Skip to main content
Log in

The role of mitonuclear incompatibilities in allopatric speciation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Aerobic metabolism in eukaryotic cells requires extensive interactions between products of the nuclear and mitochondrial genomes. Rapid evolution of the mitochondrial genome, including fixation of both adaptive and deleterious mutations, creates intrinsic selection pressures favoring nuclear gene mutations that maintain mitochondrial function. As this process occurs independently in allopatry, the resulting divergence between conspecific populations can subsequently be manifest in mitonuclear incompatibilities in inter-population hybrids. Such incompatibilities, mitonuclear versions of Bateson–Dobzhansky–Muller incompatibilities that form the standard model for allopatric speciation, can potentially restrict gene flow between populations, ultimately resulting in varying degrees of reproductive isolation. The potential role of mitonuclear incompatibilities in speciation is further enhanced where mtDNA substitution rates are elevated compared to the nuclear genome and where population structure maintains allopatry for adequate time to evolve multiple mitonuclear incompatibilities. However, the fact that mitochondrial introgression occurs across species boundaries has raised questions regarding the efficacy of mitonuclear incompatibilities in reducing gene flow. Several scenarios now appear to satisfactorily explain this phenomenon, including cases where differences in mtDNA genetic load may drive introgression or where co-introgression of coadapted nuclear genes may support the function of introgressed mtDNA. Although asymmetries in reproductive isolation between taxa are consistent with mitonuclear incompatibilities, interactions between autosomes and sex chromosomes yield similar predictions that are difficult to disentangle. With regard to establishing reproductive isolation while in allopatry, existing studies clearly suggest that mitonuclear incompatibilities can contribute to the evolution of barriers to gene flow. However, there is to date relatively little definitive evidence supporting a primary role for mitonuclear incompatibilities in the speciation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data are accessible in the original publications cited.

References

  1. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):e1001127. https://doi.org/10.1371/journal.pbio.1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levin DA (2003) The cytoplasmic factor in plant speciation. Syst Bot 28:5–11. https://doi.org/10.1043/0363-6445-28.1.5

    Article  Google Scholar 

  3. Lee HY, Chou JY, Cheong L, Chang NH et al (2008) Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135:1065–1073. https://doi.org/10.1016/j.cell.2008.10.047

    Article  CAS  PubMed  Google Scholar 

  4. Chou J-Y, Leu J-Y (2010) Speciation through cytonuclear incompatibility: insights from yeast and implications for higher eukaryotes. BioEssays 32:401–411. https://doi.org/10.1002/bies.200900162

    Article  CAS  PubMed  Google Scholar 

  5. Chang C-C, Rodriguez J, Ross JA (2016) Mitochondrial-nuclear epistasis impacts fitness and mitochondrial physiology of inter-population Caenorhabditis briggsae hybrids. Genes Genomes Genet G3(6):209–219. https://doi.org/10.1534/g3.115.022970

    Article  CAS  Google Scholar 

  6. Lamelza P, Ailion M (2017) Cytoplasmic–nuclear incompatibility between wild isolates of Caenorhabditis nouraguensis. Genes Genomes Genet 7:823–834. https://doi.org/10.1534/g3.116.037101

    Article  CAS  Google Scholar 

  7. Burton RS, Barreto FS (2012) A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol Ecol 21:4942–4957. https://doi.org/10.1111/mec.12006

    Article  CAS  PubMed  Google Scholar 

  8. Breeuwer JAJ, WerrenJH, (1995) Hybrid breakdown between two haplodiploid species: the role of nuclear and cytoplasmic genes. Evolution 49:705–717. https://doi.org/10.2307/2410324

    Article  PubMed  Google Scholar 

  9. Bolnick DI, Turelli M, López-Fernández H, Wainwright PC, Near TJ (2008) Accelerated mitochondrial evolution and “Darwin’s Corollary”: asymmetric viability of reciprocal F1 hybrids in centrarchid fishes. Genetics 178:1037–1048. https://doi.org/10.1534/genetics.107.081364

