Skip to main content

Advertisement

Log in

Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In human metabolism, pyruvate dehydrogenase complex (PDC) is one of the most intricate and large multimeric protein systems representing a central hub for cellular homeostasis. The worldwide used antiepileptic drug valproic acid (VPA) may potentially induce teratogenicity or a mild to severe hepatic toxicity, where the underlying mechanisms are not completely understood. This work aims to clarify the mechanisms that intersect VPA-related iatrogenic effects to PDC-associated dihydrolipoamide dehydrogenase (DLD; E3) activity. DLD is also a key enzyme of α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, α-ketoadipate dehydrogenase, and the glycine decarboxylase complexes. The molecular effects of VPA will be reviewed underlining the data that sustain a potential interaction with DLD. The drug-associated effects on lipoic acid-related complexes activity may induce alterations on the flux of metabolites through tricarboxylic acid cycle, branched-chain amino acid oxidation, glycine metabolism and other cellular acetyl-CoA-connected reactions. The biotransformation of VPA involves its complete β-oxidation in mitochondria causing an imbalance on energy homeostasis. The drug consequences as histone deacetylase inhibitor and thus gene expression modulator have also been recognized. The mitochondrial localization of PDC is unequivocal, but its presence and function in the nucleus were also demonstrated, generating acetyl-CoA, crucial for histone acetylation. Bridging metabolism and epigenetics, this review gathers the evidence of VPA-induced interference with DLD or PDC functions, mainly in animal and cellular models, and highlights the uncharted in human. The consequences of this interaction may have significant impact either in mitochondrial or in nuclear acetyl-CoA-dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

Acetyl-CoA:

Acetyl-Coenzyme A

ACLY:

ATP citrate lyase

ACSS:

Acetyl-CoA synthetase

ALT:

Alanine aminotransferase

ATP:

Adenosine triphosphate

BCAA:

Branched-chain amino acid

BCKA:

Branched-chain α-ketoacid

BCKADC:

Branched-chain α-ketoacid dehydrogenase complex

DCA:

Dichloroacetate

E1:

Pyruvate dehydrogenase (component E1)

E2:

Dihydrolipoamide transacetylase (component E2)

E3/DLD:

Dihydrolipoamide dehydrogenase (component E3)

E3BP:

E3-binding protein

E3BD:

E3-binding protein domains

FAO:

Fatty acid β-oxidation

GCS:

Glycine cleavage system

GDC:

Glycine decarboxylase complex

HAT:

Histone acetyltransferase

HCC:

Hepatocellular carcinoma

HDACi:

Histone deacetylase inhibitor

hE3:

Human E3

KAT:

Protein lysine acetyltransferase

KDAC:

Protein lysine deacetylase

KDACi:

Protein lysine deacetylase inhibitor

α-KADC:

α-Ketoadipate dehydrogenase complex

α-KGDC:

α-Ketoglutarate dehydrogenase complex

LA:

Lipoic acid

LDH:

Lactate dehydrogenase

MICA:

5-Methoxyindole-2-carboxylic acid

MPC:

Mitochondrial pyruvate carrier

NAD(H):

Nicotinamide adenine dinucleotide (reduced form)

NAG:

N-Acetylglutamate

OAA:

Oxaloacetate

OXPHOS:

Oxidative phosphorylation

PC:

Pyruvate carboxylase

PDC:

Pyruvate dehydrogenase complex

PDK:

Pyruvate dehydrogenase kinase

PDP:

Pyruvate dehydrogenase phosphatase

PTM:

Post-translational modification

TCA:

Tricarboxylic acid

TPP:

Thiamine pyrophosphate

UC:

Urea cycle

Valproyl-CoA:

Valproyl-Coenzyme A

VDAC:

Voltage-dependent anion channel

VPA:

Valproic acid

References

  1. Melser S, Lavie J, Bénard G (2015) Mitochondrial degradation and energy metabolism. Biochim Biophys Acta 1853:2812–2821

    CAS  PubMed  Google Scholar 

  2. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E (2017) The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 482:426–431

    CAS  PubMed  Google Scholar 

  3. Patel MS, Nemeria NS, Furey W, Jordan F (2014) The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289:16615–16623

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Behal RH, Buxton DB, Robertson JG, Olson MS (1993) Regulation of the pyruvate dehydrogenase multienzyme complex. Annu Rev Nutr 13:497–520

    CAS  PubMed  Google Scholar 

  5. Harris RA, Bowker-Kinley MM, Huang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Advan Enzyme Regul 42:249–259

    CAS  Google Scholar 

  6. Sperl W, Fleuren L, Freisinger P, Haack TB, Ribes A, Feichtinger RG et al (2015) The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders. J Inherit Metab Dis 38:391–403

    CAS  PubMed  Google Scholar 

  7. De Boer VCJ, Houten SM (2014) A mitochondrial expatriate: nuclear pyruvate dehydrogenase. Cell 158:9–10

    PubMed  Google Scholar 

  8. Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A et al (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of Acetyl-CoA and histone acetylation. Cell 158:84–97

    CAS  PubMed  Google Scholar 

  9. Dejligbjerg M, Grauslund M, Litman T, Collins L, Qian X, Jeffers M et al (2008) Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells. Mol Cancer 7:70

    PubMed  PubMed Central  Google Scholar 

  10. Silva MFB, Aires CCP, Luís PBM, Ruiter JPN, IJlst L, Duran M et al (2008) Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: A review. J Inherit Metab Dis 31:205–216

    CAS  PubMed  Google Scholar 

  11. Silva MFB, Ruiter JP, Illst L, Jakobs C, Duran M, de Almeida IT, Wanders RJ (1997) Valproate inhibits the mitochondrial pyruvate-driven oxidative phosphorylation in vitro. J Inherit Metab Dis 20:397–400

