Skip to main content
Log in

Neural circuit mechanisms that govern inter-male attack in mice

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Individuals of many species fight with conspecifics to gain access to or defend critical resources essential for survival and reproduction. Such intraspecific fighting is evolutionarily selected for in a species-, sex-, and environment-dependent manner when the value of resources secured exceeds the cost of fighting. One such example is males fighting for chances to mate with females. Recent advances in new tools open up ways to dissect the detailed neural circuit mechanisms that govern intraspecific, particularly inter-male, aggression in the model organism Mus musculus (house mouse). By targeting and functional manipulating genetically defined populations of neurons and their projections, these studies reveal a core neural circuit that controls the display of reactive male–male attacks in mice, from sensory detection to decision making and action selection. Here, we summarize these critical results. We then describe various modulatory inputs that route into the core circuit to afford state-dependent and top–down modulation of inter-male attacks. While reviewing these exciting developments, we note that how the inter-male attack circuit converges or diverges with neural circuits that mediate other forms of social interactions remain not fully understood. Finally, we emphasize the importance of combining circuit, pharmacological, and genetic analysis when studying the neural control of aggression in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Lo et al. [94]. Brain regions that account for > 2% of the total inputs to or outputs of the VMHvlEsr1+ neurons are depicted. The size of the arrows indicates the relative connection strength, and the direction of the arrow indicates input to or output from the VMHvl. The color schemes are assigned based on the relative strength of the input and output connection from each brain region with the VMHvl. For brain regions that provide more inputs to than receive outputs from VMHvlEsr1+ neurons, if the normalized input value divided by the normalized output value (input/output) is > 4, they are colored red; and if the value is > 2 but < 4, these regions are colored orange. Similarly, for brain regions that receive more outputs from than send inputs to VMHvlEsr1+ neurons, if the normalized output value divided by the normalized input value (output/input) is > 4, they are colored dark blue; and if the value is > 2 but < 4, these regions are colored light green. All other connected brain regions with comparable input and output values are colored gray. ARC, arcuate hypothalamic nucleus; AHN, anterior hypothalamic nucleus; AVPV, anteroventral periventricular nucleus; BNST, bed nuclei of the stria terminalis; CEA, central amygdala nucleus; DMH, dorsomedial nucleus of the hypothalamus; LS, lateral septum; MeA, medial amygdala; mPOA, medial preoptic area; PA, posterior amygdala; PAG, periaqueductal gray; PB, parabrachial nucleus; PMv, ventral premammillary nucleus; PVN, paraventricular hypothalamic nucleus; PVT, paraventricular thalamus; pSI, posterior substantia innominate; SPFp, subparafascicular nucleus, parvicellular part; SUBv, subiculum, ventral part; TTd, taenia tecta, dorsal part

Fig. 3

Similar content being viewed by others

References

  1. Alcock J (2013) Animal behavior: an evolutionary approach, 10th edn. Sinauer Associates is an imprint of Oxford University Press, Sunderland

    Google Scholar 

  2. Tinbergen N (1989) The study of instinct. Clarendon Press, Oxford Univerisity Press, Oxford, England, New York

    Google Scholar 

  3. Territoriality and aggression learn science at scitable. https://www.nature.com/scitable/knowledge/library/territoriality-and-aggression-13240908/. Accessed 10 Mar 2021

  4. Georgiev AV, Klimczuk ACE, Traficonte DM, Maestripieri D (2013) When violence pays: a cost-benefit analysis of aggressive behavior in animals and humans. Evol Psychol 11:678–699

    Article  Google Scholar 

  5. Archer J (2009) Does sexual selection explain human sex differences in aggression? Behav Brain Sci 32:249–266. https://doi.org/10.1017/S0140525X09990951 (discussion 266-311)

    Article  PubMed  Google Scholar 

  6. Tobias JA, Montgomerie R, Lyon BE (2012) The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philos Trans R Soc Lond B Biol Sci 367:2274–2293. https://doi.org/10.1098/rstb.2011.0280

    Article  PubMed  PubMed Central  Google Scholar 

  7. Svare BB (1981) Maternal aggression in mammals. In: Gubernick DJ, Klopfer PH (eds) Parental care in mammals. Springer, US, Boston, MA, pp 179–210

    Chapter  Google Scholar 

  8. Takahashi A, Miczek KA (2014) Neurogenetics of aggressive behavior: studies in Rodents. In: Miczek KA, Meyer-Lindenberg A (eds) Neuroscience of aggression. Springer, Berlin, Heidelberg, pp 3–44

    Google Scholar 

  9. Koolhaas JM, Coppens CM, de Boer SF et al (2013) The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp. https://doi.org/10.3791/4367

    Article  PubMed  PubMed Central  Google Scholar 

  10. Panksepp J (1971) Aggression elicited by electrical stimulation of the hypothalamus in albino rats. Physiol Behav 6:321–329. https://doi.org/10.1016/0031-9384(71)90163-6

    Article  CAS  PubMed  Google Scholar 

  11. Kruk MR, van der Poel AM, de Vos-Frerichs TP (1979) The induction of aggressive behaviour by electrical stimulation in the hypothalamus of male rats. Behaviour 70:292–322. https://doi.org/10.1163/156853979x00106

