Skip to main content

Advertisement

Log in

GRP78 facilitates M2 macrophage polarization and tumour progression

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

This study investigated the regulation of GRP78 in tumour-associated macrophage polarization in lung cancer. First, our results showed that GRP78 was upregulated in macrophages during M2 polarization and in a conditioned medium derived from lung cancer cells. Next, we found that knocking down GRP78 in macrophages promoted M1 differentiation and suppressed M2 polarization via the Janus kinase/signal transducer and activator of transcription signalling. Moreover, conditioned medium from GRP78- or insulin-like growth factor 1-knockdown macrophages attenuated the survival, proliferation, and migration of lung cancer cells, while conditioned medium from GRP78-overexpressing macrophages had the opposite effects. Additionally, GRP78 knockdown reduced both the secretion of insulin-like growth factor 1 and the phosphorylation of the insulin-like growth factor 1 receptor. Interestingly, insulin-like growth factor 1 neutralization downregulated GRP78 and suppressed GRP78 overexpression-induced M2 polarization. Mechanistically, insulin-like growth factor 1 treatment induced the translocation of GRP78 to the plasma membrane and promoted its association with the insulin-like growth factor 1 receptor. Finally, IGF-1 blockade and knockdown as well as GRP78 knockdown in macrophages inhibited M2 macrophage-induced survival, proliferation, and migration of lung cancer cells both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T et al (2015) Non-small-cell lung cancer. Nat Rev Dis Primers 1:15009

    PubMed  Google Scholar 

  2. Graves EE, Maity A, Le QT (2010) The tumor microenvironment in non-small-cell lung cancer. Semin Radiat Oncol 20(3):156–163

    PubMed  PubMed Central  Google Scholar 

  3. Wood SL, Pernemalm M, Crosbie PA, Whetton AD (2014) The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev 40(4):558–566

    CAS  PubMed  Google Scholar 

  4. Shimizu K, Okita R, Nakata M (2013) Clinical significance of the tumor microenvironment in non-small cell lung cancer. Ann Transl Med 1(2):20. https://doi.org/10.3978/j.issn.2305-5839.2013.06.01

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fuster MM (2017) Targeting the lung cancer microenvironment: harnessing host responses. In: Takiguchi Y (ed) Molecular targeted therapy of lung cancer. Springer Singapore, Singapore, pp 309–327

    Google Scholar 

  6. Mittal V, El Rayes T, Narula N, McGraw TE, Altorki NK, Barcellos-Hoff MH (2016) The microenvironment of lung cancer and therapeutic implications. Adv Exp Med Biol 890:75–110

    PubMed  Google Scholar 

  7. Owusu BY, Thomas S, Venukadasula P, Han Z, Janetka JW, Galemmo RA Jr et al (2017) Targeting the tumor-promoting microenvironment in MET-amplified NSCLC cells with a novel inhibitor of pro-HGF activation. Oncotarget 8(38):63014–63025

    PubMed  PubMed Central  Google Scholar 

  8. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu SQ, Xu R, Li XF, Zhao XK, Qian BZ (2018) Prognostic roles of tumor associated macrophages in bladder cancer: a system review and meta-analysis. Oncotarget 9(38):25294–25303

    PubMed  PubMed Central  Google Scholar 

  10. Yang L, Zhang Y (2017) Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 10(1):58

    PubMed  PubMed Central  Google Scholar 

  11. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M (2016) Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 99(Pt B):180–185

    CAS  PubMed  Google Scholar 

  13. Cassetta L, Kitamura T (2018) Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front Cell Dev Biol 6:38

    PubMed  PubMed Central  Google Scholar 

  14. Zuiderweg ER, Hightower LE, Gestwicki JE (2017) The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones 22(2):173–189

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV (2002) The role of Grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP 78-mediated signal transduction. J Biol Chem 277(44):42082–42087

    CAS  PubMed  Google Scholar 

  16. Li R, Yanjiao G, Wubin H, Yue W, Jianhua H, Huachuan Z et al (2017) Secreted GRP78 activates EGFR-SRC-STAT3 signaling and confers the resistance to sorafeinib in HCC cells. Oncotarget 8(12):19354–19364

    PubMed  PubMed Central  Google Scholar 

  17. Yao X, Liu H, Zhang X, Zhang L, Li X, Wang C et al (2015) Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PLos One 10(5):e0125634

    PubMed  PubMed Central  Google Scholar 

  18. Yuan XP, Dong M, Li X, Zhou JP (2015) GRP78 promotes the invasion of pancreatic cancer cells by FAK and JNK. Mol Cell Biochem 398(1–2):55–62