    CAS  PubMed  Google Scholar 

  12. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B et al (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 336:93–96

    Google Scholar 

  13. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N et al (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bender T, Martinou JC (2016) The mitochondrial pyruvate carrier in health and disease: to carry or not to carry? Biochim Biophys Acta 1863:2436–2442

    CAS  PubMed  Google Scholar 

  15. Rauckhorst AJ, Taylor EB (2016) Mitochondrial pyruvate carrier function and cancer metabolism. Curr Opin Genet Dev 38:102–109

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bensard CL, Wisidagama DR, Olson KA, Berg JA, Krah NM, Schell JC, Nowinski SM, Fogarty S, Bott AJ, Wei P et al (2020) Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab 31:284–300

    CAS  PubMed  Google Scholar 

  17. Zhang Y, Taufalele PV, Cochran JD, Robillard-Frayne I, Marx JM, Soto J, Rauckhorst AJ, Tayyari F, Pewa AD, Gray LR, Teesch LM, Puchalska P, Funari TR, McGlauflin R, Zimmerman K, Kutschke WJ, Cassier T, Hitchcock S, Lin K, Kato KM, Stueve JL, Haff L, Weiss RM, Cox JE, Rutter J, Taylor EB, Crawford PA, Lewandowski ED, Des Rosiers C, Abel ED (2020) Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat Metab 2(11):1248–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghosh A, Tyson T, George S, Hildebrandt EN, Steiner JA, Madaj Z, Schulz E, Machiela E, McDonald WG, Escobar Galvis ML, Kordower JH, Van Raamsdonk JM, Colca JR, Brundin P (2016) Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci Transl Med 8(368):36ra8174

    Google Scholar 

  19. Rossi A, Rigotto G, Valente G, Giorgio V, Basso E, Filadi R, Pizzo P (2020) Defective mitochondrial pyruvate flux affects cell bioenergetics in Alzheimer’s disease-related models. Cell Rep 30:2332–2348

    CAS  PubMed  Google Scholar 

  20. Jeoung NH, Harris CR, Harris RA (2014) Regulation of pyruvate metabolism in metabolic-related diseases. Rev Endocr Metab Disord 15:99–110

    CAS  PubMed  Google Scholar 

  21. Zangari J, Petrelli F, Maillot B, Martinou JC (2020) The multifaceted pyruvate metabolism: role of the mitochondrial pyruvate carrier. Biomolecules 10:1068

    CAS  PubMed Central  Google Scholar 

  22. McCommis KS, Chen Z, Fu X, McDonald WG, Colca JR, Kletzien RF, Burgess SC, Finck BN (2015) Loss of mitochondrial pyruvate carrier 2 in liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab 22:682–694

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hezaveh S, Zeng AP, Jandt U (2018) Full enzyme complex simulation: interactions in human pyruvate dehydrogenase complex. J Chem Inf Model 58:362–369

    CAS  PubMed  Google Scholar 

  24. Harris RA, Bowker-Kinley MM, Wu P, Jeng J, Popov KM (1997) Dihydrolipoamide dehydrogenase-binding protein of the human pyruvate dehydrogenase complex. DNA-derived amino acid sequence, expression, and reconstitution of the pyruvate dehydrogenase complex. J Biol Chem 272(32):19746–19751

    CAS  PubMed  Google Scholar 

  25. Kato M, Wynn RM, Chuang JL, Tso SC, Machius M, Li J, Chuang DT (2008) Structural basis for inactivation of the human pyruvate dehydrogenase complex by phosphorylation: role of disordered phosphorylation loops. Structure 16(12):1849–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhandary S, Aguan K (2015) Pyruvate dehydrogenase complex deficiency and its relationship with epilepsy frequency—An overview. Epilepsy Res 116:40–52

    CAS  PubMed  Google Scholar 

  27. Yang X, Song J, Yan L-J (2019) Chronic inhibition of mitochondrial dihydrolipoamide dehydrogenase (DLD) as an approach to managing diabetic oxidative stress. Antioxidants 8:32

    PubMed Central  Google Scholar 

  28. Yan L-J, Thangthaeng N, Sumien N, Forster MJ (2013) Serum dihydrolipoamide dehydrogenase is a labile enzyme. J Biochem Pharmacol Res 1:30–42

    PubMed  PubMed Central  Google Scholar 

  29. Li R, Luo X, Wu J, Thangthaeng N, Jung ME, Jing S et al (2015) Mitochondrial dihydrolipoamide dehydrogenase is upregulated in response to intermittent hypoxic preconditioning. Int J Med Sci 12:432–440

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun J, Li J, Guo Z, Sun L, Juan C, Zhou Y et al (2019) Overexpression of pyruvate dehydrogenase e1a subunit inhibits warburg effect and induces cell apoptosis through mitochondria-mediated pathway in hepatocellular carcinoma. Oncol Res 27:407–414

    PubMed  PubMed Central  Google Scholar 

  31. Yonashiro R, Eguchi K, Wake M, Takeda N, Nakayama K (2018) Pyruvate dehydrogenase PDH-E1b controls tumor progression by altering the metabolic status of cancer cells. Cancer Res 78:1592–1603

    CAS  PubMed  Google Scholar 

  32. Holness MJ, Sugden MC (2003) Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans 31(6):1143–1151

    CAS  PubMed  Google Scholar 

  33. Linn TC, Pettit FH, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62:234–241

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeoung NH (2015) Pyruvate dehydrogenase kinases: therapeutic targets for diabetes and cancers. Diabetes Metab J 39:188–197

    PubMed  PubMed Central  Google Scholar 

  35. Eguchi K, Nakayama K (2019) Prolonged hypoxia decreases nuclear pyruvate dehydrogenase complex and regulates the gene expression. Biochem Biophys Res Commun 520:128–135