    Article  CAS  PubMed  Google Scholar 

  12. Siegel A, Roeling TA, Gregg TR, Kruk MR (1999) Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23:359–389. https://doi.org/10.1016/s0149-7634(98)00040-2

    Article  CAS  PubMed  Google Scholar 

  13. Popova NK, Kulikov AV (1986) Genetic analysis of “Spontaneous” intermale aggression in mice. Aggressive Behav 12:425–431. https://doi.org/10.1002/1098-2337(1986)12:6%3c425::AID-AB2480120605%3e3.0.CO;2-A

    Article  Google Scholar 

  14. Zhang-James Y, Fernàndez-Castillo N, Hess JL et al (2019) An integrated analysis of genes and functional pathways for aggression in human and rodent models. Mol Psychiatry 24:1655–1667. https://doi.org/10.1038/s41380-018-0068-7

    Article  CAS  PubMed  Google Scholar 

  15. Leroy F, Park J, Asok A et al (2018) A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 564:213–218. https://doi.org/10.1038/s41586-018-0772-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen A-X, Yan J-J, Zhang W et al (2020) Specific hypothalamic neurons required for sensing conspecific male cues relevant to inter-male aggression. Neuron 108:763-774.e6. https://doi.org/10.1016/j.neuron.2020.08.025

    Article  CAS  PubMed  Google Scholar 

  17. Remedios R, Kennedy A, Zelikowsky M et al (2017) Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature 550:388–392. https://doi.org/10.1038/nature23885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee H, Kim D-W, Remedios R et al (2014) Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509:627–632. https://doi.org/10.1038/nature13169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang C-H, Gean P-W (2019) The ventral hippocampus controls stress-provoked impulsive aggression through the ventromedial hypothalamus in post-weaning social isolation mice. Cell Rep 28:1195-1205.e3. https://doi.org/10.1016/j.celrep.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  20. Stagkourakis S, Spigolon G, Williams P et al (2018) A neural network for intermale aggression to establish social hierarchy. Nat Neurosci 21:834–842. https://doi.org/10.1038/s41593-018-0153-x

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi A, Nagayasu K, Nishitani N et al (2014) Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS One 9:e94657. https://doi.org/10.1371/journal.pone.0094657

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Heukelum S, Tulva K, Geers FE et al (2021) A central role for anterior cingulate cortex in the control of pathological aggression. Curr Biol 31:2321-2333.e5. https://doi.org/10.1016/j.cub.2021.03.062

    Article  CAS  PubMed  Google Scholar 

  23. Atasoy D, Sternson SM (2018) Chemogenetic tools for causal cellular and neuronal biology. Physiol Rev 98:391–418. https://doi.org/10.1152/physrev.00009.2017

    Article  CAS  PubMed  Google Scholar 

  24. Zha X, Xu X (2015) Dissecting the hypothalamic pathways that underlie innate behaviors. Neurosci Bull 31:629–648. https://doi.org/10.1007/s12264-015-1564-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo L, Callaway EM, Svoboda K (2018) Genetic dissection of neural circuits: a decade of progress. Neuron 98:256–281. https://doi.org/10.1016/j.neuron.2018.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim CK, Adhikari A, Deisseroth K (2017) Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18:222–235. https://doi.org/10.1038/nrn.2017.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Callaway EM, Luo L (2015) Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci 35:8979–8985. https://doi.org/10.1523/JNEUROSCI.0409-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adamantidis A, Arber S, Bains JS et al (2015) Optogenetics: 10 years after ChR2 in neurons–views from the community. Nat Neurosci 18:1202–1212. https://doi.org/10.1038/nn.4106

    Article  CAS  PubMed  Google Scholar 

  29. Rajasethupathy P, Ferenczi E, Deisseroth K (2016) Targeting neural circuits. Cell 165:524–534. https://doi.org/10.1016/j.cell.2016.03.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu X, Holmes TC, Luo M-H et al (2020) Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron 107:1029–1047. https://doi.org/10.1016/j.neuron.2020.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamaguchi T, Lin D (2018) Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression. Curr Opin Behav Sci 24:104–112. https://doi.org/10.1016/j.cobeha.2018.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wei D, Talwar V, Lin D (2021) Neural circuits of social behaviors: innate yet flexible. Neuron. https://doi.org/10.1016/j.neuron.2021.02.012

    Article  PubMed  Google Scholar 

  33. Falkner AL, Lin D (2014) Recent advances in understanding the role of the hypothalamic circuit during aggression. Front Syst Neurosci 8:168. https://doi.org/10.3389/fnsys.2014.00168

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hashikawa K, Hashikawa Y, Falkner A, Lin D (2016) The neural circuits of mating and fighting in male mice. Curr Opin Neurobiol 38:27–37. https://doi.org/10.1016/j.conb.2016.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hashikawa K, Hashikawa Y, Lischinsky J, Lin D (2018) The neural mechanisms of sexually dimorphic aggressive behaviors. Trends Genet 34:755–776. https://doi.org/10.1016/j.tig.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  36. Hashikawa Y, Hashikawa K, Falkner AL, Lin D (2017) Ventromedial hypothalamus and the generation of aggression. Front Syst Neurosci 11:94. https://doi.org/10.3389/fnsys.2017.00094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen P, Hong W (2018) Neural circuit mechanisms of social behavior. Neuron 98:16–30. https://doi.org/10.1016/j.neuron.2018.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson DJ (2016) Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci 17:692–704. https://doi.org/10.1038/nrn.2016.125

