Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141(4):692–703
CAS
PubMed
PubMed Central
Google Scholar
Flanagan KA, Webb W, Stowers L (2011) Analysis of male pheromones that accelerate female reproductive organ development. PLoS ONE 6(2):e16660
CAS
PubMed
PubMed Central
Google Scholar
He J et al (2008) Encoding gender and individual information in the mouse vomeronasal organ. Science 320(5875):535–538
CAS
PubMed
PubMed Central
Google Scholar
Stowers L et al (2002) Loss of sex discrimination and male–male aggression in mice deficient for TRP2. Science 295(5559):1493–1500
CAS
PubMed
Google Scholar
Haga S et al (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466(7302):118–122
CAS
PubMed
Google Scholar
Vandenbergh JG (1969) Male odor accelerates female sexual maturation in mice. Endocrinology 84(3):658–660
CAS
PubMed
Google Scholar
Whitten WK (1956) Modification of the oestrous cycle of the mouse by external stimuli associated with the male. J Endocrinol 13(4):399–404
CAS
PubMed
Google Scholar
Boehm U (2006) The vomeronasal system in mice: from the nose to the hypothalamus- and back! Semin Cell Dev Biol 17(4):471–479
PubMed
Google Scholar
Smith TD et al (2002) Histological definition of the vomeronasal organ in humans and chimpanzees, with a comparison to other primates. Anat Rec 267(2):166–176
PubMed
Google Scholar
Bhatnagar KP, Meisami E (1998) Vomeronasal organ in bats and primates: extremes of structural variability and its phylogenetic implications. Microsc Res Tech 43(6):465–475
CAS
PubMed
Google Scholar
Smith TD et al (2001) The existence of the vomeronasal organ in postnatal chimpanzees and evidence for its homology with that of humans. J Anat 198(Pt 1):77–82
CAS
PubMed
PubMed Central
Google Scholar
Smith TD, Bhatnagar KP (2000) The human vomeronasal organ. Part II: prenatal development. J Anat 197(Pt 3):421–436
PubMed
PubMed Central
Google Scholar
Nakamuta S et al (2015) Transient appearance of the epithelial invagination in the olfactory pit of chick embryos. J Vet Med Sci 77(1):89–93
PubMed
Google Scholar
Trotier D et al (2000) The vomeronasal cavity in adult humans. Chem Senses 25(4):369–380
CAS
PubMed
Google Scholar
Bhatnagar KP, Smith TD (2001) The human vomeronasal organ. III. Postnatal development from infancy to the ninth decade. J Anat 199(Pt 3):289–302
CAS
PubMed
PubMed Central
Google Scholar
D’Aniello B et al (2017) The vomeronasal organ: a neglected organ. Front Neuroanat 11:70
PubMed
PubMed Central
Google Scholar
Schwanzel-Fukuda M, Pfaff DW (1989) Origin of luteinizing hormone-releasing hormone neurons. Nature 338(6211):161–164
CAS
PubMed
Google Scholar
Wray S, Grant P, Gainer H (1989) Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 86(20):8132–8136
CAS
PubMed
PubMed Central
Google Scholar
Forni PE, Wray S (2015) GnRH, anosmia and hypogonadotropic hypogonadism–where are we? Front Neuroendocrinol 36:165–177
CAS
PubMed
Google Scholar
Cattanach BM et al (1977) Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269(5626):338–340
CAS
PubMed
Google Scholar
Casoni F et al (2016) Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 143(21):3969–3981
CAS
PubMed
Google Scholar
Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83(2):195–206
CAS
PubMed
Google Scholar
Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90(4):763–773
CAS
PubMed
Google Scholar
Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19(2):371–379
CAS
PubMed
Google Scholar
Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90(4):775–784
CAS
PubMed
Google Scholar
Enomoto T et al (2011) Bcl11b/Ctip2 controls the differentiation of vomeronasal sensory neurons in mice. J Neurosci 31(28):10159–10173
CAS
PubMed
PubMed Central
Google Scholar