    CAS  PubMed  Google Scholar 

  36. Wigfield SM, Winter SC, Giatromanolaki A, Taylor J, Koukourakis ML, Harris AL (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 98:1975–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Eyassu F, Angione C (2017) Modelling pyruvate dehydrogenase under hypoxia and its role in cancer metabolism. R Soc Open Sci 4:170360

    PubMed  PubMed Central  Google Scholar 

  38. Stacpoole PW (2017) Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. JNCI J Natl Cancer Inst 109:1–14

    Google Scholar 

  39. Nasiri A, Sadeghi M, Vaisi-Raygani A, Kiani S, Aghelan Z, Khodarahmi R (2020) Emerging regulatory roles of mitochondrial sirtuins on pyruvate dehydrogenase complex and the related metabolic diseases: review. Biomed Res Ther 7:3645–3658

    Google Scholar 

  40. Park JM, Reed GD, Liticker J, Putnam WC, Chandra A, Yaros K, Afzal A, MacNamara J, Raza J, Hall RG, Baxter J, Derner K, Pena S, Kallem RR, Subramaniyan I, Edpuganti V, Harrison CE, Muthukumar A, Lewis C, Reddy S, Unni N, Klemow D, Syed S, Li H, Cole S, Froehlich T, Ayers C, de Lemos J, Malloy CR, Haley B, Zaha VG (2020) Effect of doxorubicin on myocardial bicarbonate production from pyruvate dehydrogenase in women with breast cancer. Circ Res 127(12):1568–1570

    CAS  PubMed  Google Scholar 

  41. Zhang SL, Hu X, Zhang W, Yao H, Tam KY (2015) Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discov Today 20(9):1112–1119

    PubMed  Google Scholar 

  42. Pavlu-Pereira H, Silva MJ, Florindo C, Sequeira S, Ferreira AC, Duarte S, Rodrigues AL, Janeiro P, Oliveira A, Gomes D, Bandeira A, Martins E, Gomes R, Soares S, Tavares de Almeida I, Vicente JB, Rivera I (2020) Pyruvate dehydrogenase complex deficiency: updating the clinical, metabolic and mutational landscapes in a cohort of Portuguese patients. Orphanet J Rare Dis 15(1):298

    PubMed  PubMed Central  Google Scholar 

  43. Ambrus A, Adam-Vizi V (2018) Human dihydrolipoamide dehydrogenase (E3) deficiency: novel insights into the structural basis and molecular pathomechanism. Neurochem Int 117:5–14

    CAS  PubMed  Google Scholar 

  44. Babady NE, Pang YP, Elpeleg O, Isaya G (2007) Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci USA 104:6158–6163

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dayan A, Yeheskel A, Lamed R, Fleminger G, Ashur-Fabian O (2020) Dihydrolipoamide dehydrogenase moonlighting activity as a DNA chelating agent. Proteins: 1–8. https://doi.org/10.1002/prot.25991

  46. Ciszak EM, Korotchkina LG, Dominiak PM, Sidhu S, Patel MS (2003) Structural basis for flip-flop action of thiamin pyrophosphate-dependent enzymes revealed by human pyruvate dehydrogenase. J Biol Chem 278(23):21240–21246

    CAS  PubMed  Google Scholar 

  47. Ciszak EM, Makal A, Hong YS, Vettaikkorumakankauv AK, Korotchkina LG, Patel MS (2006) How dihydrolipoamide dehydrogenase-binding protein binds dihydrolipoamide dehydrogenase in the human pyruvate dehydrogenase complex. J Biol Chem 281(1):648–655

    CAS  PubMed  Google Scholar 

  48. Brautigam CA, Chuang JL, Tomchick DR, Machius M, Chuang DT (2005) Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations. J Mol Biol 350:543–552

    CAS  PubMed  Google Scholar 

  49. Brautigam CA, Wynn RM, Chuang JL, Machius M, Tomchick DR, Chuang DT (2006) Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex. Structure 14:611–621

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brautigam CA, Wynn RM, Chuang JL, Chuang DT (2009) Subunit and catalytic component stoichiometries of an in vitro reconstituted human pyruvate dehydrogenase complex. J Biol Chem 284(19):13086–13098

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brautigam CA, Wynn RM, Chuang JL, Naik MT, Young BB, Huang TH, Chuang DT (2011) Structural and thermodynamic basis for weak interactions between dihydrolipoamide dehydrogenase and subunit-binding domain of the branched-chain alpha-ketoacid dehydrogenase complex. J Biol Chem 286:23476–23488

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Szabo E, Mizsei R, Wilk P, Zambo Z, Torocsik B, Weiss MS, Adam-Vizi V, Ambrus A (2018) Crystal structures of the disease-causing D444V mutant and the relevant wild type human dihydrolipoamide dehydrogenase. Free Radic Biol Med 124:214–220

    CAS  PubMed  Google Scholar 

  53. Szabo E, Wilk P, Nagy B, Zambo Z, Bui D, Weichsel A, Arjunan P, Torocsik B, Hubert A, Furey W, Montfort WR, Jordan F, Weiss MS, Adam-Vizi V, Ambrus A (2019) Underlying molecular alterations in human dihydrolipoamide dehydrogenase deficiency revealed by structural analyses of disease-causing enzyme variants. Hum Mol Genet 28(20):3339–3354

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Klyachko NL, Shchedrina VA, Efimov AV, Kazakov SV, Gazaryan IG, Kristal BS, Brown AM (2005) pH-dependent substrate preference of pig heart lipoamide dehydrogenase varies with oligomeric state: response to mitochondrial matrix acidification. J Biol Chem 280(16):16106–16114