    Article  CAS  PubMed  Google Scholar 

  39. Anderson DJ (2012) Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol Psychiatry 71:1081–1089. https://doi.org/10.1016/j.biopsych.2011.11.012

    Article  PubMed  Google Scholar 

  40. Flanigan M, Aleyasin H, Takahashi A et al (2017) An emerging role for the lateral habenula in aggressive behavior. Pharmacol Biochem Behav 162:79–86. https://doi.org/10.1016/j.pbb.2017.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Golden SA, Jin M, Shaham Y (2019) Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. J Neurosci 39:3996–4008. https://doi.org/10.1523/JNEUROSCI.0151-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goodwin NL, Nilsson SRO, Golden SA (2020) Rage against the machine: advancing the study of aggression ethology via machine learning. Psychopharmacology 237:2569–2588. https://doi.org/10.1007/s00213-020-05577-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aleyasin H, Flanigan ME, Russo SJ (2018) Neurocircuitry of aggression and aggression seeking behavior: nose poking into brain circuitry controlling aggression. Curr Opin Neurobiol 49:184–191. https://doi.org/10.1016/j.conb.2018.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu MV, Shah NM (2011) Control of masculinization of the brain and behavior. Curr Opin Neurobiol 21:116–123. https://doi.org/10.1016/j.conb.2010.09.014

    Article  CAS  PubMed  Google Scholar 

  45. Bayless DW, Shah NM (2016) Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Philos Trans R Soc Lond B Biol Sci 371:20150109. https://doi.org/10.1098/rstb.2015.0109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang T, Shah NM (2016) Molecular and neural control of sexually dimorphic social behaviors. Curr Opin Neurobiol 38:89–95. https://doi.org/10.1016/j.conb.2016.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manoli DS, Fan P, Fraser EJ, Shah NM (2013) Neural control of sexually dimorphic behaviors. Curr Opin Neurobiol 23:330–338. https://doi.org/10.1016/j.conb.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McKinsey G, Ahmed OM, Shah NM (2018) Neural control of sexually dimorphic social behaviors. Curr Opin Physiol 6:89–95. https://doi.org/10.1016/j.cophys.2018.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang CF, Shah NM (2014) Representing sex in the brain, one module at a time. Neuron 82:261–278. https://doi.org/10.1016/j.neuron.2014.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Boer SF, Olivier B, Veening J, Koolhaas JM (2015) The neurobiology of offensive aggression: revealing a modular view. Physiol Behav 146:111–127. https://doi.org/10.1016/j.physbeh.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  51. Lischinsky JE, Lin D (2020) Neural mechanisms of aggression across species. Nat Neurosci 23:1317–1328. https://doi.org/10.1038/s41593-020-00715-2

    Article  CAS  PubMed  Google Scholar 

  52. Hurst JL, Payne CE, Nevison CM et al (2001) Individual recognition in mice mediated by major urinary proteins. Nature 414:631–634. https://doi.org/10.1038/414631a

    Article  CAS  PubMed  Google Scholar 

  53. Stowers L, Kuo T-H (2015) Mammalian pheromones: emerging properties and mechanisms of detection. Curr Opin Neurobiol 34:103–109. https://doi.org/10.1016/j.conb.2015.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stowers L, Marton TF (2005) What is a pheromone? Mammalian pheromones reconsidered. Neuron 46:699–702. https://doi.org/10.1016/j.neuron.2005.04.032

    Article  CAS  PubMed  Google Scholar 

  55. Spehr M, Spehr J, Ukhanov K et al (2006) Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63:1476–1484. https://doi.org/10.1007/s00018-006-6109-4

    Article  CAS  PubMed  Google Scholar 

  56. Armstrong SD, Robertson DHL, Cheetham SA et al (2005) Structural and functional differences in isoforms of mouse major urinary proteins: a male-specific protein that preferentially binds a male pheromone. Biochem J 391:343–350. https://doi.org/10.1042/BJ20050404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kimoto H, Haga S, Sato K, Touhara K (2005) Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437:898–901. https://doi.org/10.1038/nature04033

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J-X, Rao X-P, Sun L et al (2007) Putative chemical signals about sex, individuality, and genetic background in the preputial gland and urine of the house mouse (Mus musculus). Chem Senses 32:293–303. https://doi.org/10.1093/chemse/bjl058

    Article  CAS  PubMed  Google Scholar 

  59. Lin DY, Zhang S-Z, Block E, Katz LC (2005) Encoding social signals in the mouse main olfactory bulb. Nature 434:470–477. https://doi.org/10.1038/nature03414

    Article  CAS  PubMed  Google Scholar 

  60. Chamero P, Marton TF, Logan DW et al (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902. https://doi.org/10.1038/nature05997

