Skip to main content

Advertisement

Log in

Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Emerging evidence shows that m6A, one of the most abundant RNA modifications in mammals, is involved in the entire process of spermatogenesis, including mitosis, meiosis, and spermiogenesis. “Writers” catalyze m6A formation on stage-specific transcripts during male germline development, while “erasers” remove m6A modification to maintain a balance between methylation and demethylation. The different functions of RNA-m6A transcripts depend on their recognition by “readers”. m6A modification mediates RNA metabolism, including mRNA splicing, translation, and degradation, as well as the maturity and biosynthesis of non-coding RNAs. Sperm RNA profiles are easily affected by environmental exposure and can even be inherited for several generations, similar to epigenetic inheritance. Here, we review and summarize the critical role of m6A in different developmental stages of male germ cells, to understand of the mechanisms and epigenetic regulation of m6A modifications. In addition, we also outline and discuss the important role of non-coding RNAs in spermatogenesis and RNA modifications in epigenetic inheritance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O’Donnell L, Nicholls PK, O’Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: The process of sperm release. Spermatogenesis. 1(1):14–35. https://doi.org/10.4161/spmg.1.1.14525 (Epub 2011/08/26)

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Rooij DG (2001) Proliferation and differentiation of spermatogonial stem cells. Reproduction 121(3):347–354. https://doi.org/10.1530/rep.0.1210347 (Epub 2001/02/28)

    Article  PubMed  Google Scholar 

  3. Griswold MD (2016) Spermatogenesis: The Commitment to Meiosis. Physiol Rev. 96(1):1–17. https://doi.org/10.1152/physrev.00013.2015 (Epub 2015/11/06)

    Article  CAS  PubMed  Google Scholar 

  4. Lin Z, Tong MH (2019) m(6)A mRNA modification regulates mammalian spermatogenesis. Biochim Biophys Acta Gene Regul Mech. 1862(3):403–411. https://doi.org/10.1016/j.bbagrm.2018.10.016 (Epub 2018/11/06)

    Article  CAS  PubMed  Google Scholar 

  5. Abe K, Shen LS, Takano H (1991) The cycle of the seminiferous epithelium and stages in spermatogenesis in dd-mice. [Hokkaido igaku zasshi] Hokkaido J Med Sci 66(3):286–299 (Epub 1991/05/01)

    CAS  PubMed  Google Scholar 

  6. L L, D C, cell TJJSi, biology d. (2015) Developmental windows of susceptibility for epigenetic inheritance through the male germline. Semin Cell Dev Biol 43:96–105. https://doi.org/10.1016/j.semcdb.2015.07.006 (Epub 1991/05/01)

    Article  CAS  Google Scholar 

  7. Zhou S, Feng S, Qin W, Wang X, Tang Y, Yuan S (2020) Epigenetic regulation of spermatogonial stem cell homeostasis: from dna methylation to histone modification. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-020-10044-3 (Epub 2020/09/18)

    Article  PubMed  Google Scholar 

  8. Liu J, Jia G (2014) Methylation modifications in eukaryotic messenger RNA. J Genet Genom = Yi chuan xue bao 41(1):21–33. https://doi.org/10.1016/j.jgg.2013.10.002 (Epub 2014/02/01)

    Article  CAS  Google Scholar 

  9. Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD et al (2018) Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 14(5):e1007412. https://doi.org/10.1371/journal.pgen.1007412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS (2017) Regulation of m(6) A transcripts by the 3’ 5’ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol Cell 68(2):374. https://doi.org/10.1016/j.molcel.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  11. Xia H, Zhong CR, Wu XX, Chen J, Tao BB, Xia XQ et al (2018) Mettl3 mutation disrupts gamete maturation and reduces fertility in zebrafish. Genetics 208(2):729–743. https://doi.org/10.1534/genetics.117.300574

    Article  CAS  PubMed  Google Scholar 

  12. Xu K, Yang Y, Feng GH, Sun BF, Chen JQ, Li YF et al (2017) Mettl3-mediated m(6)A regulates spermatogonial differentiation and meiosis initiation. Cell Res 27(9):1100–1114. https://doi.org/10.1038/cr.2017.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao BS, He C (2017) “Gamete On’’’ for m(6)A: YTHDF2 exerts essential functions in female fertility.” Mol Cell 67(6):903–905. https://doi.org/10.1016/j.molcel.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  14. Meng TG, Lu XK, Guo L, Hou GM, Ma XS, Li QN et al (2019) Mettl14 is required for mouse postimplantation development by facilitating epiblast maturation. FASEB J 33(1):1179–1187. https://doi.org/10.1096/fj.201800719R