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bar-Yaacov D, Hadjivasiliou Z, Levin L, Barshad G, Zarivach R, Bouskila A, Mishmar D (2015) Mitochondrial involvement in vertebrate speciation? the case of mito-nuclear genetic divergence in chameleons. Genome Biol Evol 7:3322–3336. https://doi.org/10.1093/gbe/evv226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trier CN, Hermansen JS, Sætre G-P, Bailey RI (2014) Evidence for mito-nuclear and sex-linked reproductive barriers between the hybrid Italian sparrow and its parent species. PLoS Genet 10(1):e1004075. https://doi.org/10.1371/journal.pgen.1004075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morales HE, Pavlova A, Amos N, Major R, Kilian A, Greening C, Sunnucks P (2018) Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat Ecol Evol 2:1258–1267. https://doi.org/10.1038/s41559-018-0606-3

    Article  PubMed  Google Scholar 

  13. Runemark A, Trier CN, Eroukhmanoff F, Hermansen JS, Matschiner M, Ravinet M, Elgvin TO, Sætre GP (2018) Variation and constraints in hybrid genome formation. Nat Ecol Evol 2:549–556. https://doi.org/10.1038/s41559-017-0437-7

    Article  PubMed  Google Scholar 

  14. Wang S, Ore MJ, Mikkelsen EK, Lee-Yaw J, Toews DPL, Rohwer S, Irwin D (2021) Signatures of mitonuclear coevolution in a warbler species complex. Nat Commun 12:4279. https://doi.org/10.1038/s41467-021-24586-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hill GE (2017) The mitonuclear compatibility species concept. Auk 134:393–409. https://doi.org/10.1642/AUK-16-201.1

    Article  Google Scholar 

  16. Hill GE (2019) Mitonuclear ecology. Oxford University Press, Oxford. https://doi.org/10.1093/oso/97801198818250.001.0001

    Book  Google Scholar 

  17. Gershoni M, Templeton AR, Mishmar D (2009) Mitochondrial bioenergetics as a major motive force of speciation. BioEssays 31:642–650

    Article  CAS  Google Scholar 

  18. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  19. Coyne JA (1994) Ernst Mayr and the origin of species. Evolution 48:19–30. https://doi.org/10.1111/j.1558-5646.1994.tb01290.x

    Article  PubMed  Google Scholar 

  20. Bateson W (1909) Seward AC (ed) Heredity and variation in modern lights. Darwin and Modern Science. https://doi.org/10.1017/cbo9780511693953.007

  21. Dobzhansky T (1936) Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21:113–135

    Article  CAS  Google Scholar 

  22. Muller HJ (1942) Isolating mechanisms, evolution, and temperature. Biol Symp 6:71–125

    Google Scholar 

  23. Bundus JD, Alaei R, Cutter AD (2015) Gametic selection, developmental trajectories and extrinsic heterogeneity in Haldane’s rule. Evolution 69:2005–2017. https://doi.org/10.1111/evo.12708

    Article  CAS  PubMed  Google Scholar 

  24. Rand DM, Mossman JA, Zhu L, Biancani LM, Ge JY (2018) Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila. IUBMB Life 70:1275–1288. https://doi.org/10.1002/iub.1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Camus MF, O’Leary M, Reuter M, Lane N (2020) Impact of mitonuclear interactions on life-history responses to diet. Philos Trans R Soc. https://doi.org/10.1098/rstb.2019.0416

    Article  Google Scholar 

  26. Coughlan JM, Matute DR (2020) The importance of intrinsic postzygotic barriers throughout the speciation process. Philos Trans R Soc B 375:20190533. https://doi.org/10.1098/rstb.2019.0533

    Article  Google Scholar 

  27. Zhang L, Reifová R, Halenková Z, Gompert Z (2021) How important are structural variants for speciation? Genes 12:1084. https://doi.org/10.3390/genes12071084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blackman BK (2016) Speciation genes. In: Kliman RM (ed) Encyclopedia of evolutionary biology. Academic Press, New York, pp 166–175. https://doi.org/10.1016/B978-0-12-800049-6.00066-4

    Chapter  Google Scholar 

  29. Presgraves DC (2003) A fine-scale genetic analysis of hybrid incompatibilities in Drosophila. Genetics 163:955–972. https://doi.org/10.1093/genetics/163.3.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang C, Montooth KL, Calvi BR (2017) Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality. Development 144:2490–2503. https://doi.org/10.1242/dev.151951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castillo DM, Barbash DA (2017) Moving speciation genetics forward: modern techniques build on foundational studies in Drosophila. Genetics 207:825–842. https://doi.org/10.1534/genetics.116.187120

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun S, Ting CT, Wu CI (2004) The normal function of a speciation gene, Odysseus, and its hybrid sterility effect. Science 305:81–83. https://doi.org/10.1126/science.1093904