    CAS  PubMed  Google Scholar 

  55. Ambrus A (2019) An updated view on the molecular pathomechanisms of human dihydrolipoamide dehydrogenase deficiency in light of novel crystallographic evidence. Neurochem Res 44:2307–2313

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nemeria NS, Gerfen G, Nareddy PR, Yang L, Zhang X, Szostak M et al (2018) The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species. Free Radic Biol Med 115:136–145

    CAS  PubMed  Google Scholar 

  57. Bezerra GA, Foster WR, Bailey HJ, Hicks KG, Sauer SW, Dimitrov B et al (2020) Crystal structure and interaction studies of human DHTKD1 provide insight into a mitochondrial megacomplex in lysine catabolism. IUCrJ 7:693–706

    CAS  PubMed  PubMed Central  Google Scholar 

  58. The UniProt Consortium (2018) UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Res 46(5):2699. https://www.uniprot.org/uniprot/P09622. Assessed Sept 2020

  59. Fukamichi T, Nishimoto E (2015) Conformational change near the redox center of dihydrolipoamide dehydrogenase induced by NAD+ to regulate the enzyme activity. J Fluoresc 25:577–583

    CAS  PubMed  Google Scholar 

  60. Yan L-J, Liu L, Forster MJ (2012) Reversible inactivation of dihydrolipoamide dehydrogenase by Angeli’s salt. Sheng Wu Wu Li Hsueh Bao 28:341–350

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Velankar S, Kleywegt GJ (2011) The protein data bank in europe (PDBe): bringing structure to biology. Acta Crystallogr D 67:234–330. https://www.ebi.ac.uk/pdbe/. Accessed 7 Sept 2020

  62. Quinonez SC, Thoene JG (2014) Dihydrolipoamide dehydrogenase deficiency. 2014 Jul 17 [Updated 2020 Jul 9]. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews® [Internet]. University of Washington, Seattle (WA), pp 1993–2021. https://www.ncbi.nlm.nih.gov/books/. Accessed 15 Sept 2020

    Google Scholar 

  63. Cameron JM, Levandovskiy V, Mackay N, Raiman J, Renaud DL, Clarke JTR, Feigenbaum A, Elpeleg O, Robison BH (2006) Novel mutations in dihydrolipoamide dehydrogenase deficiency in two cousins with borderline-normal PDH complex activity. Am J Med Genet A 140:1542–1552

    PubMed  Google Scholar 

  64. Quinlan CL, Goncalves RL, Hey-Mogensen M, Yadava N, Bunik VI, Brand MD (2014) The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 289(12):8312–8325

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Igamberdiev AU, Bykova NV, Ens W, Hill RD (2004) Dihydrolipoamide dehydrogenase from porcine heart catalyzes NADH-dependent scavenging of nitric oxide. FEBS Lett 568:146–150

    CAS  PubMed  Google Scholar 

  66. Ambrus A, Torocsik B, Tretter L, Ozohanics O, Adam-Vizi V (2011) Stimulation of reactive oxygen species generation by disease-causing mutations of lipoamide dehydrogenase. Hum Mol Genet 20:2984–2995

    CAS  PubMed  Google Scholar 

  67. Ambrus A, Adam-Vizi V (2013) Molecular dynamics study of the structural basis of dysfunction and the modulation of reactive oxygen species generation by pathogenic mutants of human dihydrolipoamide dehydrogenase. Arch Biochem Biophys 538(2):145–155

    CAS  PubMed  Google Scholar 

  68. Ambrus A, Nemeria NS, Torocsika B, Tretter L, Nilsson M, Jordan F, Adam-Vizi V (2015) Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components. Free Radic Biol Med 89:642–650

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ambrus A, Wang J, Mizsei R, Zambo Z, Torocsik B, Jordan F, Adam-Vizi V (2016) Structural alterations induced by ten disease-causing mutations of human dihydrolipoamide dehydrogenase analyzed by hydrogen/deuterium-exchange mass spectrometry: implications for the structural basis of E3 deficiency. Biochim Biophys Acta 1862:2098–2109

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mailloux RJ, Gardiner D, O’Brien M (2016) 2-Oxoglutarate dehydrogenase is a more significant source of O2.-/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue. Free Radic Biol Med 97:501–512

    CAS  PubMed  Google Scholar 

  71. Yan LJ, Thangthaeng N, Forster MJ (2008) Changes in dihydrolipoamide dehydrogenase expression and activity during postnatal development and aging in the rat brain. Mech Ageing Dev 129:282–290

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shin D, Lee J, You JH, Kim D, Roh JL (2020) Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer. Redox Biol 30:101418

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dayan A, Fleminger G, Ashur-Fabian O (2019) Targeting the Achilles’ heel of cancer cells via integrin-mediated delivery of ROS-generating dihydrolipoamide dehydrogenase. Oncogene 38(25):5050–5061

    CAS  PubMed  Google Scholar 

  74. Olson KA, Schell JC, Rutter J (2016) Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem Sci 41(3):219–230

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jaimes R 3rd, Kuzmiak-Glancy S, Brooks DM, Swift LM, Posnack NG, Kay MW (2016) Functional response of the isolated, perfused normoxic heart to pyruvate dehydrogenase activation by dichloroacetate and pyruvate. Pflugers Arch 468:131–142

    CAS  PubMed  Google Scholar 

  76. Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RNF, Kristal BS, Brown AM (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem 277(12):10064–10072

    CAS  PubMed  Google Scholar 

  77. Gazaryan IG, Shchedrina VA, Klyachko NL, Zakhariants AA, Kazakov SV, Brown AM (2020) Zinc switch in pig heart lipoamide dehydrogenase: steady-state and transient kinetic studies of the diaphorase reaction. Biochemistry (Mosc) 85(8):908–919

