Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291(5507):1304–1351. https://doi.org/10.1126/science.1058040
CAS
Article
PubMed
Google Scholar
Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562. https://doi.org/10.1038/nature01262
CAS
Article
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982. https://doi.org/10.1038/nrg2165
CAS
Article
PubMed
Google Scholar
Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703. https://doi.org/10.1038/nrg2640
CAS
Article
PubMed
PubMed Central
Google Scholar
Stocking C, Kozak CA (2008) Murine endogenous retroviruses. Cell Mol Life Sci 65(21):3383–3398. https://doi.org/10.1007/s00018-008-8497-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Gagnier L, Belancio VP, Mager DL (2019) Mouse germ line mutations due to retrotransposon insertions. Mob DNA 10:15. https://doi.org/10.1186/s13100-019-0157-4
Article
PubMed
PubMed Central
Google Scholar
Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G et al (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16(12):1548–1556. https://doi.org/10.1101/gr.5565706
CAS
Article
PubMed
PubMed Central
Google Scholar
Friedli M, Trono D (2015) The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 31:429–451. https://doi.org/10.1146/annurev-cellbio-100814-125514
CAS
Article
PubMed
Google Scholar
Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87(5):905–916. https://doi.org/10.1016/s0092-8674(00)81997-2
CAS
Article
PubMed
Google Scholar
Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254(5039):1808–1810. https://doi.org/10.1126/science.1722352
CAS
Article
PubMed
Google Scholar
Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21(2):467–475. https://doi.org/10.1128/MCB.21.2.467-475.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Richardson SR, Morell S, Faulkner GJ (2014) L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet 48:1–27. https://doi.org/10.1146/annurev-genet-120213-092412
CAS
Article
PubMed
Google Scholar
Denli AM, Narvaiza I, Kerman BE, Pena M, Benner C, Marchetto MC et al (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163(3):583–593. https://doi.org/10.1016/j.cell.2015.09.025
CAS
Article
PubMed
Google Scholar
Sookdeo A, Hepp CM, McClure MA, Boissinot S (2013) Revisiting the evolution of mouse LINE-1 in the genomic era. Mob DNA 4(1):3. https://doi.org/10.1186/1759-8753-4-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Payer LM, Burns KH (2019) Transposable elements in human genetic disease. Nat Rev Genet 20(12):760–772. https://doi.org/10.1038/s41576-019-0165-8
CAS
Article
PubMed
Google Scholar
Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23(4):183–191. https://doi.org/10.1016/j.tig.2007.02.006
CAS
Article
PubMed
Google Scholar
Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48. https://doi.org/10.1038/ng1223
CAS
Article
PubMed
Google Scholar
Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M et al (2012) The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40(4):1666–1683. https://doi.org/10.1093/nar/gkr863
CAS
Article
PubMed
Google Scholar
Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH Jr (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20(17):3386–3400. https://doi.org/10.1093/hmg/ddr245
CAS
Article
PubMed
PubMed Central
Google Scholar
Dewannieux M, Heidmann T (2005) L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells. J Mol Biol 349(2):241–247. https://doi.org/10.1016/j.jmb.2005.03.068
CAS
Article
PubMed
Google Scholar
Thompson PJ, Macfarlan TS, Lorincz MC (2016) Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol Cell 62(5):766–776. https://doi.org/10.1016/j.molcel.2016.03.029
CAS
Article
PubMed
PubMed Central
Google Scholar
Varshney D, Vavrova-Anderson J, Oler AJ, Cowling VH, Cairns BR, White RJ (2015) SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun 6:6569. https://doi.org/10.1038/ncomms7569
CAS
Article
PubMed
Google Scholar
MacLennan M, Garcia-Canadas M, Reichmann J, Khazina E, Wagner G, Playfoot CJ et al (2017) Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells. Elife. https://doi.org/10.7554/eLife.26152
Article
PubMed
PubMed Central
Google Scholar
Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV (2014) APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. Elife 3:e02008. https://doi.org/10.7554/eLife.02008
Article
PubMed
PubMed Central
Google Scholar