Taroc EZM et al (2020) Gli3 regulates vomeronasal neurogenesis, olfactory ensheathing cell formation, and GnRH-1 neuronal migration. J Neurosci 40(2):311–326
CAS
PubMed
PubMed Central
Google Scholar
Chamero P et al (2011) G protein G(alpha)o is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci USA 108(31):12898–12903
CAS
PubMed
PubMed Central
Google Scholar
Oboti L et al (2014) A wide range of pheromone-stimulated sexual and reproductive behaviors in female mice depend on G protein Galphao. BMC Biol 12:31
PubMed
PubMed Central
Google Scholar
Trouillet AC et al (2019) Central role of G protein Galphai2 and Galphai2(+) vomeronasal neurons in balancing territorial and infant-directed aggression of male mice. Proc Natl Acad Sci USA 116(11):5135–5143
CAS
PubMed
PubMed Central
Google Scholar
Palle A et al (2020) Galphai2(+) vomeronasal neurons govern the initial outcome of an acute social competition. Sci Rep 10(1):894
CAS
PubMed
PubMed Central
Google Scholar
Amjad A et al (2015) Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons. J Gen Physiol 145(4):285–301
CAS
PubMed
PubMed Central
Google Scholar
Jia C, Halpern M (1996) Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha 2 and G(o alpha)) and segregated projections to the accessory olfactory bulb. Brain Res 719(1–2):117–128
CAS
PubMed
Google Scholar
Walz A, Rodriguez I, Mombaerts P (2002) Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J Neurosci 22(10):4025–4035
CAS
PubMed
PubMed Central
Google Scholar
Prince JE et al (2009) Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb. J Neurosci 29(45):14211–14222
CAS
PubMed
PubMed Central
Google Scholar
Loconto J et al (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112(5):607–618
CAS
PubMed
Google Scholar
Ishii T, Hirota J, Mombaerts P (2003) Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol 13(5):394–400
CAS
PubMed
Google Scholar
Ishii T, Mombaerts P (2008) Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J Neurosci 28(10):2332–2341
CAS
PubMed
PubMed Central
Google Scholar
Leinders-Zufall T et al (2014) A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J Neurosci 34(15):5121–5133
PubMed
PubMed Central
Google Scholar
Liberles SD et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA 106(24):9842–9847
CAS
PubMed
PubMed Central
Google Scholar
Riviere S et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459(7246):574–577
CAS
PubMed
Google Scholar
Ackels T et al (2014) Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ. Front Neuroanat 8:134
PubMed
PubMed Central
Google Scholar
Bufe B, Schumann T, Zufall F (2012) Formyl peptide receptors from immune and vomeronasal system exhibit distinct agonist properties. J Biol Chem 287(40):33644–33655
CAS
PubMed
PubMed Central
Google Scholar
Perez-Gomez A et al (2014) Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium. Front Neuroanat 8:135
PubMed
PubMed Central
Google Scholar
Tirindelli R et al (2009) From pheromones to behavior. Physiol Rev 89(3):921–956
CAS
PubMed
Google Scholar
Brignall AC, Cloutier JF (2015) Neural map formation and sensory coding in the vomeronasal system. Cell Mol Life Sci 72(24):4697–4709
CAS
PubMed
Google Scholar
Mohrhardt J et al (2018) Signal detection and coding in the accessory olfactory system. Chem Senses 43(9):667–695
CAS
PubMed
PubMed Central
Google Scholar
Halpern M, Martinez-Marcos A (2003) Structure and function of the vomeronasal system: an update. Prog Neurobiol 70(3):245–318
CAS
PubMed
Google Scholar
Keverne EB (1999) The vomeronasal organ. Science 286(5440):716–720
CAS
PubMed
Google Scholar
Takami S (2002) Recent progress in the neurobiology of the vomeronasal organ. Microsc Res Tech 58(3):228–250
CAS
PubMed
Google Scholar
Oboti L, Peretto P (2014) How neurogenesis finds its place in a hardwired sensory system. Front Neurosci 8:102
PubMed
PubMed Central
Google Scholar
