Skip to main content

Advertisement

Log in

MIAT, a potent CVD-promoting lncRNA

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The initial identification of long non-coding RNA myocardial infarction associated transcript (MIAT) as a genetic risk factor of myocardial infarction has made this lncRNA (designated as lncR-MIAT here) a focus of intensive studies worldwide. Emerging evidence supports that lncR-MIAT is susceptible in its expression to multiple deleterious factors like angiotensin II, isoproterenol, hypoxia, and infection and is anomaly overexpressed in serum, plasma, blood cells and myocardial tissues under a variety of cardiovascular conditions including myocardial infarction, cardiac hypertrophy, diabetic cardiomyopathy, dilated cardiomyopathy, sepsis cardiomyopathy, atrial fibrillation and microvascular dysfunction. Experimental results consistently demonstrated that upregulation of lncR-MIAT plays active roles in the pathological processes of the cardiovascular system and knockdown of this lncRNA effectively ameliorates the adverse conditions. The available data revealed that lncR-MIAT acts through multiple mechanisms such as competitive endogenous RNA, natural antisense RNA and RNA/protein interactions. Moreover, the functional domains of lncR-MIAT accounting for certain specific cellular functions of the full-length transcript have been identified and characterized. These insights will not only tremendously advance our understanding of lncRNA biology and pathophysiology, but also offer good opportunities for more innovative and precise design of agents that have the potential to be developed into new drugs for better therapy of cardiovascular diseases (CVDs) in the future. Herein, we provide an overview of lncR-MIAT, focusing on its roles in cardiovascular diseases, underline the unique cellular/molecular mechanisms for its actions, and speculate the perspectives about the translational studies on the potential diagnostic and therapeutic applications of lncR-MIAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307. https://doi.org/10.1016/j.cell.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  3. Hobuss L, Bar C, Thum T (2019) Long Non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol 10:30. https://doi.org/10.3389/fphys.2019.00030

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lozano-Vidal N, Bink DI, Boon RA (2019) Long noncoding RNA in cardiac aging and disease. J Mol Cell Biol 11:860–867. https://doi.org/10.1093/jmcb/mjz046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maass PG, Luft FC, Bahring S (2014) Long non-coding RNA in health and disease. J Mol Med (Berl) 92:337–346. https://doi.org/10.1007/s00109-014-1131-8

    Article  CAS  Google Scholar 

  6. Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 111:1349–1362. https://doi.org/10.1161/CIRCRESAHA.112.268953

    Article  CAS  PubMed  Google Scholar 

  7. Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116:737–750. https://doi.org/10.1161/CIRCRESAHA.116.302521

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Du W, Yang B (2019) Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: molecular mechanisms, therapeutic implications and challenges. Pharmacol Ther 203:107389. https://doi.org/10.1016/j.pharmthera.2019.06.011

    Article  CAS  PubMed  Google Scholar 

  9. Gast M, Rauch BH, Haghikia A, Nakagawa S, Haas J, Stroux A, Schmidt D, Schumann P, Weiss S, Jensen L, Kratzer A, Kraenkel N, Muller C, Bornigen D, Hirose T, Blankenberg S, Escher F, Kuhl AA, Kuss AW, Meder B, Landmesser U, Zeller T, Poller W (2019) Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 115:1886–1906. https://doi.org/10.1093/cvr/cvz085

    Article  CAS  PubMed  Google Scholar 

  10. Bar C, Chatterjee S, Falcao Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andres V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T (2020) Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 116:1805–1819. https://doi.org/10.1093/cvr/cvaa195

    Article  CAS  PubMed  Google Scholar 

  11. Bar C, Chatterjee S, Thum T (2016) Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation 134:1484–1499. https://doi.org/10.1161/CIRCULATIONAHA.116.023686

    Article  CAS  PubMed  Google Scholar 

  12. Ishii N, Ozaki K, Sato H, Mizuno H, Susumu S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Satoshi S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099. https://doi.org/10.1007/s10038-006-0070-9

    Article  CAS  PubMed  Google Scholar 

  13. Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115:668–677. https://doi.org/10.1161/CIRCRESAHA.115.303836

    Article  CAS  PubMed  Google Scholar 

  14. Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116:1143–1156. https://doi.org/10.1161/CIRCRESAHA.116.305510