Bestor TH, Bourc’his D (2004) Transposon silencing and imprint establishment in mammalian germ cells. Cold Spring Harb Symp Quant Biol 69:381–387. https://doi.org/10.1101/sqb.2004.69.381
CAS
Article
PubMed
Google Scholar
Jonsson ME, Ludvik Brattas P, Gustafsson C, Petri R, Yudovich D, Pircs K et al (2019) Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun 10(1):3182. https://doi.org/10.1038/s41467-019-11150-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Herault Y et al (2016) The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354(6314):909–912. https://doi.org/10.1126/science.aah5143
CAS
Article
PubMed
Google Scholar
Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J et al (2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55(2):277–290. https://doi.org/10.1016/j.molcel.2014.05.029
CAS
Article
PubMed
Google Scholar
Liu S, Brind’Amour J, Karimi MM, Shirane K, Bogutz A, Lefebvre L et al (2014) Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev 28(18):2041–2055. https://doi.org/10.1101/gad.244848.114
CAS
Article
PubMed
PubMed Central
Google Scholar
Pezic D, Manakov SA, Sachidanandam R, Aravin AA (2014) piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev 28(13):1410–1428. https://doi.org/10.1101/gad.240895.114
CAS
Article
PubMed
PubMed Central
Google Scholar
Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799. https://doi.org/10.1016/j.molcel.2008.09.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463(7278):237–240. https://doi.org/10.1038/nature08674
CAS
Article
PubMed
Google Scholar
Jacobs FM, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S et al (2014) An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516(7530):242–245. https://doi.org/10.1038/nature13760
CAS
Article
PubMed
PubMed Central
Google Scholar
Turelli P, Castro-Diaz N, Marzetta F, Kapopoulou A, Raclot C, Duc J et al (2014) Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res 24(8):1260–1270. https://doi.org/10.1101/gr.172833.114
CAS
Article
PubMed
PubMed Central
Google Scholar
Rodriguez-Terrones D, Torres-Padilla ME (2018) Nimble and ready to mingle: transposon outbursts of early development. Trends Genet 34(10):806–820. https://doi.org/10.1016/j.tig.2018.06.006
CAS
Article
PubMed
Google Scholar
Robbez-Masson L, Tie CHC, Conde L, Tunbak H, Husovsky C, Tchasovnikarova IA et al (2018) The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Res 28(6):836–845. https://doi.org/10.1101/gr.228171.117
CAS
Article
PubMed
PubMed Central
Google Scholar
Tunbak H, Enriquez-Gasca R, Tie CHC, Gould PA, Mlcochova P, Gupta RK et al (2020) The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat Commun 11(1):5387. https://doi.org/10.1038/s41467-020-19170-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Douse CH, Tchasovnikarova IA, Timms RT, Protasio AV, Seczynska M, Prigozhin DM et al (2020) TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control. Nat Commun 11(1):4940. https://doi.org/10.1038/s41467-020-18761-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Burns KH (2017) Transposable elements in cancer. Nat Rev Cancer 17(7):415–424. https://doi.org/10.1038/nrc.2017.35
CAS
Article
PubMed
Google Scholar
Tam OH, Ostrow LW, Gale Hammell M (2019) Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mob DNA 10:32. https://doi.org/10.1186/s13100-019-0176-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M et al (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 50(4):601–608. https://doi.org/10.1016/j.molcel.2013.04.026
CAS
Article
PubMed
Google Scholar
Malki S, van der Heijden GW, O’Donnell KA, Martin SL, Bortvin A (2014) A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell 29(5):521–533. https://doi.org/10.1016/j.devcel.2014.04.027
CAS
Article
PubMed
PubMed Central
Google Scholar
Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM et al (2019) Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet 51(4):611–617. https://doi.org/10.1038/s41588-019-0373-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Deniz O, Ahmed M, Todd CD, Rio-Machin A, Dawson MA, Branco MR (2020) Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia. Nat Commun 11(1):3506. https://doi.org/10.1038/s41467-020-17206-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Jonsson ME, Garza R, Sharma Y, Petri R, Sodersten E, Johansson JG et al (2021) Activation of endogenous retroviruses during brain development causes an inflammatory response. Embo J. https://doi.org/10.15252/embj.2020106423