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16(2):191–198. https://doi.org/10.1038/ncb2902 (Epub 2014/01/08)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang DD, Qiao J, Wang GY, Lan YY, Li GP, Guo XD et al (2018) N-6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res 46(8):3906–3920. https://doi.org/10.1093/nar/gky130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haussmann IU, Bodi Z, Sanchez-Moran E, Mongan NP, Archer N, Fray RG et al (2016) m(6)A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540(7632):301. https://doi.org/10.1038/nature20577

    Article  CAS  PubMed  Google Scholar 

  18. Zhao TX, Wang JK, Shen LJ, Long CL, Liu B, Wei Y et al (2020) Increased m6A RNA modification is related to the inhibition of the Nrf2-mediated antioxidant response in di-(2-ethylhexyl) phthalate-induced prepubertal testicular injury. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.113911

    Article  PubMed  PubMed Central  Google Scholar 

  19. Adhikari S, Xiao W, Zhao YL, Yang YG (2016) m(6)A: signaling for mRNA splicing. Rna Biol 13(9):756–759. https://doi.org/10.1080/15476286.2016.1201628

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J et al (2018) Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 46(3):1412–1423. https://doi.org/10.1093/nar/gkx1182 (Epub 2017/12/01)

    Article  CAS  PubMed  Google Scholar 

  21. Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M et al (2017) NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem. 118(9):2587–2598. https://doi.org/10.1002/jcb.25957 (Epub 2017/03/02)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y et al (2018) ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A 115(2):E325–E333. https://doi.org/10.1073/pnas.1717794115 (Epub 2017/12/28)

    Article  CAS  PubMed  Google Scholar 

  23. Coker H, Wei G, Brockdorff N (2019) m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech. 1862(3):310–318. https://doi.org/10.1016/j.bbagrm.2018.12.002 (Epub 2018/12/15)

    Article  CAS  PubMed  Google Scholar 

  24. Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Hobartner C et al (2017) Human METTL16 is a N-6-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. Embo Rep 18(11):2004–2014. https://doi.org/10.15252/embr.201744940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang C, Xie YM, Yu T, Liu N, Wang ZQ, Woolsey RJ et al (2020) m(6)A-dependent biogenesis of circular RNAs in male germ cells. Cell Res 30(3):211–228. https://doi.org/10.1038/s41422-020-0279-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmidt W, Arnold HH, Kersten H (1975) Biosynthetic pathway of ribothymidine in B subtilis and M lysodeikticus involving different coenzymes for transfer RNA and ribosomal RNA. Nucleic Acids Res 2(7):1043–1051. https://doi.org/10.1093/nar/2.7.1043 (pub 1975/07/01)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of mettl3 and mettl14 methyltransferases. Mol Cell 63(2):306–317. https://doi.org/10.1016/j.molcel.2016.05.041 (Epub 2016/06/30 )

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z et al (2016) Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534(7608):575–578. https://doi.org/10.1038/nature18298 (Epub 2016/05/25)