    Article  CAS  PubMed  Google Scholar 

  15. Zhu XH, Yuan YX, Rao SL, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660

    PubMed  Google Scholar 

  16. Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S, Yang T, Zhan L, Yuan Y, Chu W, Pan Z, Wang Z, Yang B, Lu Y (2017) MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:42657. https://doi.org/10.1038/srep42657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou X, Zhang W, Jin M, Chen J, Xu W, Kong X (2017) lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis 8:e2929. https://doi.org/10.1038/cddis.2017.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S (2007) The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 120:2498–2506. https://doi.org/10.1242/jcs.009357

    Article  CAS  PubMed  Google Scholar 

  19. Rapicavoli NA, Poth EM, Blackshaw S (2010) The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol 10:49. https://doi.org/10.1186/1471-213X-10-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsuiji H, Yoshimoto R, Hasegawa Y, Furuno M, Yoshida M, Nakagawa S (2011) Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes Cells 16:479–490. https://doi.org/10.1111/j.1365-2443.2011.01502.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galarneau A, Richard S (2005) Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol 12:691–698. https://doi.org/10.1038/nsmb963

    Article  CAS  PubMed  Google Scholar 

  22. Azat M, Huojiahemaiti X, Gao R, Peng P (2019) Long noncoding RNA MIAT: a potential role in the diagnosis and mediation of acute myocardial infarction. Mol Med Rep 20:5216–5222. https://doi.org/10.3892/mmr.2019.10768

    Article  CAS  PubMed  Google Scholar 

  23. Eicher JD, Wakabayashi Y, Vitseva O, Esa N, Yang Y, Zhu J, Freedman JE, McManus DD, Johnson AD (2016) Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction. Platelets 27:230–239. https://doi.org/10.3109/09537104.2015.1083543

    Article  CAS  PubMed  Google Scholar 

  24. Wang XM, Li XM, Song N, Zhai H, Gao XM, Yang YN (2019) Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed Pharmacother 118:109208. https://doi.org/10.1016/j.biopha.2019.109208

    Article  CAS  PubMed  Google Scholar 

  25. Tan J, Liu S, Jiang Q, Yu T, Huang K (2019) LncRNA-MIAT increased in patients with coronary atherosclerotic heart disease. Cardiol Res Pract 2019:6280194. https://doi.org/10.1155/2019/6280194

    Article  PubMed  PubMed Central  Google Scholar 

  26. Toraih EA, El-Wazir A, Alghamdi SA, Alhazmi AS, El-Wazir M, Abdel-Daim MM, Fawzy MS (2019) Association of long non-coding RNA MIAT and MALAT1 expression profiles in peripheral blood of coronary artery disease patients with previous cardiac events. Genet Mol Biol 42:509–518. https://doi.org/10.1590/1678-4685-GMB-2018-0185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu M, Li N, Luo P, Jing W, Wen X, Liang C, Tu J (2018) Peripheral blood leukocyte expression of lncrna miat and its diagnostic and prognostic value in ischemic stroke. J Stroke Cerebrovasc Dis 27:326–337. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.009

    Article  PubMed  Google Scholar 

  28. de Gonzalo-Calvo D, Kenneweg F, Bang C, Toro R, van der Meer RW, Rijzewijk LJ, Smit JW, Lamb HJ, Llorente-Cortes V, Thum T (2016) Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci Rep 6:37354. https://doi.org/10.1038/srep37354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757. https://doi.org/10.1016/S0140-6736(06)68770-9

    Article  PubMed  Google Scholar 

  30. Reed GW, Rossi JE, Cannon CP (2017) Acute myocardial infarction. Lancet 389:197–210. https://doi.org/10.1016/S0140-6736(16)30677-8

    Article  PubMed  Google Scholar 

  31. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Joint ESCAAHAWHFTFfUDoMI, Authors/Task Force Members C, Thygesen K, Alpert JS, White HD, Biomarker S, Jaffe AS, Katus HA, Apple FS, Lindahl B, Morrow DA, Subcommittee ECG, Chaitman BR, Clemmensen PM, Johanson P, Hod H, Imaging S, Underwood R, Bax JJ, Bonow JJ, Pinto F, Gibbons RJ, Classification S, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Intervention S, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasche P, Ravkilde J, Trials, Registries S, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Trials, Registries S, Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Trials, Registries S, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Trials, Registries S, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S, Guidelines ESCCfP, Bax JJ, Baumgartner H, Ceconi C, Dean V, Deaton C, Fagard R, Funck-Brentano C, Hasdai D, Hoes A, Kirchhof P, Knuuti J, Kolh P, McDonagh T, Moulin C, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendera M, Torbicki A, Vahanian A, Windecker S, Document R, Morais J, Aguiar C, Almahmeed W et al (2012) Third universal definition of myocardial infarction. J Am Coll Cardiol 60:1581–1598. https://doi.org/10.1016/j.jacc.2012.08.001