Article
PubMed
PubMed Central
Google Scholar
Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T et al (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29(4):871–885. https://doi.org/10.1016/j.cmet.2019.02.014
CAS
Article
PubMed
PubMed Central
Google Scholar
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566(7742):73–78. https://doi.org/10.1038/s41586-018-0784-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Jonsson ME, Garza R, Johansson PA, Jakobsson J (2020) Transposable elements: a common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet 36(8):610–623. https://doi.org/10.1016/j.tig.2020.05.004
CAS
Article
PubMed
Google Scholar
Saleh A, Macia A, Muotri AR (2019) Transposable elements, inflammation, and neurological disease. Front Neurol 10:894. https://doi.org/10.3389/fneur.2019.00894
Article
PubMed
PubMed Central
Google Scholar
Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165(3891):349–357. https://doi.org/10.1126/science.165.3891.349
CAS
Article
PubMed
Google Scholar
Davidson EH, Britten RJ (1979) Regulation of gene expression: possible role of repetitive sequences. Science 204(4397):1052–1059. https://doi.org/10.1126/science.451548
CAS
Article
PubMed
Google Scholar
Lu JY, Shao W, Chang L, Yin Y, Li T, Zhang H et al (2020) Genomic repeats categorize genes with distinct functions for orchestrated regulation. Cell Rep 30(10):3296–3311. https://doi.org/10.1016/j.celrep.2020.02.048
CAS
Article
PubMed
PubMed Central
Google Scholar
Sultana T, Zamborlini A, Cristofari G, Lesage P (2017) Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 18(5):292–308. https://doi.org/10.1038/nrg.2017.7
CAS
Article
PubMed
Google Scholar
Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci USA 104(19):8005–8010. https://doi.org/10.1073/pnas.0611223104
CAS
Article
PubMed
PubMed Central
Google Scholar
Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18(2):71–86. https://doi.org/10.1038/nrg.2016.139
CAS
Article
PubMed
Google Scholar
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147. https://doi.org/10.1016/j.cell.2014.09.001
CAS
Article
PubMed
Google Scholar
Roy-Engel AM, El-Sawy M, Farooq L, Odom GL, Perepelitsa-Belancio V, Bruch H et al (2005) Human retroelements may introduce intragenic polyadenylation signals. Cytogenet Genome Res 110(1–4):365–371. https://doi.org/10.1159/000084968
CAS
Article
PubMed
Google Scholar
Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247. https://doi.org/10.1101/gad.251926.114
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee JY, Ji Z, Tian B (2008) Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3’-end of genes. Nucleic Acids Res 36(17):5581–5590. https://doi.org/10.1093/nar/gkn540
CAS
Article
PubMed
PubMed Central
Google Scholar
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157. https://doi.org/10.1261/rna.035667.112
CAS
Article
PubMed
PubMed Central
Google Scholar
Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D et al (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7(4):597–606. https://doi.org/10.1016/j.devcel.2004.09.004
CAS
Article
PubMed
Google Scholar
Dunn CA, Medstrand P, Mager DL (2003) An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci USA 100(22):12841–12846. https://doi.org/10.1073/pnas.2134464100
CAS
Article
PubMed
PubMed Central
Google Scholar
Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D et al (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487(7405):57–63. https://doi.org/10.1038/nature11244
CAS
Article
PubMed
PubMed Central
Google Scholar
Maksakova IA, Thompson PJ, Goyal P, Jones SJ, Singh PB, Karimi MM et al (2013) Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenet Chromatin 6(1):15. https://doi.org/10.1186/1756-8935-6-15
CAS
Article
Google Scholar
Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167(5):1170–1187. https://doi.org/10.1016/j.cell.2016.09.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Andersson R, Sandelin A (2020) Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 21(2):71–87. https://doi.org/10.1038/s41576-019-0173-8
CAS
Article
PubMed
Google Scholar
Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154–1159. https://doi.org/10.1038/ng.917
CAS
Article
PubMed
Google Scholar
Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I, Selleri L et al (2015) Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163(1):68–83. https://doi.org/10.1016/j.cell.2015.08.036
