Skip to main content

Advertisement

Log in

PA28γ–20S proteasome is a proteolytic complex committed to degrade unfolded proteins

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

PA28γ is a nuclear activator of the 20S proteasome that, unlike the 19S regulatory particle, stimulates hydrolysis of several substrates in an ATP- and ubiquitin-independent manner and whose exact biological functions and molecular mechanism of action still remain elusive. In an effort to shed light on these important issues, we investigated the stimulatory effect of PA28γ on the hydrolysis of different fluorogenic peptides and folded or denatured full-length proteins by the 20S proteasome. Importantly, PA28γ was found to dramatically enhance breakdown rates by 20S proteasomes of several naturally or artificially unstructured proteins, but not of their native, folded counterparts. Furthermore, these data were corroborated by experiments in cell lines with a nucleus-tagged myelin basic protein. Finally, mass spectrometry analysis of the products generated during proteasomal degradation of two proteins demonstrated that PA28γ does not increase, but rather decreases, the variability of peptides that are potentially suitable for MHC class I antigen presentation. These unexpected findings indicate that global stimulation of the degradation of unfolded proteins may represent a more general feature of PA28γ and suggests that this proteasomal activator might play a broader role in the pathway of protein degradation than previously believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

MS data as raw files, peptides identified with relative intensities and search parameters have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD029248.

Code availability

Not applicable.

References

  1. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068. https://doi.org/10.1146/annurev.biochem.68.1.1015

    Article  CAS  PubMed  Google Scholar 

  2. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92(3):367–380. https://doi.org/10.1016/s0092-8674(00)80929-0

    Article  CAS  PubMed  Google Scholar 

  3. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847. https://doi.org/10.1146/annurev.bi.65.070196.004101

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg AL, Cascio P, Saric T, Rock KL (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39(3–4):147–164. https://doi.org/10.1016/s0161-5890(02)00098-6

    Article  CAS  PubMed  Google Scholar 

  5. Harris JL, Alper PB, Li J, Rechsteiner M, Backes BJ (2001) Substrate specificity of the human proteasome. Chem Biol 8(12):1131–1141. https://doi.org/10.1016/s1074-5521(01)00080-1

    Article  CAS  PubMed  Google Scholar 

  6. Rechsteiner M, Realini C, Ustrell V (2000) The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochem J 345:1–15. https://doi.org/10.1042/0264-6021:3450001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC et al (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408(6808):115–120. https://doi.org/10.1038/35040607

    Article  CAS  PubMed  Google Scholar 

  8. Stadtmueller BM, Hill CP (2011) Proteasome activators. Mol Cell 41(1):8–19. https://doi.org/10.1016/j.molcel.2010.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie SC, Metcalfe RD, Hanssen E, Yang T, Gillett DL, Leis AP et al (2019) The structure of the PA28-20S proteasome complex from Plasmodium falciparum and implications for proteostasis. Nat Microbiol 4(11):1990–2000. https://doi.org/10.1038/s41564-019-0524-4

    Article  CAS  PubMed  Google Scholar 

  10. Chen JH, Wang YF, Xu C, Chen KJ, Zhao QY, Wang ST et al (2021) Cryo-EM of mammalian PA28 alpha beta-iCP immunoproteasome reveals a distinct mechanism of proteasome activation by PA28 alpha beta. Nat Commun. https://doi.org/10.1038/s41467-021-21028-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lesne J, Locard-Paulet M, Parra J, Zivkovic D, Menneteau T, Bousquet MP et al (2020) Conformational maps of human 20S proteasomes reveal PA28-and immuno-dependent inter-ring crosstalks. Nat Commun. https://doi.org/10.1038/s41467-020-19934-z

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yu ZL, Yu YD, Wang F, Myasnikov AG, Coffino P, Cheng YF (2020) Allosteric coupling between alpha-rings of the 20S proteasome. Nat Commun. https://doi.org/10.1038/s41467-020-18415-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huber EM, Groll M (2017) The mammalian proteasome activator PA28 forms an asymmetric alpha(4)beta(3) complex. Structure. 25(10):14730-+. https://doi.org/10.1016/j.str.2017.07.013

    Article  CAS  Google Scholar 

  14. Cascio P (2014) PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 4(2):566–584. https://doi.org/10.3390/biom4020566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 11-s regulator of the multicatalytic protease. J Biol Chem 267(31):22369–22377