  32. Jose Corbalan J, Vatner DE, Vatner SF (2016) Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 111:31. https://doi.org/10.1007/s00395-016-0549-2

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez M, Lucchesi BR, Schaper J (2002) Apoptosis in myocardial infarction. Ann Med 34:470–479. https://doi.org/10.1080/078538902321012414

    Article  CAS  PubMed  Google Scholar 

  34. Chen L, Zhang D, Yu L, Dong H (2019) Targeting MIAT reduces apoptosis of cardiomyocytes after ischemia/reperfusion injury. Bioengineered 10:121–132. https://doi.org/10.1080/21655979.2019.1605812

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cong L, Su Y, Wei D, Qian L, Xing D, Pan J, Chen Y, Huang M (2020) Catechin relieves hypoxia/reoxygenation-induced myocardial cell apoptosis via down-regulating lncRNA MIAT. J Cell Mol Med 24:2356–2368. https://doi.org/10.1111/jcmm.14919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mercer JR (2014) Mitochondrial bioenergetics and therapeutic intervention in cardiovascular disease. Pharmacol Ther 141:13–20. https://doi.org/10.1016/j.pharmthera.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  37. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590. https://doi.org/10.1101/gad.1658508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488. https://doi.org/10.1126/science.283.5407.1482

    Article  CAS  PubMed  Google Scholar 

  39. Gatliff J, Campanella M (2012) The 18 kDa translocator protein (TSPO): a new perspective in mitochondrial biology. Curr Mol Med 12:356–368. https://doi.org/10.2174/1566524011207040356

    Article  CAS  PubMed  Google Scholar 

  40. Morin D, Musman J, Pons S, Berdeaux A, Ghaleh B (2016) Mitochondrial translocator protein (TSPO): from physiology to cardioprotection. Biochem Pharmacol 105:1–13. https://doi.org/10.1016/j.bcp.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  41. Motloch LJ, Hu J, Akar FG (2015) The mitochondrial translocator protein and arrhythmogenesis in ischemic heart disease. Oxid Med Cell Longev 2015:234104. https://doi.org/10.1155/2015/234104

    Article  PubMed  PubMed Central  Google Scholar 

  42. Veenman L, Papadopoulos V, Gavish M (2007) Channel-like functions of the 18-kDa translocator protein (TSPO): regulation of apoptosis and steroidogenesis as part of the host-defense response. Curr Pharm Des 13:2385–2405. https://doi.org/10.2174/138161207781368710

    Article  CAS  PubMed  Google Scholar 

  43. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656. https://doi.org/10.1038/nrc883

    Article  CAS  PubMed  Google Scholar 

  44. Kugler W, Veenman L, Shandalov Y, Leschiner S, Spanier I, Lakomek M, Gavish M (2008) Ligands of the mitochondrial 18 kDa translocator protein attenuate apoptosis of human glioblastoma cells exposed to erucylphosphohomocholine. Cell Oncol 30:435–450. https://doi.org/10.3233/clo-2008-0431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mendonca-Torres MC, Roberts SS (2013) The translocator protein (TSPO) ligand PK11195 induces apoptosis and cell cycle arrest and sensitizes to chemotherapy treatment in pre- and post-relapse neuroblastoma cell lines. Cancer Biol Ther 14:319–326. https://doi.org/10.4161/cbt.23613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bai X, Yang C, Jiao L, Diao H, Meng Z, Wang L, Cui H, Sun L, Zhang Y, Yang B (2021) LncRNA MIAT impairs cardiac contractile function by acting on mitochondrial translocator protein TSPO in a mouse model of myocardial infarction. Signal Transduct Target Ther 6:172. https://doi.org/10.1038/s41392-021-00538-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195. https://doi.org/10.1016/j.cardiores.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  48. Dean RG, Balding LC, Candido R, Burns WC, Cao Z, Twigg SM, Burrell LM (2005) Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53:1245–1256. https://doi.org/10.1369/jhc.4A6560.2005