    CAS  Google Scholar 

  78. Schlipalius DI, Valmas N, Tuck AG, Jagadeesan R, Ma L, Kaur R, Goldinger A, Anderson C, Kuang J, Zuryn S, Mau YS, Cheng Q, Collins PJ, Nayak MK, Schirra HJ, Hilliard MA, Ebert PR (2012) A core metabolic enzyme mediates resistance to phosphine gas. Science 338:807–810

    CAS  PubMed  Google Scholar 

  79. Alzahrani S, Ebert PR (2019) Oxygen and arsenite synergize phosphine toxicity by distinct mechanisms. Toxicol Sci 167(2):419–425

    CAS  PubMed  Google Scholar 

  80. Yan LJ (2018) Reexploring 5-methoxyindole-2-carboxylic acid (MICA) as a potential antidiabetic agent. Diabetes Metab Syndr Obes 11:183–186

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Luís PBM, Ruiter JPN, Aires CCP, Soveral G, Tavares de Almeida I, Duran M et al (2007) Valproic acid metabolites inhibit dihydrolipoyl dehydrogenase activity leading to impaired 2-oxoglutarate-driven oxidative phosphorylation. Biochim Biophys Acta 1767:1126–1133

    PubMed  Google Scholar 

  82. Tomson T, Battino D, Perucca E (2016) Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug. Lancet Neurol 15:210–218

    CAS  PubMed  Google Scholar 

  83. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    CAS  PubMed  Google Scholar 

  84. Jeong MR, Hashimoto R, Senatorov VV, Fujimaki K, Ren M, Lee MS et al (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett 542:74–78

    CAS  PubMed  Google Scholar 

  85. Dufour-Rainfray D, Vourc’h P, Tourlet S, Guilloteau D, Chalon S, Andres CR (2011) Fetal exposure to teratogens: evidence of genes involved in autism. Neurosci Biobehav Rev 35:1254–1265

    CAS  PubMed  Google Scholar 

  86. Evers S, Áfra J, Frese A, Goadsby PJ, Linde M, May A et al (2009) EFNS guideline on the drug treatment of migraine—Revised report of an EFNS task force. Eur J Neurol 16:968–981

    CAS  PubMed  Google Scholar 

  87. Steiner TJ, Jensen R, Katsarava Z, Linde M, MacGregor EA, Osipova V et al (2019) Aids to management of headache disorders in primary care (2nd edition): on behalf of the European Headache Federation and Lifting the Burden: The Global Campaign against Headache. J Headache Pain 20:57

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lloyd KA (2013) A scientific review: mechanisms of valproate-mediated teratogenesis. Biosci Horiz 6:1–10

    Google Scholar 

  89. Chen Y, Zhou J, Xu S, Liu M, Wang M, Ma Y, Zhao M, Wang Z, Guo Y, Zhao L (2019) Association between the perturbation of bile acid homeostasis and valproic acid-induced hepatotoxicity. Biochem Pharmacol 170:113669

    CAS  PubMed  Google Scholar 

  90. Xu S, Chen Y, Ma Y, Liu T, Zhao M, Wang Z et al (2019) Lipidomic profiling reveals disruption of lipid metabolism in valproic acid-induced hepatotoxicity. Front Pharmacol 10:819

    PubMed  PubMed Central  Google Scholar 

  91. Clayton-Smith J, Bromley R, Dean J, Journel H, Odent S, Wood A et al (2019) Diagnosis and management of individuals with fetal valproate spectrum disorder; a consensus statement from the European reference network for congenital malformations and intellectual disability. Orphanet J Rare Dis 14:180

    PubMed  PubMed Central  Google Scholar 

  92. Nanau RM, Neuman MG (2013) Adverse drug reactions induced by valproic acid. Clin Biochem 46:1323–1338

    CAS  PubMed  Google Scholar 

  93. Gopaul S, Farrell K, Abbott F (2003) Effects of age and polytherapy, risk factors of valproic acid (VPA) hepatotoxicity, on the excretion of thiol conjugates of (E)-2,4-diene VPA in people with epilepsy taking VPA. Epilepsia 44:322–328

    CAS  PubMed  Google Scholar 

  94. Begriche K, Massart J, Robin MA, Sanchez AB, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773–794

    CAS  PubMed  Google Scholar 

  95. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-.Valproate. (Updated 2020, July 31). https://www.ncbi.nlm.nih.gov/books/NBK547852/. Accessed 10 Sept 2020

  96. Felker D, Lynn A, Wang S, Johnson DE (2014) Evidence for a potential protective effect of carnitine-pantothenic acid co-treatment on valproic acid-induced hepatotoxicity. Expert Rev Clin Pharmacol 7:211–218

    CAS  PubMed  Google Scholar 

  97. Lheureux PER, Hantson P (2009) Carnitine in the treatment of valproic acid-induced toxicity. Clin Toxicol 47:101–111

    CAS  Google Scholar 

  98. Abdelkader NF, Elyamany M, Gad AM, Assaf N, Fawzy HM, Elesawy WH (2020) Ellagic acid attenuates liver toxicity induced by valproic acid in rats. J Pharmacol Sci 143:23–29

    CAS  PubMed  Google Scholar 

  99. Oztopuz O, Turkon H, Buyuk B, Coskun O, Sehitoglu MH, Ovali MA et al (2020) Melatonin ameliorates sodium valproate-induced hepatotoxicity in rats. Mol Biol Rep 47:317–325

    CAS  PubMed  Google Scholar 

  100. Silva MFB, Ruiter JPN, Overmars H, Bootsma AH, van Gennip AH, Jakobs C, Duran M, de Almeida IT, Wanders RJ (2002) Complete β-oxidation of valproate: cleavage of 3-oxovalproyl-CoA by a mitochondrial 3-oxoacyl-CoA thiolase. Biochem J 362:755–760