    Article  CAS  PubMed  Google Scholar 

  33. Orr HA, Masly JP, Presgraves DC (2004) Speciation genes. Curr Opin Genet Dev 14:675–679. https://doi.org/10.1016/j.gde.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  34. Lane N (2014) Bioenergetic constraints on the evolution of complex life. Cold Spring Harb Perspect Biol 6(5):a015982. https://doi.org/10.1101/cshperspect.a015982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lane N (2020) How energy flow shapes cell evolution. Curr Biol 30:R471–R476. https://doi.org/10.1016/j.cub.2020.03.055

    Article  CAS  PubMed  Google Scholar 

  36. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934. https://doi.org/10.1038/nature09486

    Article  CAS  PubMed  Google Scholar 

  37. Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653. https://doi.org/10.1016/j.tree.2004.10.003

    Article  PubMed  Google Scholar 

  38. Sloan DB, Havird JC, Sharbrough J (2017) The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 26:2212–2236. https://doi.org/10.1111/mec.13959

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lunt DH, Hyman BC (1997) Animal mitochondrial DNA recombination. Nature 387:247. https://doi.org/10.1038/387247a0

    Article  CAS  PubMed  Google Scholar 

  40. DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev 33:89–104. https://doi.org/10.1016/j.arr.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  41. Anderson AP, Luo X, Russell W, Yin YW (2020) Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. Nucleic Acids Res 48:817–829. https://doi.org/10.1093/nar/gkz1018

    Article  CAS  PubMed  Google Scholar 

  42. Allio R, Donega S, Galtier N, Nabholz B (2017) Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol Biol Evol 34(11):2762–2772. https://doi.org/10.1093/molbev/msx197

    Article  CAS  PubMed  Google Scholar 

  43. Duda TF (2021) Patterns of variation of mutation rates of mitochondrial and nuclear genes of gastropods. BMC Ecol Evol 21:13. https://doi.org/10.1186/s12862-021-01748-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nachman MW (1998) Deleterious mutations in animal mitochondrial DNA. Genetica 102:61–69. https://doi.org/10.1023/A:1017030708374

    Article  PubMed  Google Scholar 

  45. Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748. https://doi.org/10.1093/oxfordjournals.molbev.a025634

    Article  CAS  PubMed  Google Scholar 

  46. James JE, Piganeau G, Eyre-Walker A (2016) The rate of adaptive evolution in animal mitochondria. Mol Ecol 25:67–78. https://doi.org/10.1111/mec.13475

    Article  CAS  PubMed  Google Scholar 

  47. Neverov AD, Popova AV, Fedonin GG, Cheremukhin EA, Klink GV, Bazykin GA (2021) Episodic evolution of coadapted sets of amino acid sites in mitochondrial proteins. PLoS Genet 17(1):e1008711. https://doi.org/10.1371/journal.pgen.1008711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill GE (2020) Mitonuclear compensatory coadaptation. Trends Genet 36:403–414. https://doi.org/10.1016/j.tig.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  49. Osada N, Akashi H (2012) Mitochondrial–nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome c oxidase complex. Mol Biol Evol 29:337–346. https://doi.org/10.1093/molbev/msr211

    Article  CAS  PubMed  Google Scholar 

  50. Barreto FS, Watson ET, Lima TG, Willett CS, Edmands S, Li W, Burton RS (2018) Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nature Ecol Evol 2:1250–1257. https://doi.org/10.1038/s41559-018-0588-1

    Article  Google Scholar 

  51. Burton RS (1998) Intraspecific phylogeography across the point conception biogeographic boundary. Evolution 52:734–745. https://doi.org/10.2307/2411268

    Article  PubMed  Google Scholar 

  52. Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol 10:1743–1750. https://doi.org/10.1046/j.0962-1083.2001.01306.x

    Article  CAS  PubMed  Google Scholar 

  53. Willett CS, Ladner JT (2009) Investigations of fine-scale phylogeography in Tigriopus californicus reveal historical patterns of population divergence. BMC Evol Biol 9:139. https://doi.org/10.1186/1471-2148-9-139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ellison CK, Burton RS (2006) Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60:1382–1391. https://doi.org/10.1111/j.0014-3820.2006.tb01217.x