    Article  CAS  PubMed  Google Scholar 

  49. Frangogiannis NG (2020) Cardiac fibrosis. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa324

    Article  PubMed Central  Google Scholar 

  50. Chuang TD, Ansari A, Yu C, Sakurai R, Harb A, Liu J, Khorram O, Rehan VK (2020) Mechanism underlying increased cardiac extracellular matrix deposition in perinatal nicotine-exposed offspring. Am J Physiol Heart Circ Physiol 319:H651–H660. https://doi.org/10.1152/ajpheart.00021.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xing PC, An P, Hu GY, Wang DL, Zhou MJ (2020) LncRNA MIAT promotes inflammation and oxidative stress in sepsis-induced cardiac injury by targeting miR-330-5p/TRAF6/NF-kappaB Axis. Biochem Genet 58:783–800. https://doi.org/10.1007/s10528-020-09976-9

    Article  CAS  PubMed  Google Scholar 

  52. Mahtta D, Sudhakar D, Koneru S, Silva GV, Alam M, Virani SS, Jneid H (2020) Targeting inflammation after myocardial infarction. Curr Cardiol Rep 22:110. https://doi.org/10.1007/s11886-020-01358-2

    Article  PubMed  Google Scholar 

  53. Ong SB, Hernandez-Resendiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, Hausenloy DJ (2018) Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 186:73–87. https://doi.org/10.1016/j.pharmthera.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu W, Liu Y, Zhang Y, Zhu X, Zhang R, Guan L, Tang Q, Jiang H, Huang C, Huang H (2015) MicroRNA-150 protects against pressure overload-induced cardiac hypertrophy. J Cell Biochem 116:2166–2176. https://doi.org/10.1002/jcb.25057

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Wang J, Sun L, Zhu S (2018) LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol 818:508–517. https://doi.org/10.1016/j.ejphar.2017.11.031

    Article  CAS  PubMed  Google Scholar 

  56. Li Z, Liu Y, Guo X, Sun G, Ma Q, Dai Y, Zhu G, Sun Y (2018) Long noncoding RNA myocardial infarctionassociated transcript is associated with the microRNA1505p/P300 pathway in cardiac hypertrophy. Int J Mol Med 42:1265–1272. https://doi.org/10.3892/ijmm.2018.3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118:934–946. https://doi.org/10.1161/CIRCULATIONAHA.107.760488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeng Z, Pan Y, Wu W, Li L, Wu Z, Zhang Y, Deng B, Wei S, Zhang W, Lin F, Song Y (2019) Myocardial hypertrophy is improved with berberine treatment via long non-coding RNA MIAT-mediated autophagy. J Pharm Pharmacol 71:1822–1831. https://doi.org/10.1111/jphp.13170

    Article  CAS  PubMed  Google Scholar 

  59. Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, Shahul S, Brown SM (2018) Septic cardiomyopathy. Crit Care Med 46:625–634. https://doi.org/10.1097/CCM.0000000000002851

    Article  PubMed  Google Scholar 

  60. Brieler J, Breeden MA, Tucker J (2017) Cardiomyopathy: an overview. Am Fam Physician 96:640–646

    PubMed  Google Scholar 

  61. Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671. https://doi.org/10.1007/s00125-014-3171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jia G, DeMarco VG, Sowers JR (2016) Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12:144–153. https://doi.org/10.1038/nrendo.2015.216

    Article  CAS  PubMed  Google Scholar 

  63. Bern C (2015) Chagas’ disease. N Engl J Med 373:456–466. https://doi.org/10.1056/NEJMra1410150

    Article  CAS  PubMed  Google Scholar 

  64. Perez-Molina JA, Molina I (2018) Chagas disease. Lancet 391:82–94. https://doi.org/10.1016/S0140-6736(17)31612-4

    Article  PubMed  Google Scholar 

  65. Frade AF, Laugier L, Ferreira LR, Baron MA, Benvenuti LA, Teixeira PC, Navarro IC, Cabantous S, Ferreira FM, da Silva CD, Gaiotto FA, Bacal F, Pomerantzeff P, Santos RH, Kalil J, Cunha-Neto E, Chevillard C (2016) Myocardial infarction-associated transcript, a long noncoding RNA, is overexpressed during dilated cardiomyopathy due to chronic Chagas disease. J Infect Dis 214:161–165. https://doi.org/10.1093/infdis/jiw095

    Article  CAS  PubMed  Google Scholar 

  66. Cimolai MC, Alvarez S, Bode C, Bugger H (2015) Mitochondrial mechanisms in septic cardiomyopathy. Int J Mol Sci 16:17763–17778. https://doi.org/10.3390/ijms160817763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ehrman RR, Sullivan AN, Favot MJ, Sherwin RL, Reynolds CA, Abidov A, Levy PD (2018) Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature. Crit Care 22:112. https://doi.org/10.1186/s13054-018-2043-8