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Aires CCP, Ruiter JPN, Luís PBM, ten Brink HJ, IJlst L, de Almeida IT, Duran M, Wanders RJA, Silva MFB (2007) Studies on the extra-mitochondrial CoA-ester formation of valproic and Δ4-valproic acids. Biochim Biophys Acta 1771:533–543

    CAS  PubMed  Google Scholar 

  102. Silva MFB, Ruiter JPN, IJlst L, Allers P, Ten Brink HJ, Jakobs C, Duran M, de Almeida IT, Wanders RJ (2001) Synthesis and intramitochondrial levels of valproyl-coenzyme A metabolites. Anal Biochem 290:60–67

    CAS  PubMed  Google Scholar 

  103. Luís PBM, Ruiter JP, Ofman R, Ijlst L, Moedas M, Diogo L, Garcia P, de Almeida IT, Duran M, Wanders RJA, Silva MFB (2011) Valproic acid utilizes the isoleucine breakdown pathway for its complete β-oxidation. Biochem Pharmacol 82:1740–1746

    PubMed  Google Scholar 

  104. Luís PBM, Ruiter JPN, IJlst L, de Almeida IT, Duran M, Mohsen A, Vockley J, Wanders RJ, Silva MFB (2011) Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway. Drug Metab Dispos 39:1155–1160

    PubMed  PubMed Central  Google Scholar 

  105. Aires CC, Soveral G, Luís PBM, ten Brink HJ, de Almeida IT, Duran M, Wanders RJA, Silva MFB (2008) Pyruvate uptake is inhibited by valproic acid and metabolites in mitochondrial membranes. FEBS Lett 582:3359–3366

    CAS  PubMed  Google Scholar 

  106. Benavides J, Martin A, Ugarte M, Valdivieso F (1982) Inhibition by valproic acid of pyruvate uptake by brain mitochondria. Biochem Pharmacol 31(8):1633–1636

    CAS  PubMed  Google Scholar 

  107. Kudin AP, Mawasi H, Eisenkraft A, Elger CE, Bialer M, Kunz WS (2017) Mitochondrial liver toxicity of valproic acid and its acid derivatives is related to inhibition of α-lipoamide dehydrogenase. Int J Mol Sci 18:1912–1923

    PubMed Central  Google Scholar 

  108. Deutsch J, Rapoport SI, Rosenberger TA (2003) Valproyl-CoA and esterified valproic acid are not found in brains of rats treated with valproic acid, but the brain concentrations of CoA and acetyl-CoA are altered. Neurochem Res 28:861–866

    CAS  PubMed  Google Scholar 

  109. Mampilly GT, Mampilly TK, Christopher R, Chandramohan N, Janaki V (2014) Challenges in diagnosing a metabolic disorder: error of pyruvate metabolism or drug induced? J Child Neurol 29(6):833–836

    PubMed  Google Scholar 

  110. Moedas MF, van Cruchten AG, IJlst L, Kulik W, de Almeida IT, Diogo L, Wanders RJ, Silva MFB (2016) Transient decrease of hepatic NAD+ and amino acid alterations during treatment with valproate: new insights on drug-induced effects in vivo using targeted MS-based metabolomics. Metabolomics 12:142

    Google Scholar 

  111. Huo T, Chen X, Lud X, Qub L, Liub Y, Cai S (2014) An effective assessment of valproate sodium-induced hepatotoxicity with UPLC–MS and 1HNMR-based metabonomics approach. J Chromatogr B 969:109–116

    CAS  Google Scholar 

  112. Mortensen PB, Kplvraa S, Christensen E (1980) Inhibition of the glycine cleavage system: hyperglycinemia and hyperglycinuria caused by valproic acid. Epilepsia 21:563–569

    CAS  PubMed  Google Scholar 

  113. Martin-Gallardo A, Rodriguez P, Lopez M, Benavides J, Ugarte M (1985) Effects of dipropylacetate on the glycine cleavage enzyme system and glycine levels. A possible experimental approach to non-ketotic hyperglycinemia. Biochem Pharmacol 34:2877–2882

    CAS  PubMed  Google Scholar 

  114. Yoshino M, Koga Y, Yamashita F (1986) A decrease in glycine cleavage activity in the liver of a patient with dihydrolipoyl dehydrogenase deficiency. J Inher Metab Dis 9:399–400

    CAS  PubMed  Google Scholar 

  115. Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W (2014) Lipoic acid biosynthesis defects. J Inher Metab Dis 37:553–563

    CAS  PubMed  Google Scholar 

  116. Tort F, Ferrer-Cortes X, Ribes A (2016) Differential diagnosis of lipoic acid synthesis defects. J Inher Metab Dis 39:781–793

    CAS  PubMed  Google Scholar 

  117. Cronan JE (2020) Progress in the enzymology of the mitochondrial diseases of lipoic acid requiring enzymes. Front Genet 11:510

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Jia F, Cui M, Than MT, Han M (2015) Developmental defects of Caenorhabditis elegans lacking branched-chain α-ketoacid dehydrogenase are mainly caused by monomethyl branched-chain fatty acid deficiency. J Biol Chem 291:2967–2973

    PubMed  PubMed Central  Google Scholar 

  119. Heinemann-Yerushalmi L, Bentovim L, Felsenthal N, Michaeli N, Krief S, Haffner-Krausz R, et al (2021) BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development. Dev Cell 56(8):1182–1194.e6. https://doi.org/10.1016/j.devcel.2021.03.007

    Article  CAS  PubMed  Google Scholar 

  120. Luís PB, Ruiter JP, IJlst L, Diogo L, Garcia P, de Almeida IT, Duran M, Wanders RJ, Silva MFB (2012) Inhibition of 3-methylcrotonyl-CoA carboxylase explains the increased excretion of 3-hydroxyisovaleric acid in valproate-treated patients. J Inherit Metab Dis 35(3):443–449