    Article  CAS  PubMed  Google Scholar 

  29. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24(2):177–189. https://doi.org/10.1038/cr.2014.3 (Epub 2014/01/11)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Theler D, Dominguez C, Blatter M, Boudet J, Allain FH (2014) Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res 42(22):13911–13919. https://doi.org/10.1093/nar/gku1116 (Epub 2014/11/13)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M et al (2008) MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20(5):1278–1288. https://doi.org/10.1105/tpc.108.058883 (Epub 2008/05/29)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A et al (2013) High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155(6):1409–1421. https://doi.org/10.1016/j.cell.2013.10.047 (Epub 2013/11/26)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q et al (2017) Mettl3-/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis. Cell Res 27(10):1216–1230. https://doi.org/10.1038/cr.2017.117 (Epub 2017/09/16)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang Y, Huang W, Huang JT, Shen F, Xiong J, Yuan EF et al (2016) Increased N6-methyladenosine in human sperm RNA as a risk factor for asthenozoospermia. Sci Rep 6:24345. https://doi.org/10.1038/srep24345 (Epub 2016/04/14)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C et al (2017) Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 18(11):2004–2014. https://doi.org/10.15252/embr.201744940 (Epub 2017/10/21)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP et al (2017) The U6 snRNA m(6)A methyltransferase mettl16 regulates SAM synthetase intron retention. Cell 169(5):824–35.e14. https://doi.org/10.1016/j.cell.2017.05.003 (Epub 2017/10/21)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dorsett M, Westlund B, Schedl T (2009) METT-10, a putative methyltransferase, inhibits germ cell proliferative fate in caenorhabditis elegans. Genetics 183(1):233–247. https://doi.org/10.1534/genetics.109.105270 (Epub 2009/07/15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gulati P, Avezov E, Ma M, Antrobus R, Lehner P, O’Rahilly S et al (2014) Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm. Biosci Rep. https://doi.org/10.1042/BSR20140111 (Epub 2014/09/23)

  39. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29. https://doi.org/10.1016/j.molcel.2012.10.015 (Epub 2012/11/28. PubMed PMID: 23177736; PubMed Central PMCID: PMCPMC3646334)

    Article  CAS  PubMed  Google Scholar 

  40. Zheng G, Dahl JA, Niu Y, Fu Y, Klungland A, Yang YG et al (2013) Sprouts of RNA epigenetics: the discovery of mammalian RNA demethylases. RNA Biol 10(6):915–918. https://doi.org/10.4161/rna.24711 (Epub 2013/04/27)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W et al (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24(12):1403–1419. https://doi.org/10.1038/cr.2014.151 (Epub 2014/11/22)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y et al (2018) ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A 115(2):325–333. https://doi.org/10.1073/pnas.1717794115 (Epub 2017/12/28)

    Article  CAS  Google Scholar 

  43. Landfors M, Nakken S, Fusser M, Dahl JA, Klungland A, Fedorcsak P (2016) Sequencing of FTO and ALKBH5 in men undergoing infertility work-up identifies an infertility-associated variant and two missense mutations. Fertil Steril 105(5):1170–9.e5. https://doi.org/10.1016/j.fertnstert.2016.01.002 (Epub 2016/01/29)

    Article  CAS  PubMed  Google Scholar 

  44. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518(7540):560–564. https://doi.org/10.1038/nature14234 (Epub 2015/02/27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS (2017) Regulation of m(6)A transcripts by the 3’ 5’ RNA helicase YTHDC2 Is essential for a successful meiotic program in the mammalian germline. Mol Cell 68(2):374–387. https://doi.org/10.1016/j.molcel.2017.09.021 (Epub 2017/10/17)

    Article  CAS  PubMed  Google Scholar 

  46. Bailey AS, Batista PJ, Gold RS, Chen YG, de Rooij DG, Chang HY et al (2017) The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. Elife 6:e26116. https://doi.org/10.7554/eLife.26116 (Epub 2017/11/01)

    Article  PubMed  PubMed Central  Google Scholar 

  47. Huang T, Liu Z, Zheng Y, Feng T, Gao Q, Zeng W (2020) YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m(6)A/mRNA pathway. Cell Death Dis 11(1):37. https://doi.org/10.1038/s41419-020-2235-4 (Epub 2020/01/22)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jain D, Puno MR, Meydan C, Lailler N, Mason CE, Lima CD et al (2018) ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. Elife. https://doi.org/10.7554/eLife.30919 (Epub 2018/01/24)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abby E, Tourpin S, Ribeiro J, Daniel K, Messiaen S, Moison D et al (2016) Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nat Commun 7:10324. https://doi.org/10.1038/ncomms10324 (Epub 2016/01/09)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y et al (2017) YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. https://doi.org/10.7554/eLife.31311 (Epub 2017/10/07)

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rafalska I, Zhang Z, Benderska N, Wolff H, Hartmann AM, Brack-Werner R et al (2004) The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation. Hum Mol Genet 13(15):1535–1549. https://doi.org/10.1093/hmg/ddh167 (Epub 2004/06/04)

    Article  CAS  PubMed  Google Scholar 

  52. Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z et al (2018) Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biol 19(1):69. https://doi.org/10.1186/s13059-018-1436-y (Epub 2018/06/02. )