CAS
Article
PubMed
PubMed Central
Google Scholar
Ong CT, Corces VG (2012) Enhancers: emerging roles in cell fate specification. Embo Rep 13(5):423–430. https://doi.org/10.1038/embor.2012.52
CAS
Article
PubMed
PubMed Central
Google Scholar
Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49(5):825–837. https://doi.org/10.1016/j.molcel.2013.01.038
CAS
Article
PubMed
Google Scholar
Natoli G, Andrau JC (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19. https://doi.org/10.1146/annurev-genet-110711-155459
CAS
Article
PubMed
Google Scholar
Furlong EEM, Levine M (2018) Developmental enhancers and chromosome topology. Science 361(6409):1341–1345. https://doi.org/10.1126/science.aau0320
CAS
Article
PubMed
PubMed Central
Google Scholar
Cao Y, Chen G, Wu G, Zhang X, McDermott J, Chen X et al (2019) Widespread roles of enhancer-like transposable elements in cell identity and long-range genomic interactions. Genome Res 29(1):40–52. https://doi.org/10.1101/gr.235747.118
CAS
Article
PubMed
PubMed Central
Google Scholar
Sundaram V, Cheng Y, Ma Z, Li D, Xing X, Edge P et al (2014) Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24(12):1963–1976. https://doi.org/10.1101/gr.168872.113
CAS
Article
PubMed
PubMed Central
Google Scholar
Ito J, Sugimoto R, Nakaoka H, Yamada S, Kimura T, Hayano T et al (2017) Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet 13(7):e1006883. https://doi.org/10.1371/journal.pgen.1006883
CAS
Article
PubMed
PubMed Central
Google Scholar
Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS et al (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42(7):631–634. https://doi.org/10.1038/ng.600
CAS
Article
PubMed
Google Scholar
Chuong EB, Rumi MA, Soares MJ, Baker JC (2013) Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45(3):325–329. https://doi.org/10.1038/ng.2553
CAS
Article
PubMed
PubMed Central
Google Scholar
Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41(5):563–571. https://doi.org/10.1038/ng.368
CAS
Article
PubMed
Google Scholar
Todd CD, Deniz O, Taylor D, Branco MR (2019) Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells. Elife. https://doi.org/10.7554/eLife.44344
Article
PubMed
PubMed Central
Google Scholar
Brind’Amour J, Mager DL (2019) Reality check for transposon enhancers. Elife. https://doi.org/10.7554/eLife.47900
Article
PubMed
PubMed Central
Google Scholar
Fuentes DR, Swigut T, Wysocka J (2018) Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife. https://doi.org/10.7554/eLife.35989
Article
PubMed
PubMed Central
Google Scholar
Pontis J, Planet E, Offner S, Turelli P, Duc J, Coudray A et al (2019) Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24(5):724–735. https://doi.org/10.1016/j.stem.2019.03.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Chuong EB, Elde NC, Feschotte C (2016) Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351(6277):1083–1087. https://doi.org/10.1126/science.aad5497
CAS
Article
PubMed
PubMed Central
Google Scholar
Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P (2018) Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol 2(1):152–163. https://doi.org/10.1038/s41559-017-0377-2
Article
PubMed
Google Scholar
Della Valle F, Thimma MP, Caiazzo M, Pulcrano S, Celii M, Adroub SA et al (2020) Transdifferentiation of mouse embryonic fibroblasts into dopaminergic neurons reactivates LINE-1 repetitive elements. Stem Cell Rep 14(1):60–74. https://doi.org/10.1016/j.stemcr.2019.12.002
CAS
Article
Google Scholar
Jachowicz JW, Bing X, Pontabry J, Boskovic A, Rando OJ, Torres-Padilla ME (2017) LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 49(10):1502–1510. https://doi.org/10.1038/ng.3945
CAS
Article
PubMed
Google Scholar
Fadloun A, Le Gras S, Jost B, Ziegler-Birling C, Takahashi H, Gorab E et al (2013) Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 20(3):332–338. https://doi.org/10.1038/nsmb.2495
CAS
Article
Google Scholar
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A et al (2018) A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174(2):391–405. https://doi.org/10.1016/j.cell.2018.05.043
CAS
Article
PubMed
PubMed Central
Google Scholar
Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M, Mehta N et al (2014) Stable C0T–1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156(5):907–919. https://doi.org/10.1016/j.cell.2014.01.042
CAS
Article