    Article  CAS  Google Scholar 

  16. Ma CP, Slaughter CA, Demartino GN (1992) Identification, purification, and characterization of a protein activator (pa28) of the 20-s proteasome (macropain). J Biol Chem 267(15):10515–10523

    Article  CAS  Google Scholar 

  17. Kuehn L, Dahlmann B (1996) Proteasome activator PA28 and its interaction with 20 S proteasomes. Arch Biochem Biophys 329(1):87–96. https://doi.org/10.1006/abbi.1996.0195

    Article  CAS  PubMed  Google Scholar 

  18. Raule M, Cerruti F, Benaroudj N, Migotti R, Kikuchi J, Bachi A et al (2014) PA28 alpha beta reduces size and increases hydrophilicity of 20S immunoproteasome peptide products. Chem Biol 21(4):470–480. https://doi.org/10.1016/j.chembiol.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Powell SR, Wang XJ (2011) Enhancement of proteasome function by PA28 alpha overexpression protects against oxidative stress. FASEB J 25(3):883–893. https://doi.org/10.1096/fj.10-160895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pickering AM, Linder RA, Zhang HQ, Forman HJ, Davies KJA (2012) Nrf2-dependent induction of proteasome and Pa28 alpha beta regulator are required for adaptation to oxidative stress. J Biol Chem 287(13):10021–10031. https://doi.org/10.1074/jbc.M111.277145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pickering AM, Davies KJA (2012) Differential roles of proteasome and immunoproteasome regulators Pa28 alpha beta, Pa28 gamma and Pa200 in the degradation of oxidized proteins. Arch Biochem Biophys 523(2):181–190. https://doi.org/10.1016/j.abb.2012.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hernebring M, Fredriksson A, Liljevald M, Cvijovic M, Norrman K, Wiseman J et al (2013) Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28. Sci Rep. https://doi.org/10.1038/srep01381

    Article  PubMed  PubMed Central  Google Scholar 

  23. Raynes R, Pomatto L, Davies K (2016) Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Aspects Med 50:41–55. https://doi.org/10.1016/j.mam.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lobanova ES, Finkelstein S, Li J, Travis AM, Hao Y, Klingeborn M et al (2018) Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat Commun. https://doi.org/10.1038/s41467-018-04117-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sijts A, Sun YC, Janek K, Kral S, Paschen A, Schadendorf D et al (2002) The role of the proteasome activator PA28 in MHC class I antigen processing. Mol Immunol 39(3–4):165–169. https://doi.org/10.1016/s0161-5890(02)00099-8

    Article  CAS  PubMed  Google Scholar 

  26. Cascio P (2021) PA28 gamma: new insights on an ancient proteasome activator. Biomolecules. https://doi.org/10.3390/biom11020228

    Article  PubMed  PubMed Central  Google Scholar 

  27. Realini C, Jensen CC, Zhang ZG, Johnston SC, Knowlton JR, Hill CP et al (1997) Characterization of recombinant REG alpha, REG beta, and REG gamma proteasome activators. J Biol Chem 272(41):25483–25492. https://doi.org/10.1074/jbc.272.41.25483

    Article  CAS  PubMed  Google Scholar 

  28. Zhang ZG, Clawson A, Rechsteiner M (1998) The proteasome activator 11 S regulator or PA28—contribution by both alpha and beta subunits to proteasome activation. J Biol Chem 273(46):30660–30668. https://doi.org/10.1074/jbc.273.46.30660

    Article  CAS  PubMed  Google Scholar 

  29. Wilk S, Chen WE, Magnusson RP (2000) Properties of the beta subunit of the proteasome activator PA28 (11S REG). Arch Biochem Biophys 384(1):174–180. https://doi.org/10.1006/abbi.2000.2112

    Article  CAS  PubMed  Google Scholar 

  30. Jonik-Nowak B, Menneteau T, Fesquet D, Baldin V, Bonne-Andrea C, Mechali F et al (2018) PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28 gamma. Proc Natl Acad Sci USA 115(28):E6477–E6486. https://doi.org/10.1073/pnas.1722299115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang L, Haratake K, Miyahara H, Chiba T (2016) Proteasome activators, PA28 gamma and PA200, play indispensable roles in male fertility. Sci Rep. https://doi.org/10.1038/srep23171