    Article  CAS  PubMed  Google Scholar 

  55. Ellison CS, Niehuis O, Gadau J (2008) Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J Evol Biol 21:1844–1851. https://doi.org/10.1111/j.1420-9101.2008.01608.x

    Article  CAS  PubMed  Google Scholar 

  56. Ellison CK, Burton RS (2008) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62:631–638. https://doi.org/10.1111/j.1558-5646.2007.00305.x

    Article  PubMed  Google Scholar 

  57. Barreto FS, Burton RS (2013) Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA. Mol Biol Evol 30:310–314. https://doi.org/10.1093/molbev/mss228

    Article  CAS  PubMed  Google Scholar 

  58. Yan Z, Ye G, Werren JH (2019) Evolutionary rate correlation between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins in insects. Mol Biol Evol 36:1022–1036. https://doi.org/10.1093/molbev/msz036

    Article  CAS  PubMed  Google Scholar 

  59. Orr HA (1995) The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–1813. https://doi.org/10.1093/genetics/139.4.1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Orr HA, Turelli M (2001) The Evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution 55:1085–1094. https://doi.org/10.1111/j.0014-3820.2001.tb00628.x

    Article  CAS  PubMed  Google Scholar 

  61. Healy TM, Burton RS (2020) Strong selective effects of mitochondrial DNA on the nuclear genome. Proc Natl Acad Sci USA 117:6616–6621. https://doi.org/10.1073/pnas.1910141117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Han K-L, Barreto FS (2021) Pervasive mitonuclear coadaptation underlies fast development in interpopulation hybrids of a marine crustacean. Genome Biol Evol 13:evab004. https://doi.org/10.1093/gbe/evab004

    Article  PubMed  PubMed Central  Google Scholar 

  63. Foley BR, Rose CG, Rundle DE, Leong W, Edmands S (2013) Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes. Heredity 111:391–401. https://doi.org/10.1038/hdy.2013.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lima TG, Burton RS, Willett CS (2019) Genomic scans reveal multiple mito-nuclear incompatibilities in population crosses of the copepod Tigriopus californicus. Evolution 73:609–620. https://doi.org/10.1111/evo.13690

    Article  PubMed  Google Scholar 

  65. Pereira RJ, Lima TG, Pierce NT, Chao L, Burton RS (2021) Recovery from hybrid breakdown reveals a complex genetic architecture of mitonuclear incompatibilities. Mol Ecol. https://doi.org/10.1111/mec.15985

    Article  PubMed  Google Scholar 

  66. Pritchard VL, Edmands S (2013) The genomic trajectory of hybrid swarms: outcomes of repeated crosses between populations of Tigriopus californicus. Evolution 67:774–791. https://doi.org/10.1111/j.1558-5646.2012.01814.x

    Article  CAS  PubMed  Google Scholar 

  67. Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109

    Article  Google Scholar 

  68. Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin’s corollary to Haldane’s Rule. Genetics 176:1059–1088. https://doi.org/10.1534/genetics.106.065979

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bolnick DI, Near TJ (2005) Tempo of hybrid inviability in sunfish (Centrarchidae). Evolution 59:1754–1767. https://doi.org/10.1111/j.0014-3820.2005.tb01824.x

    Article  PubMed  Google Scholar 

  70. Brandvain Y, Pauly GB, May MR, Turelli M (2014) Explaining Darwin’s corollary to Haldane’s rule: the role of mitonuclear interactions in asymmetric postzygotic isolation among toads. Genetics 197:743–747. https://doi.org/10.1534/genetics.113.161133

    Article  PubMed  PubMed Central  Google Scholar 

  71. Payseur BA, Presgraves DC, Filatov DA (2018) Introduction: sex chromosomes and speciation. Mol Ecol 27:3745–3748. https://doi.org/10.1111/mec.14828

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ellison CK, Burton RS (2008) Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids. Proc Nat Acad Sci USA 105:15831–15836. https://doi.org/10.1073/pnas.0804253105

    Article  PubMed  PubMed Central  Google Scholar 

  73. Meiklejohn CD, Holmbeck MA, Siddiq MA, Abt DN, Rand DM, Montooth KL (2013) An incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila. PLoS Genet 9(1):e1003238. https://doi.org/10.1371/journal.pgen.100323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clancy D, Hime G, Shirras A (2011) Cytoplasmic male sterility in Drosophila melanogaster associated with a mitochondrial CYTB variant. Heredity 107:374–376. https://doi.org/10.1038/hdy.2011.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma H, Gutierrez NM, Morey R, Van Dyken C, Kang E, Hayama T, Lee Y, Li Y, Tippner-Hedges R, Wolf DP, Laurent LC, Mitalipov S (2016) Incompatibility between nuclear and mitochondrial genomes contributes to an interspecies reproductive barrier. Cell Metab 24:283–294. https://doi.org/10.1016/j.cmet.2016.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J (2009) A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323:373–375. https://doi.org/10.1126/science.1163601