PubMed
PubMed Central
Google Scholar
Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G et al (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9(4):e1003470. https://doi.org/10.1371/journal.pgen.1003470
CAS
Article
PubMed
PubMed Central
Google Scholar
Petri R, Brattas PL, Sharma Y, Jonsson ME, Pircs K, Bengzon J et al (2019) LINE-2 transposable elements are a source of functional human microRNAs and target sites. PLoS Genet 15(3):e1008036. https://doi.org/10.1371/journal.pgen.1008036
CAS
Article
PubMed
PubMed Central
Google Scholar
Caudron-Herger M, Pankert T, Seiler J, Nemeth A, Voit R, Grummt I et al (2015) Alu element-containing RNAs maintain nucleolar structure and function. Embo J 34(22):2758–2774. https://doi.org/10.15252/embj.201591458
CAS
Article
PubMed
PubMed Central
Google Scholar
Lu X, Sachs F, Ramsay L, Jacques PE, Goke J, Bourque G et al (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21(4):423–425. https://doi.org/10.1038/nsmb.2799
CAS
Article
PubMed
Google Scholar
Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11(9):816–821. https://doi.org/10.1038/nsmb813
CAS
Article
PubMed
Google Scholar
Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11(9):822–829. https://doi.org/10.1038/nsmb812
CAS
Article
PubMed
Google Scholar
Tajaddod M, Tanzer A, Licht K, Wolfinger MT, Badelt S, Huber F et al (2016) Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity. Genome Biol 17(1):220. https://doi.org/10.1186/s13059-016-1083-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29(4):499–509. https://doi.org/10.1016/j.molcel.2007.12.013
CAS
Article
PubMed
Google Scholar
Zovoilis A, Cifuentes-Rojas C, Chu HP, Hernandez AJ, Lee JT (2016) Destabilization of B2 RNA by EZH2 activates the stress response. Cell 167(7):1788–1802. https://doi.org/10.1016/j.cell.2016.11.041
CAS
Article
PubMed
PubMed Central
Google Scholar
Hernandez AJ, Zovoilis A, Cifuentes-Rojas C, Han L, Bujisic B, Lee JT (2020) B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2. Proc Natl Acad Sci USA 117(1):415–425. https://doi.org/10.1073/pnas.1917190117
CAS
Article
PubMed
Google Scholar
Karijolich J, Zhao Y, Alla R, Glaunsinger B (2017) Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Res 45(10):6194–6208. https://doi.org/10.1093/nar/gkx180
CAS
Article
PubMed
PubMed Central
Google Scholar
Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491(7424):454–457. https://doi.org/10.1038/nature11508
CAS
Article
PubMed
Google Scholar
Espinoza S, Scarpato M, Damiani D, Manago F, Mereu M, Contestabile A et al (2020) SINEUP non-coding RNA targeting GDNF rescues motor deficits and neurodegeneration in a mouse model of parkinson’s disease. Mol Ther 28(2):642–652. https://doi.org/10.1016/j.ymthe.2019.08.005
CAS
Article
PubMed
Google Scholar
Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM et al (2020) N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367(6477):580–586. https://doi.org/10.1126/science.aay6018
CAS
Article
PubMed
PubMed Central
Google Scholar
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S et al (2021) m(6)A RNA methylation regulates the fate of endogenous retroviruses. Nature. https://doi.org/10.1038/s41586-020-03135-1
Article
PubMed
Google Scholar
Schmidt D, Schwalie PC, Wilson MD, Ballester B, Goncalves A, Kutter C et al (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148(1–2):335–348. https://doi.org/10.1016/j.cell.2011.11.058
CAS
Article
PubMed
PubMed Central
Google Scholar
Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H et al (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570(7761):395–399. https://doi.org/10.1038/s41586-019-1275-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Raviram R, Rocha PP, Luo VM, Swanzey E, Miraldi ER, Chuong EB et al (2018) Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biol 19(1):216. https://doi.org/10.1186/s13059-018-1598-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN et al (2019) Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat Genet 51(9):1380–1388. https://doi.org/10.1038/s41588-019-0479-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Lu JY, Chang L, Li T, Wang T, Yin Y, Zhan G et al (2021) Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. https://doi.org/10.1038/s41422-020-00466-6
Article
PubMed
PubMed Central
Google Scholar