    CAS  PubMed  Google Scholar 

  19. Feng X, Lv W, Wang S, He Q (2018) miR495 enhances the efficacy of radiotherapy by targeting GRP78 to regulate EMT in nasopharyngeal carcinoma cells. Oncol Rep 40(3):1223–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu YF, Liu X, Gao M, Zhang YN, Liu J (2017) Endoplasmic reticulum stress induces autophagy and apoptosis while inhibiting proliferation and drug resistance in multiple myeloma through the PI3K/Akt/mTOR signaling pathway. Oncotarget 8(37):61093–61106

    PubMed  PubMed Central  Google Scholar 

  21. Li C, Zhang B, Lv W, Lai C, Chen Z, Wang R et al (2016) Triptolide inhibits cell growth and GRP78 protein expression but induces cell apoptosis in original and radioresistant NPC cells. Oncotarget 7(31):49588–49596

    PubMed  PubMed Central  Google Scholar 

  22. He B, Luo B, Chen Q, Zhang L (2013) Cigarette smoke extract induces the expression of GRP78 in A549 cells via the p38/MAPK pathway. Mol Med Rep 8(6):1683–1688

    CAS  PubMed  Google Scholar 

  23. Yu T, Guo Z, Fan H, Song J, Liu Y, Gao Z et al (2016) Cancer-associated fibroblasts promote non-small cell lung cancer cell invasion by upregulation of glucose-regulated protein 78 (GRP78) expression in an integrated bionic microfluidic device. Oncotarget 7(18):25593–25603

    PubMed  PubMed Central  Google Scholar 

  24. Ma X, Guo W, Yang S, Zhu X, Xiang J, Li H (2015) Serum GRP78 as a tumor marker and its prognostic significance in non-small cell lung cancers: a retrospective study. Dis Markers 2015:814670

    PubMed  PubMed Central  Google Scholar 

  25. Soto-Pantoja DR, Wilson AS, Clear KY, Westwood B, Triozzi PL, Cook KL (2017) Unfolded protein response signaling impacts macrophage polarity to modulate breast cancer cell clearance and melanoma immune checkpoint therapy responsiveness. Oncotarget 8(46):80545–80559

    PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Li Z, Ding G, La X, Yang P, Li Z (2017) GRP78 plays an integral role in tumor cell inflammation-related migration induced by M2 macrophages. Cell Signal 37:136–148

    CAS  PubMed  Google Scholar 

  27. de-Freitas-Junior JCM, Carvalho S, Dias AM, Oliveira P, Cabral J, Seruca R et al (2013) Insulin/IGF-I signaling pathways enhances tumor cell invasion through bisecting GlcNAc N-glycans modulation an interplay with E-cadherin. PLoS ONE 8(11):e81579

    PubMed  PubMed Central  Google Scholar 

  28. Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK et al (2015) Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis 2(1):13–25

    PubMed  Google Scholar 

  29. Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV et al (2017) IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep 19(2):225–234

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Batista-Silva LR, Rodrigues LS, Vivarini Ade C, Costa Fda M, Mattos KA, Costa MR et al (2016) Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages. Sci Rep 6:27632

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin Y, Chen C, Chen J, Zhan R, Zhang Q, Xu X et al (2017) Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR. Cell Signal 35:154–162

    CAS  PubMed  Google Scholar 

  32. Pfaffenbach KT, Pong M, Morgan TE, Wang H, Ott K, Zhou B et al (2012) GRP78/BiP is a novel downstream target of IGF-1 receptor mediated signaling. J Cell Physiol 227(12):3803–3811

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lev A, Lulla AR, Wagner J, Ralff MD, Kiehl JB, Zhou Y et al (2017) Anti-pancreatic cancer activity of ONC212 involves the unfolded protein response (UPR) and is reduced by IGF1-R and GRP78/BIP. Oncotarget 8(47):81776–81793

    PubMed  PubMed Central  Google Scholar 

  34. Liang YB, Tang H, Chen ZB, Zeng LJ, Wu JG, Yang W et al (2017) Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Mol Med Rep 16(5):6405–6411

    CAS  PubMed  Google Scholar 

  35. Malyshev I, Malyshev Y (2015) Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage “switch” phenotype. Biomed Res Int 2015:341308

