. Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66(Pt 1):22–25

    Article  CAS  PubMed  Google Scholar 

  40. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr 66(Pt 2):213–221

    Article  CAS  Google Scholar 

  42. Wu S, Hei Z, Zheng L, Zhou J, Liu Z, Wang J, Fang P (2021) Structural analyses of a human lysyl-tRNA synthetase mutant associated with autosomal recessive nonsyndromic hearing impairment. Biochem Biophys Res Commun 554:83–88

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Zhou JB, Zeng QY, Wu S, Xue MQ, Fang P, Wang ED, Zhou XL (2020) Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNA(Lys). Sci China Life Sci 63:1227–1239

    Article  CAS  PubMed  Google Scholar 

  44. Desogus G, Todone F, Brick P, Onesti S (2000) Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction. Biochemistry 39(29):8418–8425

    Article  CAS  PubMed  Google Scholar 

  45. Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E (2007) Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 6(7):569–582

    Article  CAS  PubMed  Google Scholar 

  46. Kerjan P, Cerini C, Semeriva M, Mirande M (1994) The multienzyme complex containing nine aminoacyl-tRNA synthetases is ubiquitous from Drosophila to mammals. Biochim Biophys Acta 1199(3):293–297

    Article  CAS  PubMed  Google Scholar 

  47. Havrylenko S, Legouis R, Negrutskii B, Mirande M (2011) Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex. J Biol Chem 286(32):28476–28487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arnez JG, Dock-Bregeon AC, Moras D (1999) Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine. J Mol Biol 286(5):1449–1459

    Article  CAS  PubMed  Google Scholar 

  49. Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J 15(19):5437–5448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Negrutskii BS, Deutscher MP (1991) Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci USA 88(11):4991–4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sivaram P, Deutscher MP (1990) Existence of two forms of rat liver arginyl-tRNA synthetase suggests channeling of aminoacyl-tRNA for protein synthesis. Proc Natl Acad Sci USA 87(10):3665–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kyriacou SV, Deutscher MP (2008) An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth. Mol Cell 29(4):419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nathanson L, Deutscher MP (2000) Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex. J Biol Chem 275(41):31559–31562

    Article  CAS  PubMed  Google Scholar 

  54. Praetorius-Ibba M, Hausmann CD, Paras M, Rogers TE, Ibba M (2007) Functional association between three archaeal aminoacyl-tRNA synthetases. J Biol Chem 282(6):3680–3687

    Article  CAS  PubMed  Google Scholar 

  55. Negrutskii BS, Shalak VF, Kerjan P, El’skaya AV, Mirande M (1999) Functional interaction of mammalian valyl-tRNA synthetase with elongation factor EF-1alpha in the complex with EF-1H. J Biol Chem 274(8):4545–4550

    Article  CAS  PubMed  Google Scholar 

  56. Simos G, Sauer A, Fasiolo F, Hurt EC (1998) A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell 1(2):235–242

    Article  CAS  PubMed  Google Scholar 

  57. Cui H, Kapur M, Diedrich JK, Yates JR, Ackerman SL, Schimmel P (2021) Regulation of ex-translational activities is the primary function of the multi-tRNA synthetase complex. Nucleic Acids Res 49(7):3603–3616

    Article  CAS  PubMed  Google Scholar 

  58. Park BJ, Kang JW, Lee SW, Choi SJ, Shin YK, Ahn YH, Choi YH, Choi D, Lee KS, Kim S (2005) The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120(2):209–221

    Article  CAS  PubMed  Google Scholar 

  59. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149(2):410–424

    Article  CAS  PubMed  Google Scholar 

  60. Galani K, Grosshans H, Deinert K, Hurt EC, Simos G (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J 20(23):6889–6898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Levi O, Arava Y (2019) mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biol 17(5):e3000274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shiber A, Doring K, Friedrich U, Klann K, Merker D, Zedan M, Tippmann F, Kramer G, Bukau B (2018) Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561(7722):268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wolfson A, Knight R (2005) Occurrence of the aminoacyl-tRNA synthetases in high-molecular weight complexes correlates with the size of substrate amino acids. FEBS Lett 579(17):3467–3472

    Article  CAS  PubMed  Google Scholar 

  64. Berezovsky IN, Zheng Z, Kurotani A, Tokmakov AA, Kurochkin IV (2015) Organization of the multiaminoacyl-tRNA synthetase complex and the cotranslational protein folding. Protein Sci Publ Protein Soc 24(9):1475–1485

    Article  CAS  Google Scholar 

  65. Eswarappa SM, Fox PL (2013) Citric acid cycle and the origin of MARS. Trends Biochem Sci 38(5):222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim DK, Lee HJ, Kong J, Cho HY, Kim S, Kang BS (2021) Structural basis for the dynamics of human methionyl-tRNA synthetase in multi-tRNA synthetase complexes. Nucleic Acids Res 49(11):6549–6568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. K. Musier-Forsyth for her helpful comments and revision of the manuscript. And we gratefully acknowledge help from staffs of beamline 17U1 at Shanghai Synchrotron Radiation Facility.

Funding

This work was supported by the National Natural Science Foundation of China grants 21977107, 21778064, 21778067, 21977108, 31822015, 81870896, 31670801; the Strategic Priority Research Program of the Chinese Academy of Sciences grant XDB20000000; the CAS President's International Fellowship Initiative (PIFI); a 1000-talent young investigator award; a 100-talent program of the Chinese Academy of Sciences; and the State Key Laboratory of Bioorganic and Natural Products Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Siqi Wu, Li Zheng, Zhoufei Hei, Jing-Bo Zhou, Guang Li, Peifeng Li, Jiayuan Wang, and Hamid Ali. The first draft of the manuscript was written by Siqi Wu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jing Wang or Pengfei Fang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2358 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zheng, L., Hei, Z. et al. Human lysyl-tRNA synthetase evolves a dynamic structure that can be stabilized by forming complex. Cell. Mol. Life Sci. 79, 128 (2022). https://doi.org/10.1007/s00018-022-04158-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04158-9

Keywords

Navigation