    Article  CAS  PubMed  Google Scholar 

  77. Gregorova S, Gergelits V, Chvatalova I, Bhattacharyya T, Valiskova B, Fotopulosova V, Jansa P, Wiatrowska D, Forejt J (2018) Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice. Elife. https://doi.org/10.7554/elife.34282

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gibson JD, Niehuis O, Peirson BRE, Cash EI, Gadau J (2013) Genetic and developmental basis of F2 hybrid breakdown in Nasonia parasitoid wasps. Evolution 67:2124–2132. https://doi.org/10.1111/evo.12080

    Article  CAS  PubMed  Google Scholar 

  79. Hill GE (2019) Reconciling the mitonuclear compatibility species concept with rampant mitochondrial introgression. Integr Comp Biol 59:912–924. https://doi.org/10.1093/icb/icz019

    Article  CAS  PubMed  Google Scholar 

  80. Toews DP, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x

    Article  CAS  PubMed  Google Scholar 

  81. Llopart A, Herrig D, Brud E, Stecklein Z (2014) Sequential adaptive introgression of the mitochondrial genome in Drosophila yakuba and Drosophila santomea. Mol Ecol 23:1124–1136. https://doi.org/10.1111/mec.12678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Blier PU, Dufresne F, Burton RS (2001) Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic coadaptation. Trends Genet 17:600–606. https://doi.org/10.1016/s0168-9525(01)02338-1

    Article  Google Scholar 

  83. Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik MI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171–176. https://doi.org/10.1073/pnas.0136972100

    Article  CAS  PubMed  Google Scholar 

  84. Camus MF, Wolff JN, Sgrò CM, Dowling DK (2017) Experimental support that natural selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian Drosophila melanogaster. Mol Biol Evol 34:2600–2612. https://doi.org/10.1093/molbev/msx184

    Article  CAS  PubMed  Google Scholar 

  85. Lajbner Z, Pnini R, Camus MF, Miller J, Dowling DK (2018) Experimental evidence that thermal selection shapes mitochondrial genome evolution. Sci Rep 8:9500. https://doi.org/10.1038/s41598-018-27805-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Immonen E, Berger D, Sayadi A, Liljestrand-Ronn J, Arnqvist G (2020) An experimental test of temperature-dependent selection on mitochondrial haplotypes in Callosobruchus maculatus seed beetles. Ecol Evol 10:11387–11398. https://doi.org/10.1002/ece3.6775

    Article  PubMed  PubMed Central  Google Scholar 

  87. Beck EA, Thompson AC, Sharbrough J, Brud E, Llopart A (2015) Gene flow between Drosophila yakuba and Drosophila santomea in subunit V of cytochrome c oxidase: a potential case of cytonuclear co-introgression. Evolution 69:1973–1986. https://doi.org/10.1111/evo.12718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morales HE, Sunnucks P, Joseph L, Pavlova A (2017) Perpendicular axes of differentiation generated by mitochondrial introgression. Mol Ecol 26:3241–3255. https://doi.org/10.1111/mec.14114

    Article  CAS  PubMed  Google Scholar 

  89. Hermansen JS, Haas F, Trier CN, Bailey RI, Nederbragt AJ, Marzal A, Saetre GP (2014) Hybrid speciation through sorting of parental incompatibilities in Italian sparrows. Mol Ecol 23:5831–5842. https://doi.org/10.1111/mec.12910

    Article  PubMed  Google Scholar 

  90. Wang S, Ore MJ, Mikkelsen EK, Lee-Yaw J, Toews DPL, Rohwer S, Irwin D (2021) Signatures of mitonuclear coevolution in a warbler species complex. Nat Commun 12(1):4279. https://doi.org/10.1038/s41467-021-24586-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920. https://doi.org/10.1111/j.1558-5646.2008.00413.x