Choudhary MN, Friedman RZ, Wang JT, Jang HS, Zhuo X, Wang T (2020) Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol 21(1):16. https://doi.org/10.1186/s13059-019-1916-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Diehl AG, Ouyang N, Boyle AP (2020) Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Nat Commun 11(1):1796. https://doi.org/10.1038/s41467-020-15520-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096
CAS
Article
PubMed
Google Scholar
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D, Milanova D et al (2018) An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 15(8):611–616. https://doi.org/10.1038/s41592-018-0048-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EP et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326–328. https://doi.org/10.1038/nmeth.3312
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith CJ, Castanon O, Said K, Volf V, Khoshakhlagh P, Hornick A et al (2020) Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Res 48(9):5183–5195. https://doi.org/10.1093/nar/gkaa239
CAS
Article
PubMed
PubMed Central
Google Scholar
Batra R, Nelles DA, Pirie E, Blue SM, Marina RJ, Wang H et al (2017) Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 170(5):899–912
CAS
Article
Google Scholar
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF, Wu H et al (2019) Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell 76(6):981–997. https://doi.org/10.1016/j.molcel.2019.10.024
CAS
Article
PubMed
Google Scholar
Gao XD, Tu LC, Mir A, Rodriguez T, Ding Y, Leszyk J et al (2018) C-BERST: defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2. Nat Methods 15(6):433–436. https://doi.org/10.1038/s41592-018-0006-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Myers SA, Wright J, Peckner R, Kalish BT, Zhang F, Carr SA (2018) Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat Methods 15(6):437–439. https://doi.org/10.1038/s41592-018-0007-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Yi W, Li J, Zhu X, Wang X, Fan L, Sun W et al (2020) CRISPR-assisted detection of RNA-protein interactions in living cells. Nat Methods 17(7):685–688. https://doi.org/10.1038/s41592-020-0866-0
CAS
Article
PubMed
Google Scholar
Ramanathan M, Porter DF, Khavari PA (2019) Methods to study RNA-protein interactions. Nat Methods 16(3):225–234. https://doi.org/10.1038/s41592-019-0330-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM et al (2015) Systematic discovery of Xist RNA binding proteins. Cell 161(2):404–416. https://doi.org/10.1016/j.cell.2015.03.025
CAS
Article
PubMed
PubMed Central
Google Scholar
McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521(7551):232–236. https://doi.org/10.1038/nature14443
CAS
Article
PubMed
PubMed Central
Google Scholar
Raj A, Rinn JL (2019) Illuminating genomic dark matter with RNA imaging. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a032094
Article
PubMed
PubMed Central
Google Scholar
Simon MD, Machyna M (2019) Principles and practices of hybridization capture experiments to study long noncoding RNAs that act on chromatin. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a032276
Article
PubMed
Google Scholar
Meier F, Brunner AD, Koch S, Koch H, Lubeck M, Krause M et al (2018) Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol Cell Proteom 17(12):2534–2545. https://doi.org/10.1074/mcp.TIR118.000900
CAS
Article
Google Scholar
Prianichnikov N, Koch H, Koch S, Lubeck M, Heilig R, Brehmer S et al (2020) MaxQuant software for ion mobility enhanced shotgun proteomics. Mol Cell Proteom 19(6):1058–1069. https://doi.org/10.1074/mcp.TIR119.001720
Article
Google Scholar
Meier F, Brunner AD, Frank M, Ha A, Bludau I, Voytik E et al (2020) diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods 17(12):1229–1236. https://doi.org/10.1038/s41592-020-00998-0
CAS
Article
PubMed
Google Scholar
Werner MS, Ruthenburg AJ (2015) Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep 12(7):1089–1098. https://doi.org/10.1016/j.celrep.2015.07.033
CAS
Article
PubMed
PubMed Central
Google Scholar
Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S et al (2015) Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161(3):526–540. https://doi.org/10.1016/j.cell.2015.03.027
CAS
Article
PubMed
PubMed Central
Google Scholar
Drexler HL, Choquet K, Churchman LS (2020) Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol Cell 77(5):985–998. https://doi.org/10.1016/j.molcel.2019.11.017
CAS
Article
PubMed
Google Scholar