    PubMed  PubMed Central  Google Scholar 

  36. Thon M, Hosoi T, Ozawa K (2016) Insulin enhanced leptin-induced STAT3 signaling by inducing GRP78. Sci Rep 6:34312

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yun S, Yun CW, Lee JH, Kim S, Lee SH (2018) Cripto enhances proliferation and survival of mesenchymal stem cells by up-regulating JAK2/STAT3 pathway in a GRP78-dependent manner. Biomol Ther 26(5):464–473

    CAS  Google Scholar 

  38. Barrett JP, Minogue AM, Falvey A, Lynch MA (2015) Involvement of IGF-1 and Akt in M1/M2 activation state in bone marrow-derived macrophages. Exp Cell Res 335(2):258–268

    CAS  PubMed  Google Scholar 

  39. Zhang B, Zhang Y, Yao G, Gao J, Yang B, Zhao Y et al (2012) M2-polarized macrophages promote metastatic behavior of Lewis lung carcinoma cells by inducing vascular endothelial growth factor-C expression. Clinics 67(8):901–906

    PubMed  PubMed Central  Google Scholar 

  40. Fu X, Shi H, Qi Y, Zhang W, Dong P (2015) M2 polarized macrophages induced by CSE promote proliferation, migration, and invasion of alveolar basal epithelial cells. Int J Immunopharmacol 28(1):666–674

    CAS  Google Scholar 

  41. Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S et al (2010) The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer 10:220

    PubMed  PubMed Central  Google Scholar 

  42. Kim DW, Min HS, Lee KH, Kim YJ, Oh DY, Jeon YK et al (2008) High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. Br J Cancer 98(6):1118–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma J, Liu L, Che G, Yu N, Dai F, You Z (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112

    PubMed  PubMed Central  Google Scholar 

  44. Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P (2009) Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J 33(1):118–126

    CAS  PubMed  Google Scholar 

  45. Chung FT, Lee KY, Wang CW, Heh CC, Chan YF, Chen HW et al (2012) Tumor-associated macrophages correlate with response to epidermal growth factor receptor-tyrosine kinase inhibitors in advanced non-small cell lung cancer. Int J Cancer 131(3):E227–E235

    CAS  PubMed  Google Scholar 

  46. Ohtaki Y, Ishii G, Nagai K, Ashimine S, Kuwata T, Hishida T et al (2010) Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thoracic Oncol 5(10):1507–1515

    Google Scholar 

  47. Wang R, Zhang J, Chen S, Lu M, Luo X, Yao S et al (2011) Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung cancer (Amsterdam, Netherlands) 74(2):188–196

    Google Scholar 

  48. Li Z, Zhang L, Zhao Y, Li H, Xiao H, Fu R et al (2013) Cell-surface GRP78 facilitates colorectal cancer cell migration and invasion. Int J Biochem Cell Biol 45(5):987–994

    CAS  PubMed  Google Scholar 

  49. Ayaub EA, Tandon K, Padwal M, Imani J, Patel H, Dubey A et al (2019) IL-6 mediates ER expansion during hyperpolarization of alternatively activated macrophages. Immunol Cell Biol 97(2):203–217

    CAS  PubMed  Google Scholar 

  50. Qin K, Ma S, Li H, Wu M, Sun Y, Fu M et al (2017) GRP78 impairs production of lipopolysaccharide-induced cytokines by interaction with CD14. Front Immunol 8:579

    PubMed  PubMed Central  Google Scholar 

  51. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761

    CAS  PubMed  Google Scholar 

  52. Wang N, Liang H, Zen K (2014) Molecular mechanisms that influence the macrophage m1–m2 polarization balance. Front Immunol 5:614

    PubMed  PubMed Central  Google Scholar 

  53. Liu R, Li X, Gao W, Zhou Y, Wey S, Mitra SK et al (2013) Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin Cancer Res 19(24):6802–6811

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML et al (2003) Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9(2):729–737

    CAS  PubMed  Google Scholar 

  55. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9

    PubMed  Google Scholar 

  56. Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B et al (2018) Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle 17(4):428–438

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26(1):78

    PubMed  PubMed Central  Google Scholar 

  58. Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki A et al (2016) Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene 35(20):2634–2644

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81802290) and National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases (Lung Cancer, grant number: z027002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study was designed in accordance with the Declaration of Helsinki and approved by the ethics committee of Central South University in China.

Consent to participate

Written consent was obtained from all donors.

Consent for publication

The informed consent obtained from study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, SQ., Hang, L. et al. GRP78 facilitates M2 macrophage polarization and tumour progression. Cell. Mol. Life Sci. 78, 7709–7732 (2021). https://doi.org/10.1007/s00018-021-03997-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03997-2

Keywords

Navigation