Chamero P, Leinders-Zufall T, Zufall F (2012) From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci 35(10):597–606
CAS
PubMed
Google Scholar
Tirindelli R (2021) Coding of pheromones by vomeronasal receptors. Cell Tissue Res. https://doi.org/10.1007/s00441-020-03376-6
Article
PubMed
Google Scholar
Singh S, Groves AK (2016) The molecular basis of craniofacial placode development. Wiley Interdiscip Rev Dev Biol 5(3):363–376
CAS
PubMed
PubMed Central
Google Scholar
Bhattacharyya S, Bronner-Fraser M (2008) Competence, specification and commitment to an olfactory placode fate. Development 135(24):4165–4177
CAS
PubMed
Google Scholar
Cuschieri A, Bannister LH (1975) The development of the olfactory mucosa in the mouse: light microscopy. J Anat 119(Pt 2):277–286
CAS
PubMed
PubMed Central
Google Scholar
Ikeda K et al (2010) Six1 is indispensable for production of functional progenitor cells during olfactory epithelial development. Int J Dev Biol 54(10):1453–1464
PubMed
Google Scholar
Ikeda K et al (2007) Six1 is essential for early neurogenesis in the development of olfactory epithelium. Dev Biol 311(1):53–68
CAS
PubMed
Google Scholar
Wittmann W, Schimmang T, Gunhaga L (2014) Progressive effects of N-myc deficiency on proliferation, neurogenesis, and morphogenesis in the olfactory epithelium. Dev Neurobiol 74(6):643–656
CAS
PubMed
Google Scholar
Panaliappan TK et al (2018) Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development 145(2):dev153791
PubMed
PubMed Central
Google Scholar
Maier E et al (2010) Opposing Fgf and Bmp activities regulate the specification of olfactory sensory and respiratory epithelial cell fates. Development 137(10):1601–1611
CAS
PubMed
PubMed Central
Google Scholar
Tucker ES et al (2010) Proliferative and transcriptional identity of distinct classes of neural precursors in the mammalian olfactory epithelium. Development 137(15):2471–2481
CAS
PubMed
PubMed Central
Google Scholar
Beites CL, Kawauchi S, Calof AL (2009) Olfactory neuron patterning and specification. Dev Neurobiol 7:145–156
CAS
PubMed
PubMed Central
Google Scholar
Cau E et al (2000) Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium. Development 127(11):2323–2332
CAS
PubMed
Google Scholar
Cau E et al (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124(8):1611–1621
CAS
PubMed
Google Scholar
Cau E, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129(8):1871–1880
CAS
PubMed
Google Scholar
Garrosa M, Gayoso MJ, Esteban FJ (1998) Prenatal development of the mammalian vomeronasal organ. Microsc Res Tech 41(6):456–470
CAS
PubMed
Google Scholar
Naik AS et al (2020) Smad4-dependent morphogenic signals control the maturation and axonal targeting of basal vomeronasal sensory neurons to the accessory olfactory bulb. Development 147(8):dev184036
CAS
PubMed
PubMed Central
Google Scholar
Meredith M, O’Connell RJ (1979) Efferent control of stimulus access to the hamster vomeronasal organ. J Physiol 286:301–316
CAS
PubMed
PubMed Central
Google Scholar
Meredith M et al (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science 207(4436):1224–1226
CAS
PubMed
Google Scholar
Coppola DM, O’Connell RJ (1989) Stimulus access to olfactory and vomeronasal receptors in utero. Neurosci Lett 106(3):241–248
CAS
PubMed
Google Scholar
Coppola DM, Budde J, Millar L (1993) The vomeronasal duct has a protracted postnatal development in the mouse. J Morphol 218(1):59–64
CAS
PubMed
Google Scholar
Hovis KR et al (2012) Activity regulates functional connectivity from the vomeronasal organ to the accessory olfactory bulb. J Neurosci 32(23):7907–7916
CAS
PubMed
PubMed Central
Google Scholar
Brann JH, Firestein SJ (2014) A lifetime of neurogenesis in the olfactory system. Front Neurosci 8:182
PubMed
PubMed Central
Google Scholar