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mao I, Liu J, Li X, Luo H (2008) REGgamma, a proteasome activator and beyond? Cell Mol Life Sci 65(24):3971–3980. https://doi.org/10.1007/s00018-008-8291-z

    Article  CAS  PubMed  Google Scholar 

  33. Li XT, Lonard DM, Jung SY, Malovannaya A, Feng G, Qin J et al (2006) The SRC-3/AIB1 coactivator is degraded 14 in a ubiquitin- and ATP-independent manner by the REG gamma proteasome. Cell 124(2):381–392. https://doi.org/10.1016/j.cell.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  34. Moriishi K, Okabayashi T, Nakai K, Moriya K, Koike K, Murata S et al (2003) Proteasome activator PA28 gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 77(19):10237–10249. https://doi.org/10.1128/jvi.77.19.10237-10249.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ying H, Furuya F, Zhao L, Araki O, West BL, Hanover JA et al (2006) Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone beta receptor inhibits mitotic progression. J Clin Investig 116(11):2972–2984. https://doi.org/10.1172/jci28598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li XT, Amazit L, Long W, Lonard DM, Monaco JJ, O’Malley BW (2007) Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REG gamma-proteasome pathway. Mol Cell 26(6):831–842. https://doi.org/10.1016/j.molcel.2007.05.028

    Article  CAS  PubMed  Google Scholar 

  37. Chen XY, Barton LF, Chi Y, Clurman BE, Roberts JM (2007) Ubiquitin-independent degradation of cell-cycle inhibitors by the REG gamma proteasome. Mol Cell 26(6):843–852. https://doi.org/10.1016/j.molcel.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Z, Zhang RW (2008) Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation. EMBO J 27(6):852–864. https://doi.org/10.1038/emboj.2008.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y et al (1999) Growth retardation in mice lacking the proteasome activator PA28 gamma. J Biol Chem 274(53):38211–38215. https://doi.org/10.1074/jbc.274.53.38211

    Article  CAS  PubMed  Google Scholar 

  40. Masson P, Lundgren J, Young P (2003) Drosophila proteasome regulator REG gamma: transcriptional activation by DNA replication-related factor DREF and evidence for a role in cell cycle progression. J Mol Biol 327(5):1001–1012. https://doi.org/10.1016/s0022-2836(03)00188-8

    Article  CAS  PubMed  Google Scholar 

  41. Barton LF, Runnels HA, Schell TD, Cho YJ, Gibbons R, Tevethia SS et al (2004) Immune defects in 28-kDa proteasome activator gamma-deficient mice. J Immunol 172(6):3948–3954. https://doi.org/10.4049/jimmunol.172.6.3948

    Article  CAS  PubMed  Google Scholar 

  42. Zannini L, Lecis D, Buscemi G, Carlessi L, Gasparini P, Fontanella E et al (2008) REG gamma proteasome activator is involved in the maintenance of chromosomal stability. Cell Cycle 7(4):504–512. https://doi.org/10.4161/cc.7.4.5355

    Article  CAS  PubMed  Google Scholar 

  43. Cioce M, Boulon S, Matera AG, Lamond AI (2006) UV-induced fragmentation of Cajal bodies. J Cell Biol 175(3):401–413. https://doi.org/10.1083/jcb.200604099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baldin V, Militello M, Thomas Y, Doucet C, Fic W, Boireau S et al (2008) A novel role for PA28 gamma-proteasome in nuclear speckle organization and SR protein trafficking. Mol Biol Cell 19(4):1706–1716. https://doi.org/10.1091/mbc.E07-07-0637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zannini L, Buscemi G, Fontanella E, Lisanti S, Delia D (2009) REG gamma/PA28 gamma proteasome activator interacts with PML and Chk2 and affects PML nuclear bodies number. Cell Cycle 8(15):2399–2407. https://doi.org/10.4161/cc.8.15.9084

    Article  CAS  PubMed  Google Scholar 

  46. Levy-Barda A, Lerenthal Y, Davis AJ, Chung YM, Essers J, Shao ZP et al (2011) Involvement of the nuclear proteasome activator PA28 gamma in the cellular response to DNA double-strand breaks. Cell Cycle 10(24):4300–4310. https://doi.org/10.4161/cc.10.24.18642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong SX, Jia CF, Zhang SP, Fan GJ, Li YB, Shan PP et al (2013) The REG gamma proteasome regulates hepatic lipid metabolism through inhibition of autophagy. Cell Metab 18(3):380–391. https://doi.org/10.1016/j.cmet.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  48. Chen DB, Yang XS, Huang LY, Chi P (2013) The expression and clinical significance of PA28 gamma in colorectal cancer. J Investig Med 61(8):1192–1196