    Article  CAS  PubMed  Google Scholar 

  61. Kaur AW, Ackels T, Kuo T-H et al (2014) Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell 157:676–688. https://doi.org/10.1016/j.cell.2014.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hattori T, Osakada T, Matsumoto A et al (2016) Self-exposure to the male pheromone ESP1 enhances male aggressiveness in mice. Curr Biol 26:1229–1234. https://doi.org/10.1016/j.cub.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  63. Liu Q, Zhang Y, Wang P et al (2019) Two preputial gland-secreted pheromones evoke sexually dimorphic neural pathways in the mouse vomeronasal system. Front Cell Neurosci. https://doi.org/10.3389/fncel.2019.00455

    Article  PubMed  PubMed Central  Google Scholar 

  64. Leypold BG, Yu CR, Leinders-Zufall T et al (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 99:6376–6381. https://doi.org/10.1073/pnas.082127599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stowers L, Holy TE, Meister M et al (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500. https://doi.org/10.1126/science.1069259

    Article  CAS  PubMed  Google Scholar 

  66. Chamero P, Katsoulidou V, Hendrix P et al (2011) G protein G(alpha)o is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci USA 108:12898–12903. https://doi.org/10.1073/pnas.1107770108

    Article  PubMed  PubMed Central  Google Scholar 

  67. Norlin EM, Gussing F, Berghard A (2003) Vomeronasal phenotype and behavioral alterations in G alpha i2 mutant mice. Curr Biol 13:1214–1219. https://doi.org/10.1016/s0960-9822(03)00452-4

    Article  CAS  PubMed  Google Scholar 

  68. Fraser EJ, Shah NM (2014) Complex chemosensory control of female reproductive behaviors. PLoS ONE 9:e90368. https://doi.org/10.1371/journal.pone.0090368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8:1660–1662. https://doi.org/10.1038/nn1589

    Article  CAS  PubMed  Google Scholar 

  70. Choi GB, Dong H-W, Murphy AJ et al (2005) Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46:647–660. https://doi.org/10.1016/j.neuron.2005.04.011

    Article  CAS  PubMed  Google Scholar 

  71. He J, Ma L, Kim S et al (2008) Encoding gender and individual information in the mouse vomeronasal organ. Science 320:535–538. https://doi.org/10.1126/science.1154476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Meeks JP, Arnson HA, Holy TE (2010) Representation and transformation of sensory information in the mouse accessory olfactory system. Nat Neurosci 13:723–730. https://doi.org/10.1038/nn.2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luo M, Fee MS, Katz LC (2003) Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299:1196–1201. https://doi.org/10.1126/science.1082133

    Article  CAS  PubMed  Google Scholar 

  74. Li Y, Mathis A, Grewe BF et al (2017) Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171:1176-1190.e17. https://doi.org/10.1016/j.cell.2017.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ben-Shaul Y, Katz LC, Mooney R, Dulac C (2010) In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. Proc Natl Acad Sci USA 107:5172–5177. https://doi.org/10.1073/pnas.0915147107

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bergan JF, Ben-Shaul Y, Dulac C (2014) Sex-specific processing of social cues in the medial amygdala. Elife 3:e02743. https://doi.org/10.7554/eLife.02743

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yao S, Bergan J, Lanjuin A, Dulac C (2017) Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. Elife. https://doi.org/10.7554/eLife.31373

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hong W, Kim D-W, Anderson DJ (2014) Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158:1348–1361. https://doi.org/10.1016/j.cell.2014.07.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baleisyte A, Schneggenburger R, Kochubey O (2021) Optogenetic stimulation of medial amygdala GABA neurons with kinetically different channelrhodopsin variants yield opposite behavioral outcomes. bioRxiv. https://doi.org/10.1101/2021.06.30.450543

    Article  Google Scholar 

  80. Chen PB, Hu RK, Wu YE et al (2019) Sexually dimorphic control of parenting behavior by the medial amygdala. Cell 176:1206-1221.e18. https://doi.org/10.1016/j.cell.2019.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Unger EK, Burke KJ, Yang CF et al (2015) Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep 10:453–462. https://doi.org/10.1016/j.celrep.2014.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. von Campenhausen H, Mori K (2000) Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. Eur J Neurosci 12:33–46. https://doi.org/10.1046/j.1460-9568.2000.00879.x

    Article  Google Scholar 

  83. Gungor NZ, Paré D (2016) Functional heterogeneity in the bed nucleus of the stria terminalis. J Neurosci 36:8038–8049. https://doi.org/10.1523/JNEUROSCI.0856-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lebow MA, Chen A (2016) Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 21:450–463. https://doi.org/10.1038/mp.2016.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Miller SM, Marcotulli D, Shen A, Zweifel LS (2019) Divergent medial amygdala projections regulate approach-avoidance conflict behavior. Nat Neurosci 22:565–575. https://doi.org/10.1038/s41593-019-0337-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38:192–246. https://doi.org/10.1016/s0165-0173(01)00079-0

    Article  CAS  PubMed  Google Scholar 

  87. Bayless DW, Yang T, Mason MM et al (2019) Limbic neurons shape sex recognition and social behavior in sexually naive males. Cell 176:1190-1205.e20. https://doi.org/10.1016/j.cell.2018.12.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257. https://doi.org/10.1111/j.1749-6632.1999.tb09271.x