Giacobini P et al (2000) Proliferation and migration of receptor neurons in the vomeronasal organ of the adult mouse. Brain Res Dev Brain Res 123(1):33–40
CAS
PubMed
Google Scholar
Martinez-Marcos A et al (2005) Neurogenesis, migration, and apoptosis in the vomeronasal epithelium of adult mice. J Neurobiol 63(3):173–187
CAS
PubMed
Google Scholar
De La Rosa-Prieto C et al (2009) Fate of marginal neuroblasts in the vomeronasal epithelium of adult mice. J Comp Neurol 517(5):723–736
Google Scholar
de la Rosa-Prieto C et al (2010) Neurogenesis in subclasses of vomeronasal sensory neurons in adult mice. Dev Neurobiol 70(14):961–970
PubMed
Google Scholar
Miller AM, Treloar HB, Greer CA (2010) Composition of the migratory mass during development of the olfactory nerve. J Comp Neurol 518(24):4825–4841
PubMed
PubMed Central
Google Scholar
Valverde F, Heredia M, Santacana M (1993) Characterization of neuronal cell varieties migrating from the olfactory epithelium during prenatal development in the rat. Immunocytochemical study using antibodies against olfactory marker protein (OMP) and luteinizing hormone-releasing hormone (LH-RH). Brain Res Dev Brain Res 71(2):209–220
CAS
PubMed
Google Scholar
Tobet SA et al (1996) Expression of gamma-aminobutyric acid and gonadotropin-releasing hormone during neuronal migration through the olfactory system. Endocrinology 137(12):5415–5420
CAS
PubMed
Google Scholar
Verney C, el Amraoui A, Zecevic N (1996) Comigration of tyrosine hydroxylase- and gonadotropin-releasing hormone-immunoreactive neurons in the nasal area of human embryos. Brain Res Dev Brain Res 97(2):251–259
CAS
PubMed
Google Scholar
Hilal EM, Chen JH, Silverman AJ (1996) Joint migration of gonadotropin-releasing hormone (GnRH) and neuropeptide Y (NPY) neurons from olfactory placode to central nervous system. J Neurobiol 31(4):487–502
CAS
PubMed
Google Scholar
Taroc EZM, Katreddi RR, Forni PE (2020) Identifying Isl1 genetic lineage in the developing olfactory system and in GnRH-1 neurons. Front Physiol. https://doi.org/10.3389/fphys.2020.601923
Article
PubMed
PubMed Central
Google Scholar
Dellovade TL, Pfaff DW, Schwanzel-Fukuda M (1998) The gonadotropin-releasing hormone system does not develop in Small-Eye (Sey) mouse phenotype. Brain Res Dev Brain Res 107(2):233–240
CAS
PubMed
Google Scholar
Taroc EZM et al (2017) The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs. Biol Open 6(10):1552–1568
CAS
PubMed
PubMed Central
Google Scholar
Balasubramanian R et al (2010) Human GnRH deficiency: a unique disease model to unravel the ontogeny of GnRH neurons. Neuroendocrinology 92(2):81–99
CAS
PubMed
PubMed Central
Google Scholar
Wray S (2002) Molecular mechanisms for migration of placodally derived GnRH neurons. Chem Senses 27(6):569–572
CAS
PubMed
Google Scholar
Wierman ME, Kiseljak-Vassiliades K, Tobet S (2011) Gonadotropin-releasing hormone (GnRH) neuron migration: initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Front Neuroendocrinol 32(1):43–52
CAS
PubMed
Google Scholar
Cariboni A et al (2012) Slit2 and Robo3 modulate the migration of GnRH-secreting neurons. Development 139(18):3326–3331
CAS
PubMed
PubMed Central
Google Scholar
Cariboni A et al (2015) Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. J Clin Invest 125(6):2413–2428
PubMed
PubMed Central
Google Scholar
Pitteloud N et al (2005) Reversible kallmann syndrome, delayed puberty, and isolated anosmia occurring in a single family with a mutation in the fibroblast growth factor receptor 1 gene. J Clin Endocrinol Metab 90(3):1317–1322
CAS
PubMed
Google Scholar
Jin ZW et al (2019) Nervus terminalis and nerves to the vomeronasal organ: a study using human fetal specimens. Anat Cell Biol 52(3):278–285
PubMed
PubMed Central
Google Scholar
Vilensky JA (2012) The neglected cranial nerve: Nervus terminalis (cranial nerve N). Clin Anat 27(1):46–53