    Article  CAS  Google Scholar 

  49. Li L, Dang YY, Zhang JS, Yan WJ, Zhai WL, Chen H et al (2015) REG gamma is critical for skin carcinogenesis by modulating the Wnt/beta-catenin pathway. Nat Commun. https://doi.org/10.1038/ncomms7875

    Article  PubMed  PubMed Central  Google Scholar 

  50. He J, Cui L, Zeng Y, Wang GQ, Zhou P, Yang YY et al (2012) REG gamma is associated with multiple oncogenic pathways in human cancers. Bmc Cancer. https://doi.org/10.1186/1471-2407-12-75

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yao LF, Zhou L, Xuan Y, Zhang P, Wang XS, Wang TZ et al (2019) The proteasome activator REG gamma counteracts immunoproteasome expression and autoimmunity. J Autoimmun. https://doi.org/10.1016/j.jaut.2019.05.010

    Article  PubMed  Google Scholar 

  52. Boulpicante M, Darrigrand R, Pierson A, Salgues V, Rouillon M, Gaudineau B et al (2020) Tumors escape immunosurveillance by overexpressing the proteasome activator PSME3. Oncoimmunology. https://doi.org/10.1080/2162402x.2020.1761205

    Article  PubMed  PubMed Central  Google Scholar 

  53. Le Feuvre A, Dantas-Barbosa C, Baldin V, Coux O (2009) High yield bacterial expression and purification of active recombinant PA28 alpha beta complex. Protein Expr Purif 64(2):219–224. https://doi.org/10.1016/j.pep.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  54. Cerruti F, Martano M, Petterino C, Bollo E, Morello E, Bruno R et al (2007) Enhanced expression of interferon-gamma-induced antigen-processing machinery components in a spontaneously occurring cancer. Neoplasia 9(11):960–969. https://doi.org/10.1593/neo.07649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raule M, Cerruti F, Cascio P (2014) Enhanced rate of degradation of basic proteins by 26S immunoproteasomes. BBA-Mol Cell Res 1843(9):1942–1947. https://doi.org/10.1016/j.bbamcr.2014.05.005

    Article  CAS  Google Scholar 

  56. Akopian TN, Kisselev AF, Goldberg AL (1997) Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J Biol Chem 272(3):1791–1798. https://doi.org/10.1074/jbc.272.3.1791

    Article  CAS  PubMed  Google Scholar 

  57. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  58. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu D et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450. https://doi.org/10.1093/nar/gky1106

    Article  CAS  PubMed  Google Scholar 

  59. Dolenc I, Seemuller E, Baumeister W (1998) Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett 434(3):357–361. https://doi.org/10.1016/s0014-5793(98)01010-2

    Article  CAS  PubMed  Google Scholar 

  60. Saric T, Graef CI, Goldberg AL (2004) Pathway for degradation of peptides generated by proteasomes—a key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 279(45):46723–46732. https://doi.org/10.1074/jbc.M406537200

    Article  CAS  PubMed  Google Scholar 

  61. Kisselev AF, Akopian TN, Goldberg AL (1998) Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J Biol Chem 273(4):1982–1989. https://doi.org/10.1074/jbc.273.4.1982

    Article  CAS  PubMed  Google Scholar 

  62. Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7(6):1143–1152. https://doi.org/10.1016/s1097-2765(01)00274-x

    Article  CAS  PubMed  Google Scholar 

  63. Emmerich NPN, Nussbaum AK, Stevanovic S, Priemer M, Toes REM, Rammensee HG et al (2000) The human 26 S and 20 S proteasomes generate overlapping but different sets of peptide fragments from a model protein substrate. J Biol Chem 275(28):21140–21148. https://doi.org/10.1074/jbc.M000740200

    Article  CAS  PubMed  Google Scholar 

  64. Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes - Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274(6):3363–3371. https://doi.org/10.1074/jbc.274.6.3363