    PubMed  Google Scholar 

  121. Maciejak P, Szyndler J, Kołosowska K, Turzyńska D, Sobolewska A, Walkowiak J, Płaźnik A (2014) Valproate disturbs the balance between branched and aromatic amino acids in rats. Neurotox Res 25:358–368

    CAS  PubMed  Google Scholar 

  122. Ævarsson A, Chuang JL, Wynn RM, Turley S, Chuang DT, Hol WG (2000) Crystal structure of human branched-chain α-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure 8:277–291

    PubMed  Google Scholar 

  123. Zhou J, Yang L, Ozohanics O, Zhang X, Wang J, Ambrus A, Arjunan P, Brukh R, Nemeria NS, Furey W, Jordan F (2018) A multipronged approach unravels unprecedented protein-protein interactions in the human 2-oxoglutarate dehydrogenase multienzyme complex. J Biol Chem 293(50):19213–19227

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Luder AS, Parks JK, Frerman F, Parker WD (1990) Inactivation of beef brain α-ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. Possible mechanism of anticonsulvant and toxic actions. J Clin Invest 86:1574–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Piplani S, Verma PK, Kumar A (2016) Neuroinformatics analyses reveal GABAt and SSADH as major proteins involved in anticonvulsant activity of valproic acid. Biomed Pharmacother 81:402–410

    CAS  PubMed  Google Scholar 

  126. Dobolyi A, Bago A, Palkovits M, Nemeria NS, Jordan F, Doczi J, Ambrus A, Adam-Vizi V, Chinopoulos C (2020) Exclusive neuronal detection of KGDHC-specific subunits in the adult human brain cortex despite pancellular protein lysine succinylation. Brain Struct Funct 225:639–667

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Phil Trans R Soc B 360:2335–2345

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Moxley MA, Beard DA, Bazil JN (2016) Global Kinetic Analysis of mammalian E3 reveals pH-dependent NAD+/NADH regulation, physiological kinetic reversibility and catalytic optimum. J Biol Chem 291(6):2712–2730

    CAS  PubMed  Google Scholar 

  129. Shibata K, Kondo R, Sano M, Fukuwatari T (2013) Increased conversion of tryptophan to nicotinamide in rats by dietary valproate. Biosci Biotechnol Biochem 77:295–300

    CAS  PubMed  Google Scholar 

  130. Klimova N, Fearnow A, Kristian T (2020) Role of NAD+-modulated mitochondrial free radical generation in mechanisms of acute brain injury. Brain Sci 10:449

    CAS  PubMed Central  Google Scholar 

  131. Wang X, Wang A, Zhu L, Hua D, Qin J (2018) Altering the sensitivity of Escherichia coli pyruvate dehydrogenase complex to NADH inhibition by structure-guided design. Enzyme Microb Technol 119:52–57

    CAS  PubMed  Google Scholar 

  132. Solmonson A, DeBerardinis RJ (2018) Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem 293:7522–7530

    CAS  PubMed  Google Scholar 

  133. Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, Kang Y, Shenk T, Cristea IM (2014) Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159:1615–1625

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Nemeria NS, Zhang X, Leandro J, Zhou J, Yang L, Houten SM, Jordan F (2021) Toward an understanding of the structural and mechanistic aspects of protein-protein interactions in 2-oxoacid dehydrogenase complexes. Life (Basel) 11(5):407

    Google Scholar 

  135. Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16(4):258–264

    CAS  PubMed  Google Scholar 

  136. Park S, Jeon JH, Min BK, Ha CM, Thoudam T, Park BY, Lee IK (2018) Role of the pyruvate dehydrogenase complex in metabolic remodeling: differential pyruvate dehydrogenase complex functions in metabolism. Diabetes Metab J 42:270–281

    PubMed  PubMed Central  Google Scholar 

  137. Ali I, Conrad RJ, Verdin E, Ott M (2018) Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem Rev 118:1216–1252

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20:156–174

    CAS  PubMed  Google Scholar 

  139. Ye C, Tu BP (2018) Sink into the Epigenome: histones as repositories that influence cellular metabolism. Trends Endocrinol Metab 29:626–637

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Fan J, Krautkramer KA, Feldman JL, Denu JM (2015) Metabolic regulation of histone post-translational modifications. ACS Chem Biol 10:95–108

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102

    PubMed  PubMed Central  Google Scholar 

  142. Sivanand S, Viney I, Wellen KE (2018) Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem Sci 43:61–74

    CAS  PubMed  Google Scholar 

  143. Ng F, Tang BL (2014) Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix. Mol Membr Biol 31(7–8):207–210

    CAS  PubMed  Google Scholar 

  144. Narne P, Pandey V, Phanithi PB (2017) Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: an epigenetic connection. Mol Cell Neurosci 82:176–194

    CAS  PubMed  Google Scholar 

  145. Martínez-Reyes I, Chandel NS (2018) Acetyl-CoA-directed gene transcription in cancer cells. Genes Dev 32:463–465

    PubMed  PubMed Central  Google Scholar 

  146. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D et al (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321

    CAS  PubMed  Google Scholar 

  147. Itoh Y (2020) Drug discovery researches on modulators of lysine-modifying enzymes based on strategic chemistry approaches. Chem Pharm Bull 68:34–45

    Google Scholar 

  148. Gil J, Ramírez-Torres A, Encarnación-Guevara S (2017) Lysine acetylation and cancer: a proteomics perspective. J Proteom 150:297–309

    CAS  Google Scholar 

  149. Li P, Ge J, Li H (2020) Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol 17:96–115

    CAS  PubMed  Google Scholar 

  150. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978

    PubMed  PubMed Central  Google Scholar 

  151. van Breda SGJ, Claessen SMH, van Herwijnen M, Theunissen DHJ, Jennen DGJ, de Kok TMCM et al (2018) Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology 393:160–170