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456. https://doi.org/10.1152/physrev.00014.2006

    Article  CAS  PubMed  Google Scholar 

  69. Atienza F, Almendral J, Moreno J, Vaidyanathan R, Talkachou A, Kalifa J, Arenal A, Villacastin JP, Torrecilla EG, Sanchez A, Ploutz-Snyder R, Jalife J, Berenfeld O (2006) Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114:2434–2442. https://doi.org/10.1161/CIRCULATIONAHA.106.633735

    Article  CAS  PubMed  Google Scholar 

  70. Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Zhang Y, Shan H, Luo X, Bai Y, Sun L, Song W, Xu C, Wang Z, Yang B (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–2387. https://doi.org/10.1161/CIRCULATIONAHA.110.958967

    Article  CAS  PubMed  Google Scholar 

  71. Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang N, Lin H, Xiao L, Maguy A, Qi XY, Li Y, Gao X, Dong D, Zhang Y, Bai Y, Ai J, Sun L, Lu H, Luo XY, Wang Z, Lu Y, Yang B, Nattel S (2013) MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J Clin Invest 123:1939–1951. https://doi.org/10.1172/JCI62185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schotten U, Ausma J, Stellbrink C, Sabatschus I, Vogel M, Frechen D, Schoendube F, Hanrath P, Allessie MA (2001) Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation 103:691–698. https://doi.org/10.1161/01.cir.103.5.691

    Article  CAS  PubMed  Google Scholar 

  73. Workman AJ, Kane KA, Rankin AC (2001) The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 52:226–235. https://doi.org/10.1016/s0008-6363(01)00380-7

    Article  CAS  PubMed  Google Scholar 

  74. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81:512–525. https://doi.org/10.1161/01.res.81.4.512

    Article  CAS  PubMed  Google Scholar 

  75. Zhang H, Garratt CJ, Zhu J, Holden AV (2005) Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans. Cardiovasc Res 66:493–502. https://doi.org/10.1016/j.cardiores.2005.01.020

    Article  CAS  PubMed  Google Scholar 

  76. Wang Z, Lu Y, Yang B (2011) MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res 89:710–721. https://doi.org/10.1093/cvr/cvq350

    Article  CAS  PubMed  Google Scholar 

  77. Wang Z, Yue L, White M, Pelletier G, Nattel S (1998) Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 98:2422–2428. https://doi.org/10.1161/01.cir.98.22.2422

    Article  CAS  PubMed  Google Scholar 

  78. Burstein B, Nattel S (2008) Atrial structural remodeling as an antiarrhythmic target. J Cardiovasc Pharmacol 52:4–10. https://doi.org/10.1097/FJC.0b013e3181668057

    Article  CAS  PubMed  Google Scholar 

  79. Dzeshka MS, Lip GY, Snezhitskiy V, Shantsila E (2015) Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol 66:943–959. https://doi.org/10.1016/j.jacc.2015.06.1313

    Article  PubMed  Google Scholar 

  80. Lau DH, Linz D, Schotten U, Mahajan R, Sanders P, Kalman JM (2017) Pathophysiology of paroxysmal and persistent atrial fibrillation: rotors, foci and fibrosis. Heart Lung Circ 26:887–893. https://doi.org/10.1016/j.hlc.2017.05.119

    Article  PubMed  Google Scholar 

  81. Yao L, Zhou B, You L, Hu H, Xie R (2020) LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis. Mol Biol Rep 47:2605–2617. https://doi.org/10.1007/s11033-020-05347-0

    Article  CAS  PubMed  Google Scholar 

  82. Zhang LS JY, Liu YY, Yu YH, Sun X, Tian H, Xu J, Yue E, Lv Y, Dong CR, Wang XY, Liu GQ, Zhang DY, Wang ZG, Bai YL, Yang BF (2020) Long non-coding RNA MIAT governs atrial fibrillation via dual mechanisms as a competitive endogenous RNA and an antisense RNA. Basic Res Cardiol (unpublished data)

  83. Jayprokas CSM (2017) Cancer and noncoding RNAs: antisense RNA and cancer. Elsevier Publisher, Amsterdam

    Google Scholar 

  84. Garcia-Padilla C, Dominguez JN, Aranega AE, Franco D (2019) Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. Biochim Biophys Acta Gene Regul Mech 1862:194435. https://doi.org/10.1016/j.bbagrm.2019.194435