    Article  CAS  PubMed  Google Scholar 

  65. Zhou PB (2006) REG gamma: a shortcut to destruction. Cell 124(2):256–257. https://doi.org/10.1016/j.cell.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  66. Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL (2001) 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J 20(10):2357–2366. https://doi.org/10.1093/emboj/20.10.2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smith G, Seymour L, Boggs J, Harauz G (2012) The 21.5-kDa isoform of myelin basic protein has a non-traditional PY-nuclear-localization signal. Biochem Biophys Res Commun 422(4):670–5. https://doi.org/10.1016/j.bbrc.2012.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harauz G, Ladizhansky V, Boggs JM (2009) Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry 48(34):8094–8104. https://doi.org/10.1021/bi901005f

    Article  CAS  PubMed  Google Scholar 

  69. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R et al (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062–1067. https://doi.org/10.1038/80992

    Article  CAS  PubMed  Google Scholar 

  70. Kudriaeva A, Kuzina ES, Zubenko O, Smirnov IV, Belogurov A (2019) Charge-mediated proteasome targeting. FASEB J 33(6):6852–6866. https://doi.org/10.1096/fj.201802237R

    Article  CAS  PubMed  Google Scholar 

  71. Sanchez-Puig N, Veprintsev DB, Fersht AR (2005) Human full-length Securin is a natively unfolded protein. Protein Sci 14(6):1410–1418. https://doi.org/10.1110/ps.051368005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duvignaud JB, Savard C, Fromentin R, Majeau N, Leclerc D, Gagne SM (2009) Structure and dynamics of the N-terminal half of hepatitis C virus core protein: an intrinsically unstructured protein. Biochem Biophys Res Commun 378(1):27–31. https://doi.org/10.1016/j.bbrc.2008.10.141

    Article  CAS  PubMed  Google Scholar 

  73. Peng ZL, Mizianty MJ, Kurgan L (2014) Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins Struct Funct Bioinform 82(1):145–158. https://doi.org/10.1002/prot.24348

    Article  CAS  Google Scholar 

  74. Tsvetkov P, Reuven N, Shaul Y (2009) The nanny model for IDPs. Nat Chem Biol 5(11):778–781. https://doi.org/10.1038/nchembio.233

    Article  CAS  PubMed  Google Scholar 

  75. Fort P, Kajava AV, Delsuc F, Coux O (2015) Evolution of proteasome regulators in eukaryotes. Genome Biol Evol 7(5):1363–1379. https://doi.org/10.1093/gbe/evv068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Masson P, Lundin D, Soderbom F, Young P (2009) Characterization of a REG/PA28 proteasome activator homolog in Dictyostelium discoideum indicates that the ubiquitin- and atp-independent reg gamma proteasome is an ancient nuclear protease. Eukaryot Cell 8(6):844–851. https://doi.org/10.1128/ec.00165-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cascio P, Call M, Petre BM, Walz T, Goldberg AL (2002) Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J 21(11):2636–2645. https://doi.org/10.1093/emboj/21.11.2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Groettrup M, Ruppert T, Kuehn L, Seeger M, Standera S, Koszinowski U et al (1995) The interferon-gamma-inducible 11 S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. J Biol Chem 270(40):23808–23815. https://doi.org/10.1074/jbc.270.40.23808

    Article  CAS  PubMed  Google Scholar 

  79. Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N (2002) ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419(6906):480–483. https://doi.org/10.1038/nature01074

    Article  CAS  PubMed  Google Scholar 

  80. Saric T, Chang SC, Hattori A, York IA, Markant S, Rock KL et al (2002) An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3(12):1169–1176. https://doi.org/10.1038/ni859

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Francesco Turci and Francesco Ferrini for help in preparing figures, Patrick Moore for assistance in preparation of the manuscript and Massimo Coletta for insightful discussions.

Funding

Ricerca Locale (ex 60%) to P.C.

Author information

Authors and Affiliations

Authors

Contributions

J-YAF acquisition, analysis and interpretation of data; FC acquisition, analysis and interpretation of data; JL acquisition, analysis and interpretation of data; AC acquisition, analysis and interpretation of data, AB analysis and interpretation of data AS, analysis and interpretation of data; OC analysis and interpretation of data; PC conception and design, acquisition of data, analysis and interpretation of data, drafting the article.