    Article  CAS  PubMed  Google Scholar 

  89. Wei Y-C, Wang S-R, Jiao Z-L et al (2018) Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun 9:279. https://doi.org/10.1038/s41467-017-02648-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao S-C, Wei Y-C, Wang S-R, Xu X-H (2019) Medial preoptic area modulates courtship ultrasonic vocalization in adult male mice. Neurosci Bull 35:697–708. https://doi.org/10.1007/s12264-019-00365-w

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kohl J, Babayan BM, Rubinstein ND et al (2018) Functional circuit architecture underlying parental behaviour. Nature 556:326–331. https://doi.org/10.1038/s41586-018-0027-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu Z, Autry AE, Bergan JF et al (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–330. https://doi.org/10.1038/nature13307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fang Y-Y, Yamaguchi T, Song SC et al (2018) A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron 98:192-207.e10. https://doi.org/10.1016/j.neuron.2018.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Karigo T, Kennedy A, Yang B et al (2021) Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589:258–263. https://doi.org/10.1038/s41586-020-2995-0

    Article  CAS  PubMed  Google Scholar 

  95. Lo L, Yao S, Kim D-W et al (2019) Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Proc Natl Acad Sci U S A 116:7503–7512. https://doi.org/10.1073/pnas.1817503116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Soden ME, Miller SM, Burgeno LM et al (2016) Genetic isolation of hypothalamic neurons that regulate context-specific male social behavior. Cell Rep 16:304–313. https://doi.org/10.1016/j.celrep.2016.05.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Falkner AL, Dollar P, Perona P et al (2014) Decoding ventromedial hypothalamic neural activity during male mouse aggression. J Neurosci 34:5971–5984. https://doi.org/10.1523/JNEUROSCI.5109-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin D, Boyle MP, Dollar P et al (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226. https://doi.org/10.1038/nature09736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang T, Yang CF, Chizari MD et al (2017) Social control of hypothalamus-mediated male aggression. Neuron 95:955-970.e4. https://doi.org/10.1016/j.neuron.2017.06.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang CF, Chiang MC, Gray DC et al (2013) Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153:896–909. https://doi.org/10.1016/j.cell.2013.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hashikawa K, Hashikawa Y, Tremblay R et al (2017) Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat Neurosci 20:1580–1590. https://doi.org/10.1038/nn.4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kruk MR (1991) Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci Biobehav Rev 15:527–538. https://doi.org/10.1016/s0149-7634(05)80144-7

    Article  CAS  PubMed  Google Scholar 

  103. Wang L, Talwar V, Osakada T et al (2019) Hypothalamic control of conspecific self-defense. Cell Rep 26:1747-1758.e5. https://doi.org/10.1016/j.celrep.2019.01.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Falkner AL, Grosenick L, Davidson TJ et al (2016) Hypothalamic control of male aggression-seeking behavior. Nat Neurosci 19:596–604. https://doi.org/10.1038/nn.4264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bandler R, Keay KA (1996) Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res 107:285–300. https://doi.org/10.1016/s0079-6123(08)61871-3

    Article  CAS  PubMed  Google Scholar 

  106. Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17:379–389. https://doi.org/10.1016/0166-2236(94)90047-7

    Article  CAS  PubMed  Google Scholar 

  107. Falkner AL, Wei D, Song A et al (2020) Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron 106:637-648.e6. https://doi.org/10.1016/j.neuron.2020.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tovote P, Esposito MS, Botta P et al (2016) Midbrain circuits for defensive behaviour. Nature 534:206–212. https://doi.org/10.1038/nature17996

    Article  CAS  PubMed  Google Scholar 

  109. Zhu Z, Ma Q, Miao L et al (2021) A substantia innominata-midbrain circuit controls a general aggressive response. Neuron 109:1540-1553.e9. https://doi.org/10.1016/j.neuron.2021.03.002

    Article  CAS  PubMed  Google Scholar 

  110. Todd WD, Fenselau H, Wang JL et al (2018) A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 21:717–724. https://doi.org/10.1038/s41593-018-0126-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157. https://doi.org/10.1016/j.tins.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  112. Padilla SL, Qiu J, Soden ME et al (2016) Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat Neurosci 19:734–741. https://doi.org/10.1038/nn.4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sternson SM, Eiselt A-K (2017) Three pillars for the neural control of appetite. Annu Rev Physiol 79:401–423. https://doi.org/10.1146/annurev-physiol-021115-104948

    Article  CAS  PubMed  Google Scholar 

  114. Zelikowsky M, Hui M, Karigo T et al (2018) The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell 173:1265-1279.e19. https://doi.org/10.1016/j.cell.2018.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cádiz-Moretti B, Otero-García M, Martínez-García F, Lanuza E (2016) Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct Funct 221:1033–1065. https://doi.org/10.1007/s00429-014-0954-y

    Article  PubMed  Google Scholar 

  116. Pardo-Bellver C, Cadiz-Moretti B, Novejarque A et al (2012) Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat. https://doi.org/10.3389/fnana.2012.00033