    Article  CAS  PubMed  Google Scholar 

  85. Farsangi SJ, Rostamzadeh F, Sheikholeslami M, Jafari E, Karimzadeh M (2020) Modulation of the expression of long non-coding RNAs H19, GAS5, and MIAT by endurance exercise in the hearts of rats with myocardial infarction. Cardiovasc Toxicol. https://doi.org/10.1007/s12012-020-09607-0

    Article  PubMed  Google Scholar 

  86. Jae N, Dimmeler S (2015) Long noncoding RNAs in diabetic retinopathy. Circ Res 116:1104–1106. https://doi.org/10.1161/CIRCRESAHA.115.306051

    Article  CAS  PubMed  Google Scholar 

  87. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bosson AD, Zamudio JR, Sharp PA (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56:347–359. https://doi.org/10.1016/j.molcel.2014.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Broderick JA, Zamore PD (2014) Competitive endogenous RNAs cannot alter microRNA function in vivo. Mol Cell 54:711–713. https://doi.org/10.1016/j.molcel.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  90. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54:766–776. https://doi.org/10.1016/j.molcel.2014.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jens M, Rajewsky N (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 16:113–126. https://doi.org/10.1038/nrg3853

    Article  CAS  PubMed  Google Scholar 

  92. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283. https://doi.org/10.1038/nrg.2016.20

    Article  CAS  PubMed  Google Scholar 

  93. Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X, Hua B, Xu J, Li J, Bi C, Guo S, Yang F, Han Z, Li Y, Yan G, Yu Y, Bao Z, Yu M, Li F, Tian Y, Pan Z, Yang B (2018) The long noncoding RNA CAREL controls cardiac regeneration. J Am Coll Cardiol 72:534–550. https://doi.org/10.1016/j.jacc.2018.04.085

    Article  PubMed  Google Scholar 

  94. Zhang Y, Jiao L, Sun L, Li Y, Gao Y, Xu C, Shao Y, Li M, Li C, Lu Y, Pan Z, Xuan L, Zhang Y, Li Q, Yang R, Zhuang Y, Zhang Y, Yang B (2018) LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca(2+) overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res 122:1354–1368. https://doi.org/10.1161/CIRCRESAHA.117.312117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Delihas N, Rokita SE, Zheng P (1997) Natural antisense RNA/target RNA interactions: possible models for antisense oligonucleotide drug design. Nat Biotechnol 15:751–753. https://doi.org/10.1038/nbt0897-751

    Article  CAS  PubMed  Google Scholar 

  96. Dolnick BJ (1997) Naturally occurring antisense RNA. Pharmacol Ther 75:179–184. https://doi.org/10.1016/s0163-7258(97)00050-8

    Article  CAS  PubMed  Google Scholar 

  97. Knowling S, Morris KV (2011) Non-coding RNA and antisense RNA. Nature’s trash or treasure? Biochimie 93:1922–1927. https://doi.org/10.1016/j.biochi.2011.07.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cai B, Ma W, Wang X, Sukhareva N, Hua B, Zhang L, Xu J, Li X, Li S, Liu S, Yu M, Xu Y, Song R, Xu B, Yang F, Han Z, Ding F, Huang Q, Yu Y, Zhao Y, Wang J, Bamba D, Zagidullin N, Li F, Tian Y, Pan Z, Yang B (2020) Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ 27:2158–2175. https://doi.org/10.1038/s41418-020-0492-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors greatly thank Prof. Zhiguo Wang for continued support and valuable advice of this manuscript.

Funding

This work was supported by the Funds for National Key Research and Development Program of China (2017YFC1307403 to Baofeng Yang, 2017YFC1702003 to Yong Zhang); the Key Program of National Natural Science Foundation of China (81730012 to Yong Zhang); the National Natural Science Foundation of China (81861128022, 81570301, 81570399 to Yong Zhang); and Qiqihar Academy of Medical Sciences Project (QMSI2020B-04 to Chao Yang).

Author information

Authors and Affiliations

Authors

Contributions

BY conceived idea of the article. CY performed the literature search and wrote the manuscript. YZ critically revised the work. All authors approved the final version of the paper.

Corresponding author

Correspondence to Baofeng Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhang, Y. & Yang, B. MIAT, a potent CVD-promoting lncRNA. Cell. Mol. Life Sci. 79, 43 (2022). https://doi.org/10.1007/s00018-021-04046-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04046-8

Keywords

Navigation