Corresponding author

Correspondence to Paolo Cascio.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 KB)

Supplementary file2 (XLSX 26 KB)

18_2021_4045_MOESM3_ESM.tif

Supplementary file3 Supplementary Fig. 1 Purified PA28γ and PA28αβ elute from Sephacryl S-200 gel filtration column as a complex of apparent molecular weight of about 200 kDa. ̴150 µg of the final preparation of PA28γ A and PA28αβ B were analyzed by size exclusion chromatography on a calibrated Sephacryl S-200 column. The final preparation of PA28αβ consists of a heteroheptameric complex containing both the α and β subunits C and is able to strongly enhance the chymotryptic activity of 20S proteasome at picomolar concentrations D (TIF 144 KB)

18_2021_4045_MOESM4_ESM.tif

Supplementary file4 Supplementary Fig. 2 Effects of increasing concentrations of PA28γ on the hydrolysis of different fluorogenic substrates by 20S peptidase activities. Proteasome chymotrypsin-like A, tryptic-like B, and caspase-like C activities were probed with the indicated fluorogenic peptides in the presence of increasing concentrations of PA28γ and expressed as fold activation compared to the activity of 20S alone. R2 ≥ 0.9 in all cases (TIF 135 KB)

18_2021_4045_MOESM5_ESM.tif

Supplementary file5 Supplementary Fig. 3 PA28γ is unable to stimulate proteasomal degradation of two tryptic substrates. A Hydrolysis rates of 100 µM Z-LR-amc and Z-FR-amc were assessed in the presence of increasing concentration of PA28γ and displayed as in Figure 1. B Specific activities of 20S proteasomes were assessed at 100 and 250 µM concentrations of each substrate. * P <0.05 (TIF 85 KB)

18_2021_4045_MOESM6_ESM.tif

Supplementary file6 Supplementary Fig. 4 Absolute dependence on proteasome proteolytic activity of β-casein hydrolysis. NH2 generation was completely absent when the substrate was incubated alone A or with only PA28γ B (TIF 96 KB)

18_2021_4045_MOESM7_ESM.tif

Supplementary file7 Supplementary Fig. 5 Calibration curve for the polyhydroxyethyl aspartamide size exclusion column using fluorescamine-derivatized amino acid and peptide molecular weight standards. The typical peak width of these amino acids and peptides was 0.7 min (TIF 86 KB)

18_2021_4045_MOESM8_ESM.tif

Supplementary file8 Supplementary Fig. 6 Absolute dependence on proteasome proteolytic activity of MBP, IGF-1, and α-lactalbumin hydrolysis. NH2 generation was completely absent when the substrates were incubated alone (left panels) or with only PA28γ (right panels) (TIF 147 KB)

18_2021_4045_MOESM9_ESM.tif

Supplementary file9 Supplementary Fig. 7 Absolute dependence on the proteasome proteolytic activity of MBP, IGF-1, and α-lactalbumin hydrolysis. MBP A, IGF-1 B, and α-lactalbumin C were incubated alone or in the presence of PA28γ-20S proteasomes inhibited by 20 μM epoxomicin and analyzed as in Figure 4 (TIF 203 KB)

18_2021_4045_MOESM10_ESM.tif

Supplementary file10 Supplementary Fig. 8 Relative frequencies of amino acids surrounding the peptide bonds preferentially hydrolyzed by the 20S and PA28γ-20S proteasomes. Logos sequences were generated using WebLogo 3 (available at http://weblogo.threeplusone.com/), and refer to the cleavage sequences (Positions from P4 to P4 ') of the peptides generated in greater amounts by PA28γ-20S (left) and 20S proteasome (right) during the hydrolysis of IGF-1 and MBP. The colors of amino acids are based on their chemical properties: Polar (G, S, T, Y, C) green, Neutral (Q,N) purple, Basic (K,R,H) blue, Acidic (D,E) red, Hydrophobic (A,V,L,I,P,W,F,M) black (TIF 247 KB)

18_2021_4045_MOESM11_ESM.tif

Supplementary file11 Supplementary Fig. 9 Knockout of PA28γ results in accumulation of MBP in cells. The expression of nucleus-targeted MBP was assessed with a specific antibody by western blotting in A375 and A375 Crispr melanoma cells, and β-actin was used as a loading control. At 24 hours post-transfection, accumulation of MBP can be noted which becomes increasingly evident after 48 hours (TIF 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frayssinhes, JY.A., Cerruti, F., Laulin, J. et al. PA28γ–20S proteasome is a proteolytic complex committed to degrade unfolded proteins. Cell. Mol. Life Sci. 79, 45 (2022). https://doi.org/10.1007/s00018-021-04045-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04045-9

Keywords

Navigation