    Article  PubMed  PubMed Central  Google Scholar 

  117. Puglisi-Allegra S, Renzi P (1977) A technique for the measurement of aggressive behavior in mice. Behav Res Meth Instru 9:503–504. https://doi.org/10.3758/BF03213985

    Article  Google Scholar 

  118. Nordman JC, Ma X, Gu Q et al (2020) Potentiation of divergent medial amygdala pathways drives experience-dependent aggression escalation. J Neurosci 40:4858–4880. https://doi.org/10.1523/JNEUROSCI.0370-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nordman J, Ma X, Li Z (2020) Traumatic stress induces prolonged aggression increase through synaptic potentiation in the medial amygdala circuits. eNeuro. https://doi.org/10.1523/ENEURO.0147-20.2020

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wong LC, Wang L, D’Amour JA et al (2016) Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Curr Biol 26:593–604. https://doi.org/10.1016/j.cub.2015.12.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Oliva A, Fernández-Ruiz A, Leroy F, Siegelbaum SA (2020) Hippocampal CA2 sharp-wave ripples reactivate and promote social memory. Nature 587:264–269. https://doi.org/10.1038/s41586-020-2758-y

    Article  CAS  PubMed  Google Scholar 

  122. Hitti FL, Siegelbaum SA (2014) The hippocampal CA2 region is essential for social memory. Nature 508:88–92. https://doi.org/10.1038/nature13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bendesky A, Kwon Y-M, Lassance J-M et al (2017) The genetic basis of parental care evolution in monogamous mice. Nature 544:434–439. https://doi.org/10.1038/nature22074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gabor CS, Phan A, Clipperton-Allen AE et al (2012) Interplay of oxytocin, vasopressin, and sex hormones in the regulation of social recognition. Behav Neurosci 126:97–109. https://doi.org/10.1037/a0026464

    Article  CAS  PubMed  Google Scholar 

  125. Fremeau RT, Kam K, Qureshi T et al (2004) Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304:1815–1819. https://doi.org/10.1126/science.1097468

    Article  CAS  PubMed  Google Scholar 

  126. Stagkourakis S, Spigolon G, Liu G, Anderson DJ (2020) Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. Proc Natl Acad Sci USA 117:25789–25799. https://doi.org/10.1073/pnas.2011782117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zha X, Wang L, Jiao Z-L et al (2020) VMHvl-projecting Vglut1+ neurons in the posterior amygdala gate territorial aggression. Cell Rep 31:107517. https://doi.org/10.1016/j.celrep.2020.03.081

    Article  CAS  PubMed  Google Scholar 

  128. Yamaguchi T, Wei D, Song SC et al (2020) Posterior amygdala regulates sexual and aggressive behaviors in male mice. Nat Neurosci 23:1111–1124. https://doi.org/10.1038/s41593-020-0675-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Siever LJ (2008) Neurobiology of aggression and violence. AJP 165:429–442. https://doi.org/10.1176/appi.ajp.2008.07111774

    Article  Google Scholar 

  130. Carlén M (2017) What constitutes the prefrontal cortex? Science 358:478–482. https://doi.org/10.1126/science.aan8868

    Article  CAS  PubMed  Google Scholar 

  131. Siegel A, Edinger H, Lowenthal H (1974) Effects of electrical stimulation of the medial aspect of the prefrontal cortex upon attack behavior in cats. Brain Res 66:467–479. https://doi.org/10.1016/0006-8993(74)90061-4

    Article  Google Scholar 

  132. Giancola PR (1995) EVidence for dorsolateral and orbital prefrontal cortical involvement in the expression of aggressive behavior. Aggressive Behav 21:431–450. https://doi.org/10.1002/1098-2337(1995)21:6%3c431::AID-AB2480210604%3e3.0.CO;2-Q

    Article  Google Scholar 

  133. Halász J, Tóth M, Kalló I et al (2006) The activation of prefrontal cortical neurons in aggression—a double labeling study. Behav Brain Res 175:166–175. https://doi.org/10.1016/j.bbr.2006.08.019

    Article  PubMed  Google Scholar 

  134. Biro L, Sipos E, Bruzsik B et al (2018) Task division within the prefrontal cortex: distinct neuron populations selectively control different aspects of aggressive behavior via the hypothalamus. J Neurosci 38:4065–4075. https://doi.org/10.1523/JNEUROSCI.3234-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. van Heukelum S, Tulva K, Geers FE et al (2021) A central role for anterior cingulate cortex in the control of pathological aggression. Curr Biol 31:2321-2333.e5. https://doi.org/10.1016/j.cub.2021.03.062

    Article  CAS  PubMed  Google Scholar 

  136. Franklin TB, Silva BA, Perova Z et al (2017) Prefrontal cortical control of a brainstem social behavior circuit. Nat Neurosci 20:260–270. https://doi.org/10.1038/nn.4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Edwards DA (1968) Mice: fighting by neonatally androgenized females. Science 161:1027–1028. https://doi.org/10.1126/science.161.3845.1027

    Article  CAS  PubMed  Google Scholar 

  138. Edwards DA (1971) Neonatal administration of androstenedione, testosterone or testosterone propionate: effects on ovulation, sexual receptivity and aggressive behavior in female mice. Physiol Behav 6:223–228. https://doi.org/10.1016/0031-9384(71)90030-8