    PubMed  Google Scholar 

  152. Blaheta RA, Michaelis M, Driever PH, Cinatl J (2005) Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med Res Rev 25:383–397

    CAS  PubMed  Google Scholar 

  153. Yu J, Choi C, Shin SW, Son A, Lee GH, Kim SY, Park HC (2017) Valproic acid sensitizes hepatocellular carcinoma cells to proton therapy by suppressing NRF2 activation. Sci Rep 7:14986

    PubMed  PubMed Central  Google Scholar 

  154. Ibrahim TS, Sheha TA, Abo-Dya NE, AlAwadh MA, Alhakamy NA, Abdel-Samii ZK et al (2020) Design, synthesis and anticancer activity of novel valproic acid conjugates with improved histone deacetylase (HDAC) inhibitory activity. Bioorg Chem 99:103797

    CAS  PubMed  Google Scholar 

  155. Lu P, Yan M, He L, Li J, Ji Y, Ji J (2019) Crosstalk between epigenetic modulations in valproic acid deactivated hepatic stellate cells: an integrated protein and miRNA profiling study. Int J Biol Sci 15:93–104

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Georgoff PE, Halaweish I, Nikolian VC, Higgins GA, Bonham T, Tafatia C et al (2016) Alterations in the human proteome following administration of valproic acid. J Trauma Acute Care Surg 81:1020–1027

    CAS  PubMed  Google Scholar 

  157. Yarmohamadi A, Asadi J, Gharaei R, Mir M, Khoshnazar AK (2018) Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in breast cancer cell line. J Radiat Cancer Res 9:86–92

    Google Scholar 

  158. Soria-Castro R, Schcolnik-Cabrera A, Rodríguez-López G, Campillo-Navarro M, Puebla-Osorio N, Estrada-Parra S et al (2019) Exploring the drug repurposing versatility of valproic acid as a multifunctional regulator of innate and adaptive immune cells. J Immunol Res 2019, Article ID 9678098, 1-24. https://doi.org/10.1155/2019/9678098

  159. Kim T, Song S, Park Y, Kang S, Seo H (2019) HDAC inhibition by valproic acid induces neuroprotection and improvement of PD-like behaviors in LRRK2 R1441G transgenic mice. Exp Neurobiol 28:504–515

    PubMed  PubMed Central  Google Scholar 

  160. Zhu W-W, Lu M, Wang X-Y, Zhou X, Gao C, Qin L-X (2020) The fuel and engine: the roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes Dis 7:299–307

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Li J, Wang T, Xia J, Yao W, Huang F (2019) Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases. FASEB J 33:11640–11654

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hosp F, Lassowskat I, Santoro V, De Vleesschauwer D, Fliegner D, Redestig H et al (2017) Lysine acetylation in mitochondria: from inventory to function. Mitochondrion 33:58–71

    CAS  PubMed  Google Scholar 

  163. Saunier E, Benelli C, Bortoli S (2016) The pyruvate dehydrogenase complex in cancer: an old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer 138:809–817

    CAS  PubMed  Google Scholar 

  164. McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND et al (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Woolbright BL, Rajendran G, Harris RA, Taylor JA (2019) Metabolic flexibility in cancer: targeting the pyruvate dehydrogenase kinase:pyruvate dehydrogenase axis. Mol Cancer Ther 18:1673–1681

    CAS  PubMed  Google Scholar 

  166. Chen J, Guccini I, Di MD, Brina D, Revandkar A, Sarti M et al (2018) Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nat Genet 50:219–228

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Yoneyama K, Shibata R, Igarashi A, Kojima S, Kodani Y, Nagata K, Kurose K, Kawase R, Takeshita T, Hattori S (2014) Proteomic identification of dihydrolipoamide dehydrogenase as a target of autoantibodies in patients with endometrial cancer. Anticancer Res 34(9):5021–5027

    CAS  PubMed  Google Scholar 

  168. Brassier A, Ottolenghi C, Boutron A, Bertrand AM, Valmary-Degano S, Cervoni JP, Chrétien D, Arnoux JB, Hubert L, Rabier D, Lacaille F, Keyzer Y, Di Martino V, Lonlay P (2013) Dihydrolipoamide dehydrogenase deficiency: a still overlooked cause of recurrent acute liver failure and Reye-like syndrome. Mol Gen Metab 109:28–32

    CAS  Google Scholar 

  169. Neveu J, Hoebeke C, Lebigot E, Naïmi M (2020) Recurrent liver failure in an 11-year-old boy. Clin Chem 66(8):1115–1123

    PubMed  Google Scholar 

  170. Fei Y, Shi R, Song Z, Wu J (2020) Metabolic control of epilepsy: a promising therapeutic target for epilepsy. Front Neurol 11:592514

    PubMed  PubMed Central  Google Scholar 

  171. Zsurka G, Kunz WS (2015) Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 14(9):956–966

    CAS  PubMed  Google Scholar 

  172. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16(1):19–34

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by Fundação para a Ciência e a Tecnologia (FCT, Portugal), through iMED.ULisboa: UID/DTP/04138/2019-2020.

Funding

Financial support was provided by Fundação para a Ciência e a Tecnologia (FCT, Portugal), through iMED.ULisboa: UID/DTP/04138/2019-2020.

Author information

Authors and Affiliations

Authors

Contributions

IFD and MFBS wrote the manuscript and performed the literature search. All authors critically revised the versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. F. B. Silva.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, I.F., Caio, J., Moedas, M.F. et al. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cell. Mol. Life Sci. 78, 7451–7468 (2021). https://doi.org/10.1007/s00018-021-03996-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03996-3

Keywords

Navigation