PubMed
Google Scholar
Wirsig-Wiechmann CR (2004) Introduction to the anatomy and function of the nervus terminalis. Microsc Res Tech 65(1–2):1
PubMed
Google Scholar
Wirsig-Wiechmann CR, Wiechmann AF, Eisthen HL (2002) What defines the nervus terminalis? Neurochemical, developmental, and anatomical criteria. Prog Brain Res 141:45–58
CAS
PubMed
Google Scholar
Yoshida K et al (1995) The migration of luteinizing hormone-releasing hormone neurons in the developing rat is associated with a transient, caudal projection of the vomeronasal nerve. J Neurosci 15(12):7769–7777
CAS
PubMed
PubMed Central
Google Scholar
Schwarting GA, Wierman ME, Tobet SA (2007) Gonadotropin-releasing hormone neuronal migration. Semin Reprod Med 25(5):305–312
CAS
PubMed
Google Scholar
Schmid T, Boehm U, Braun T (2020) GnRH neurogenesis depends on embryonic pheromone receptor expression. Mol Cell Endocrinol 518:111030
CAS
PubMed
Google Scholar
Forni PE, Wray S (2012) Neural crest and olfactory system: new prospective. Mol Neurobiol 46(2):349–360
CAS
PubMed
PubMed Central
Google Scholar
Cho HJ et al (2019) Nasal placode development, GnRH neuronal migration and Kallmann syndrome. Front Cell Dev Biol 7:121
PubMed
PubMed Central
Google Scholar
Pena-Melian A et al (2019) Cranial Pair 0: the nervus terminalis. Anat Rec (Hoboken) 302(3):394–404
Google Scholar
Palaniappan TK et al (2019) Extensive apoptosis during the formation of the terminal nerve ganglion by olfactory placode-derived cells with distinct molecular markers. Differentiation 110:8–16
CAS
PubMed
Google Scholar
Aguillon R et al (2018) Cell-type heterogeneity in the early zebrafish olfactory epithelium is generated from progenitors within preplacodal ectoderm. Elife. https://doi.org/10.7554/eLife.32041
Article
PubMed
PubMed Central
Google Scholar
Grindley JC, Davidson DR, Hill RE (1995) The role of Pax-6 in eye and nasal development. Development 121(5):1433–1442
CAS
PubMed
Google Scholar
Quinn JC, West JD, Hill RE (1996) Multiple functions for Pax6 in mouse eye and nasal development. Genes Dev 10(4):435–446
CAS
PubMed
Google Scholar
Collinson JM et al (2003) The roles of Pax6 in the cornea, retina, and olfactory epithelium of the developing mouse embryo. Dev Biol 255(2):303–312
CAS
PubMed
Google Scholar
Chen B, Kim EH, Xu PX (2009) Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4. Dev Biol 326(1):75–85
CAS
PubMed
Google Scholar
Ozaki H et al (2001) Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development. Mol Cell Biol 21(10):3343–3350
CAS
PubMed
PubMed Central
Google Scholar
Donner AL, Episkopou V, Maas RL (2007) Sox2 and Pou2f1 interact to control lens and olfactory placode development. Dev Biol 303(2):784–799
CAS
PubMed
Google Scholar
Duggan CD et al (2008) Foxg1 is required for development of the vertebrate olfactory system. J Neurosci 28(20):5229–5239
CAS
PubMed
PubMed Central
Google Scholar
Kawauchi S et al (2009) Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11. Development 136(9):1453–1464
CAS
PubMed
PubMed Central
Google Scholar
Depew MJ et al (1999) Dlx5 regulates regional development of the branchial arches and sensory capsules. Development 126(17):3831–3846
CAS
PubMed
Google Scholar
Long JE et al (2003) DLX5 regulates development of peripheral and central components of the olfactory system. J Neurosci 23(2):568–578
CAS
PubMed
PubMed Central
Google Scholar
Eckler MJ et al (2011) Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J Comp Neurol 519(10):1829–1846
CAS
PubMed
PubMed Central
Google Scholar
Hirata T et al (2004) Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Dev Dyn 230(3):546–556
CAS
PubMed
Google Scholar
Hirata T et al (2006) Zinc-finger gene Fez in the olfactory sensory neurons regulates development of the olfactory bulb non-cell-autonomously. Development 133(8):1433–1443