    Article  CAS  PubMed  Google Scholar 

  139. Barkley MS, Goldman BD (1977) Testosterone-induced aggression in adult female mice. Horm Behav 9:76–84. https://doi.org/10.1016/0018-506x(77)90052-6

    Article  CAS  PubMed  Google Scholar 

  140. Peters PJ, Bronson FH, Whitsett JM (1972) Neonatal castration and intermale aggression in mice. Physiol Behav 8:265–268. https://doi.org/10.1016/0031-9384(72)90371-X

    Article  CAS  PubMed  Google Scholar 

  141. Juntti SA, Tollkuhn J, Wu MV et al (2010) The androgen receptor governs the execution, but not programming, of male sexual and territorial behaviors. Neuron 66:260–272. https://doi.org/10.1016/j.neuron.2010.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Soden ME, Miller SM, Burgeno LM et al (2016) Genetic isolation of hypothalamic neurons that regulate context-specific male social behavior. Cell Rep 16:304–313. https://doi.org/10.1016/j.celrep.2016.05.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Siegel A, Bhatt S, Bhatt R, Zalcman SS (2007) The neurobiological bases for development of pharmacological treatments of aggressive disorders. Curr Neuropharmacol 5:135–147. https://doi.org/10.2174/157015907780866929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Saudou F, Amara DA, Dierich A et al (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878. https://doi.org/10.1126/science.8091214

    Article  CAS  PubMed  Google Scholar 

  145. Fish EW, DeBold JF, Miczek KA (2005) Escalated aggression as a reward: corticosterone and GABA(A) receptor positive modulators in mice. Psychopharmacology 182:116–127. https://doi.org/10.1007/s00213-005-0064-x

    Article  CAS  PubMed  Google Scholar 

  146. Yu Q, Teixeira CM, Mahadevia D et al (2014) Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry 19:688–698. https://doi.org/10.1038/mp.2014.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Narvaes R (2014) Aggressive behavior and three neurotransmitters: dopamine, GABA, and serotonin—a review of the last 10 years. Psychol Neurosci 7:601. https://doi.org/10.3922/j.psns.2014.4.20

    Article  Google Scholar 

  148. de Almeida RMM, Ferrari PF, Parmigiani S, Miczek KA (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526:51–64. https://doi.org/10.1016/j.ejphar.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  149. Miczek KA, Fish EW, De Bold JF, De Almeida RMM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology 163:434–458. https://doi.org/10.1007/s00213-002-1139-6

    Article  CAS  PubMed  Google Scholar 

  150. Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181. https://doi.org/10.1016/s0166-4328(01)00298-4

    Article  CAS  PubMed  Google Scholar 

  151. Tecott LH, Barondes SH (1996) Genes and aggressiveness. Behavioral genetics. Curr Biol 6:238–240. https://doi.org/10.1016/s0960-9822(02)00466-9

    Article  CAS  PubMed  Google Scholar 

  152. Hendricks TJ, Fyodorov DV, Wegman LJ et al (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37:233–247. https://doi.org/10.1016/s0896-6273(02)01167-4

    Article  CAS  PubMed  Google Scholar 

  153. Olivier B (2004) Serotonin and aggression. Ann NY Acad Sci 1036:382–392. https://doi.org/10.1196/annals.1330.022

    Article  CAS  PubMed  Google Scholar 

  154. Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nat Rev Neurosci 8:536–546. https://doi.org/10.1038/nrn2174

    Article  CAS  PubMed  Google Scholar 

  155. Chiavegatto S, Dawson VL, Mamounas LA et al (2001) Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci USA 98:1277–1281. https://doi.org/10.1073/pnas.031487198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ren J, Friedmann D, Xiong J et al (2018) Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175:472-487.e20. https://doi.org/10.1016/j.cell.2018.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Weissbourd B, Ren J, DeLoach KE et al (2014) Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83:645–662. https://doi.org/10.1016/j.neuron.2014.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ren J, Isakova A, Friedmann D et al (2019) Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. Elife. https://doi.org/10.7554/eLife.49424

    Article  PubMed  PubMed Central  Google Scholar 

  159. Nautiyal KM, Tanaka KF, Barr MM et al (2015) Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity. Neuron 86:813–826. https://doi.org/10.1016/j.neuron.2015.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wan J, Peng W, Li X et al (2021) A genetically encoded sensor for measuring serotonin dynamics. Nat Neurosci. https://doi.org/10.1038/s41593-021-00823-7

    Article  PubMed  PubMed Central  Google Scholar 

  161. Unger EK, Keller JP, Altermatt M et al (2020) Directed evolution of a selective and sensitive serotonin sensor via machine learning. Cell 183:1986-2002.e26. https://doi.org/10.1016/j.cell.2020.11.040

    Article  CAS  PubMed  Google Scholar 

  162. Stork O, Ji FY, Kaneko K et al (2000) Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res 865:45–58. https://doi.org/10.1016/s0006-8993(00)02206-x

    Article  CAS  PubMed  Google Scholar 

  163. Liu G-X, Liu S, Cai G-Q et al (2007) Reduced aggression in mice lacking GABA transporter subtype 1. J Neurosci Res 85:649–655. https://doi.org/10.1002/jnr.21148