    Article  PubMed  Google Scholar 

  92. Mastrantonio V, Porretta D, Urbanelli S, Crasta G, Nascetti G (2016) Dynamics of mtDNA introgression during species range expansion: insights from an experimental longitudinal study. Sci Rep 6:30355. https://doi.org/10.1038/srep30355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tobler M, Barts N, Greenway R (2019) Mitochondria and the origin of species: bridging genetic and ecological perspectives on speciation processes. Integrat Comp Biol 59:900–911. https://doi.org/10.1093/icb/icz025

    Article  CAS  Google Scholar 

  94. Tobler M, Kelley JL, Plath M, Riesch R (2018) Extreme environments and the origins of biodiversity: adaptation and speciation in sulfide springs. Mol Ecol 27:843–859. https://doi.org/10.1111/mec.14497

    Article  CAS  PubMed  Google Scholar 

  95. Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572. https://doi.org/10.1126/science.1122033

    Article  CAS  Google Scholar 

  96. Montooth KL, Meiklejohn CD, Abt DN, Rand DM (2010) Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution 64:3364–3379. https://doi.org/10.1111/j.1558-5646.2010.01077.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ganz HH, Burton RS (1995) Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicus. Mar Biol 123:821–827. https://doi.org/10.1007/BF00349126

    Article  Google Scholar 

  98. Peterson DL, Kubow KB, Connolly MJ, Kaplan LR, Wetkowski MM, Leong W, Phillips BC (2013) Edmands S (2013) Reproductive and phylogenetic divergence of tidepool copepod populations across a narrow geographical boundary in Baja California. J Biogeogr 40:1664–1675. https://doi.org/10.1111/jbi.12107

    Article  Google Scholar 

  99. Hwang AS, Northrup SL, Peterson DL, Kim Y, Edmands S (2012) Long-term experimental hybrid swarms between nearly incompatible Tigriopus californicus populations: persistent fitness problems and assimilation by the superior population. Conserv Genet 13:567–579. https://doi.org/10.1007/s10592-011-0308-8

    Article  Google Scholar 

  100. Phillips BC, Edmands S (2012) Does the speciation clock tick more slowly in the absence of heteromorphic sex chromosomes? BioEssays 34:166–169. https://doi.org/10.1002/bies.201100164

    Article  PubMed  Google Scholar 

  101. Lima TG (2014) Higher levels of sex chromosome heteromorphism are associated with markedly stronger reproductive isolation. Nat Commun 5:4743. https://doi.org/10.1038/ncomms5743

    Article  CAS  PubMed  Google Scholar 

  102. Burton RS, Ellison CK, Harrison JS (2006) The sorry state of F2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations. Am Nat 168:S14–S24. https://doi.org/10.1086/509046

    Article  PubMed  Google Scholar 

  103. Burton RS, Pereira RJ, Barreto FS (2013) Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst 44:281–302. https://doi.org/10.1146/annurev-ecolsys-110512-135758

    Article  Google Scholar 

  104. Sunnucks P, Morales HE, Lamb AM, Pavlova A, Greening C (2017) Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Front Genet 8:03. https://doi.org/10.3389/fgene.2017.00025

    Article  CAS  Google Scholar 

  105. Hill GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK (2018) Assessing the fitness consequences of mitonuclear interactions in natural populations. Biol Rev 94:1089–1104. https://doi.org/10.1111/brv.12493

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges discussions with T. Healy on the content of this paper and the helpful comments from two anonymous reviewers.

Funding

The author gratefully acknowledges support from the US National Science Foundation (Grant Number: IOS 1754347).

Author information

Authors and Affiliations

Authors

Contributions

RSB wrote this invited review paper as sole author and prepared Figs. 1 and 2. Permission for reuse of Fig. 3 is granted under the blanket permissions from the Proceedings of the National Academy of Sciences for author reuse: "PNAS authors need not obtain permission for the following cases: (1) to use their original figures or tables in their future works."

Corresponding author

Correspondence to Ronald S. Burton.

Ethics declarations

Ethical approval and consent to participate.

No new experiments were performed in the preparation of this review paper. All ethical standards for research have been met.

Consent for publication

The author (RSB) consents for publication of this article in CMLS.

Competing interests

The author declares that he has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burton, R.S. The role of mitonuclear incompatibilities in allopatric speciation. Cell. Mol. Life Sci. 79, 103 (2022). https://doi.org/10.1007/s00018-021-04059-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04059-3

Keywords

Navigation