CAS
PubMed
Google Scholar
Forni PE et al (2013) The indirect role of fibroblast growth factor-8 in defining neurogenic niches of the olfactory/GnRH systems. J Neurosci 33(50):19620–19634
CAS
PubMed
PubMed Central
Google Scholar
Tarozzo G et al (1998) Prenatal differentiation of mouse vomeronasal neurones. Eur J Neurosci 10(1):392–396
CAS
PubMed
Google Scholar
Cappello P et al (1999) Proliferation and apoptosis in the mouse vomeronasal organ during ontogeny. Neurosci Lett 266(1):37–40
CAS
PubMed
Google Scholar
Murray RC et al (2003) Widespread defects in the primary olfactory pathway caused by loss of Mash1 function. J Neurosci 23(5):1769–1780
CAS
PubMed
PubMed Central
Google Scholar
Packard A et al (2011) Progenitor cell capacity of NeuroD1-expressing globose basal cells in the mouse olfactory epithelium. J Comp Neurol 519(17):3580–3596
CAS
PubMed
PubMed Central
Google Scholar
Hasenpusch-Theil K et al (2018) Gli3 controls the onset of cortical neurogenesis by regulating the radial glial cell cycle through Cdk6 expression. Development 145(17):dev163147
PubMed
PubMed Central
Google Scholar
Suzuki Y et al (2003) Expression of Hes6 and NeuroD in the olfactory epithelium, vomeronasal organ and non-sensory patches. Chem Senses 28(3):197–205
CAS
PubMed
Google Scholar
Suarez R (2011) Molecular switches in the development and fate specification of vomeronasal neurons. J Neurosci 31(49):17761–17763
CAS
PubMed
PubMed Central
Google Scholar
Lin JM et al (2018) The transcription factor Tfap2e/AP-2ε plays a pivotal role in maintaining the identity of basal vomeronasal sensory neurons. Dev Biol 441(1):67–82
CAS
PubMed
Google Scholar
Nakano H et al (2016) Activating transcription factor 5 (ATF5) is essential for the maturation and survival of mouse basal vomeronasal sensory neurons. Cell Tissue Res 363(3):621–633
CAS
PubMed
Google Scholar
Wang SZ et al (2012) Transcription factor ATF5 is required for terminal differentiation and survival of olfactory sensory neurons. Proc Natl Acad Sci USA 109(45):18589–18594
CAS
PubMed
PubMed Central
Google Scholar
Nakano H et al (2019) Co-expression of C/EBPgamma and ATF5 in mouse vomeronasal sensory neurons during early postnatal development. Cell Tissue Res 378(3):427–440
CAS
PubMed
Google Scholar
Chang I, Parrilla M (2016) Expression patterns of homeobox genes in the mouse vomeronasal organ at postnatal stages. Gene Expr Patterns 21(2):69–80
CAS
PubMed
Google Scholar
Liu Q et al (2018) G protein gamma subunit Ggamma13 is essential for olfactory function and aggressive behavior in mice. Neuro Report 29(15):1333–1339
CAS
Google Scholar
Montani G et al (2013) Aggressive behaviour and physiological responses to pheromones are strongly impaired in mice deficient for the olfactory G-protein -subunit G8. J Physiol 591(Pt 16):3949–3962
CAS
PubMed
PubMed Central
Google Scholar
Tirindelli R, Ryba NJ (1996) The G-protein gamma-subunit G gamma 8 is expressed in the developing axons of olfactory and vomeronasal neurons. Eur J Neurosci 8(11):2388–2398
CAS
PubMed
Google Scholar
Choi PS et al (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57(1):41–55
CAS
PubMed
PubMed Central
Google Scholar
Garaffo G et al (2015) The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 68:103–119
CAS
PubMed
PubMed Central
Google Scholar
Moody SA, LaMantia AS (2015) Transcriptional regulation of cranial sensory placode development. Curr Top Dev Biol 111:301–350
CAS
PubMed
PubMed Central
Google Scholar
Patthey C, Gunhaga L (2011) Specification and regionalisation of the neural plate border. Eur J Neurosci 34(10):1516–1528
PubMed
Google Scholar
LaMantia AS et al (2000) Mesenchymal/epithelial induction mediates olfactory pathway formation. Neuron 28(2):411–425