    Article  CAS  PubMed  Google Scholar 

  164. Clement J, Simler S, Ciesielski L et al (1987) Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in inbred strains of mice. Pharmacol Biochem Behav 26:83–88. https://doi.org/10.1016/0091-3057(87)90538-7

    Article  CAS  PubMed  Google Scholar 

  165. Lee G, Gammie SC (2009) GABAA receptor signaling in the lateral septum regulates maternal aggression in mice. Behav Neurosci 123:1169–1177. https://doi.org/10.1037/a0017535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nikulina ÉM, Kapralova NS (1992) Role of dopamine receptors in the regulation of aggression in mice; relationship to genotype. Neurosci Behav Physiol 22:364–369. https://doi.org/10.1007/BF01186627

    Article  CAS  PubMed  Google Scholar 

  167. Vukhac KL, Sankoorikal EB, Wang Y (2001) Dopamine D2L receptor- and age-related reduction in offensive aggression. NeuroReport 12:1035–1038. https://doi.org/10.1097/00001756-200104170-00034

    Article  CAS  PubMed  Google Scholar 

  168. Lewis MH, Gariépy JL, Gendreau P et al (1994) Social reactivity and D1 dopamine receptors: studies in mice selectively bred for high and low levels of aggression. Neuropsychopharmacology 10:115–122. https://doi.org/10.1038/npp.1994.13

    Article  CAS  PubMed  Google Scholar 

  169. Niederkofler V, Asher TE, Okaty BW et al (2016) Identification of serotonergic neuronal modules that affect aggressive behavior. Cell Rep 17:1934–1949. https://doi.org/10.1016/j.celrep.2016.10.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bortolato M, Floris G, Shih JC (2018) From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency. J Neural Transm (Vienna) 125:1589–1599. https://doi.org/10.1007/s00702-018-1888-y

    Article  CAS  Google Scholar 

  171. Kolla NJ, Bortolato M (2020) The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: a tale of mice and men. Prog Neurobiol 194:101875. https://doi.org/10.1016/j.pneurobio.2020.101875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jun JJ, Steinmetz NA, Siegle JH et al (2017) Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–236. https://doi.org/10.1038/nature24636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sych Y, Chernysheva M, Sumanovski LT, Helmchen F (2019) High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat Methods 16:553–560. https://doi.org/10.1038/s41592-019-0400-4

    Article  CAS  PubMed  Google Scholar 

  174. Siegel M, Buschman TJ, Miller EK (2015) Cortical information flow during flexible sensorimotor decisions. Science 348:1352–1355. https://doi.org/10.1126/science.aab0551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mathis A, Schneider S, Lauer J, Mathis MW (2020) A primer on motion capture with deep learning: principles, pitfalls, and perspectives. Neuron 108(1):44-65. https://doi.org/10.1016/j.neuron.2020.09.017

    Article  CAS  PubMed  Google Scholar 

  176. Nilsson SR, Goodwin NL, Choong JJ et al (2020) Simple behavioral analysis (SimBA)—an open source toolkit for computer classification of complex social behaviors in experimental animals. bioRxiv. https://doi.org/10.1101/2020.04.19.049452

    Article  Google Scholar 

  177. Zeng H, Sanes JR (2017) Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18:530–546. https://doi.org/10.1038/nrn.2017.85

    Article  CAS  PubMed  Google Scholar 

  178. Pfaff D, Choleris E, Ogawa S (2005) Genes for sex hormone receptors controlling mouse aggression. Novartis Found Symp 268:78–89 (discussion 89-95, 96–99)

    CAS  PubMed  Google Scholar 

  179. Sano K, Nakata M, Musatov S et al (2016) Pubertal activation of estrogen receptor α in the medial amygdala is essential for the full expression of male social behavior in mice. Proc Natl Acad Sci USA 113:7632–7637. https://doi.org/10.1073/pnas.1524907113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ogawa S, Lubahn DB, Korach KS, Pfaff DW (1996) Aggressive behaviors of transgenic estrogen-receptor knockout male mice. Ann NY Acad Sci 794:384–385. https://doi.org/10.1111/j.1749-6632.1996.tb32549.x

    Article  CAS  PubMed  Google Scholar 

  181. Ogawa S, Tsukahara S, Choleris E, Vasudevan N (2020) Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neurosci Biobehav Rev 110:46–59. https://doi.org/10.1016/j.neubiorev.2018.10.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Xu lab for their comments on the manuscript. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grantXDB32000000), the Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX05), the National Nature Science Foundation of China (grant nos. 31871066 and 31922028), China Postdoctoral Science Foundation (Grant No. 2020TQ0333 and 2020M681416).

Author information

Authors and Affiliations

Authors

Contributions

XZ and X-HX made the figures and wrote the manuscript.

Corresponding author

Correspondence to Xiao-Hong Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, X., Xu, XH. Neural circuit mechanisms that govern inter-male attack in mice. Cell. Mol. Life Sci. 78, 7289–7307 (2021). https://doi.org/10.1007/s00018-021-03956-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03956-x

Keywords

Navigation