CAS
PubMed
Google Scholar
Balmer CW, LaMantia AS (2005) Noses and neurons: induction, morphogenesis, and neuronal differentiation in the peripheral olfactory pathway. Dev Dyn 234(3):464–481
CAS
PubMed
Google Scholar
Bachler M, Neubuser A (2001) Expression of members of the Fgf family and their receptors during midfacial development. Mech Dev 100(2):313–316
CAS
PubMed
Google Scholar
Kawauchi S et al (2005) Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 132(23):5211–5223
CAS
PubMed
Google Scholar
Lioubinski O et al (2006) FGF signalling controls expression of vomeronasal receptors during embryogenesis. Mech Dev 123(1):17–23
CAS
PubMed
Google Scholar
Coleman JH et al (2019) Spatial determination of neuronal diversification in the olfactory epithelium. J Neurosci 39(5):814–832
CAS
PubMed
PubMed Central
Google Scholar
Prince JE et al (2013) Kirrel3 is required for the coalescence of vomeronasal sensory neuron axons into glomeruli and for male-male aggression. Development 140(11):2398–2408
CAS
PubMed
PubMed Central
Google Scholar
Brignall AC et al (2018) Loss of Kirrel family members alters glomerular structure and synapse numbers in the accessory olfactory bulb. Brain Struct Funct 223(1):307–319
CAS
PubMed
Google Scholar
Leypold BG et al (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99(9):6376–6381
CAS
PubMed
PubMed Central
Google Scholar
Francia S et al (2014) Vomeronasal receptors and signal transduction in the vomeronasal organ of mammals. In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press/Taylor & Franci, Boca Raton, FL (ISBN-13: 978-1-4665-5341-5)
Wang X et al (2008) Type IV collagens regulate BMP signalling in Drosophila. Nature 455(7209):72–77
CAS
PubMed
Google Scholar
Pingault V et al (2013) Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. Am J Hum Genet 92(5):707–724
CAS
PubMed
PubMed Central
Google Scholar
Topaloglu AK (2017) Update on the genetics of idiopathic hypogonadotropic hypogonadism. J Clin Res Pediatr Endocrinol 9(Suppl 2):113–122
PubMed
PubMed Central
Google Scholar
Sagi SV et al (2020) Normosmic idiopathic hypogonadotropic hypogonadism due to a novel GNRH1 variant in two siblings. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/EDM-19-0145
Article
PubMed
PubMed Central
Google Scholar
de Roux N et al (1997) A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 337(22):1597–1602
PubMed
Google Scholar
Dulac C, Torello AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4(7):551–562
CAS
PubMed
Google Scholar
Chung WC, Moyle SS, Tsai PS (2008) Fibroblast growth factor 8 signaling through fibroblast growth factor receptor 1 is required for the emergence of gonadotropin-releasing hormone neurons. Endocrinology 149(10):4997–5003
CAS
PubMed
PubMed Central
Google Scholar
Wu HH et al (2003) Autoregulation of neurogenesis by GDF11. Neuron 37(2):197–207
CAS
PubMed
Google Scholar
Gu J et al (1999) Cytochrome P450 and steroid hydroxylase activity in mouse olfactory and vomeronasal mucosa. Biochem Biophys Res Commun 266(1):262–267
CAS
PubMed
Google Scholar
Herrick DB et al (2018) Canonical notch signaling directs the fate of differentiating neurocompetent progenitors in the mammalian olfactory epithelium. J Neurosci 38(21):5022–5037
CAS
PubMed
PubMed Central
Google Scholar
Fletcher RB et al (2017) Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20(6):817–830 (e8)
CAS
PubMed
PubMed Central
Google Scholar
Fornaro M et al (2003) HuC/D confocal imaging points to olfactory migratory cells as the first cell population that expresses a post-mitotic neuronal phenotype in the chick embryo. Neuroscience 122(1):123–128
CAS
PubMed
Google Scholar
Forni PE et al (2011) A role for FE65 in controlling GnRH-1 neurogenesis. J Neurosci 31(2):480–491
CAS
PubMed
PubMed Central
Google Scholar