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S et al (2017) MicroRNA-145 modulates N(6)-Methyladenosine levels by targeting the 3’-untranslated mRNA region of the N(6)-methyladenosine binding YTH domain family 2 protein. J Biol Chem 292(9):3614–3623. https://doi.org/10.1074/jbc.M116.749689 (Epub 2017/01/21)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN et al (2017) The RNA m(6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell 67(6):1059–1067. https://doi.org/10.1016/j.molcel.2017.08.003 (Epub 2017/09/05)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jia GX, Lin Z, Yan RG, Wang GW, Zhang XN, Li C et al (2020) WTAP function in sertoli cells is essential for sustaining the spermatogonial stem cell niche. Stem Cell Rep 15(4):968–982. https://doi.org/10.1016/j.stemcr.2020.09.001 (Epub 2020/10/15)

    Article  CAS  Google Scholar 

  56. Yang YW, Chen L, Mou Q, Liang H, Du ZQ, Yang CX (2020) Ascorbic acid promotes the reproductive function of porcine immature Sertoli cells through transcriptome reprogramming. Theriogenology 158:309–320. https://doi.org/10.1016/j.theriogenology.2020.09.022 (Epub 2020/10/03)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen Y, Wang J, Xu D, Xiang Z, Ding J, Yang X et al (2020) m(6)A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy. https://doi.org/10.1080/15548627.2020.1720431 (Epub 2020/01/28)

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhao T, Wang J, Wu Y, Han L, Chen J, Wei Y et al (2021) Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury(☆). Environ Pollut. 268:115627. https://doi.org/10.1016/j.envpol.2020.115627 (Epub 2020/10/04)

    Article  CAS  PubMed  Google Scholar 

  59. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Z, Yao H, Lin S, Zhu X, Shen Z, Lu G et al (2013) Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 331(1):1–10. https://doi.org/10.1016/j.canlet.2012.12.006 (Epub 2012/12/19)

    Article  CAS  PubMed  Google Scholar 

  61. Kotaja N (2014) MicroRNAs and spermatogenesis. Fertil Steril 101(6):1552–1562. https://doi.org/10.1016/j.fertnstert.2014.04.025 (Epub 2014/06/03)

    Article  CAS  PubMed  Google Scholar 

  62. Ro S, Park C, Sanders KM, McCarrey JR, Yan W (2007) Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 311(2):592–602. https://doi.org/10.1016/j.ydbio.2007.09.009 (Epub 2007/10/16)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H et al (2015) mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open. 4(2):212–223. https://doi.org/10.1242/bio.201410959 (Epub 2015/01/27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuan S, Liu Y, Peng H, Tang C, Hennig GW, Wang Z et al (2019) Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc Natl Acad Sci U S A. 116(9):3584–3593. https://doi.org/10.1073/pnas.1817018116 (Epub 2019/01/20)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zimmermann C, Romero Y, Warnefors M, Bilican A, Borel C, Smith LB et al (2014) Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS one 9(9):e107023. https://doi.org/10.1371/journal.pone.0107023 (Epub 2014/09/23)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu W, Qin Y, Li Z, Dong J, Dai J, Lu C et al (2013) Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7–1–3p. Hum Rep 28(7):1827–1836. https://doi.org/10.1093/humrep/det099 (Epub 2013/04/06)

    Article  CAS  Google Scholar 

  67. Salzman J, Circular RNA (2016) Expression: its potential regulation and function. Trends genet: TIG 32(5):309–316. https://doi.org/10.1016/j.tig.2016.03.002 (Epub 2016/04/02)

    Article  CAS  PubMed  Google Scholar 

  68. Hsu MT, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280(5720):339–340. https://doi.org/10.1038/280339a0 (Epub 1979/07/26)

    Article  CAS  PubMed  Google Scholar 

  69. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030. https://doi.org/10.1016/0092-8674(93)90279-y (Epub 1993/06/04)

    Article  CAS  PubMed  Google Scholar 

  70. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  71. Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ et al (2020) m(6)A-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 30(3):211–228. https://doi.org/10.1038/s41422-020-0279-8 (Epub 2020/02/13)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chioccarelli T, Manfrevola F, Ferraro B, Sellitto C, Cobellis G, Migliaccio M et al (2019) Expression patterns of circular RNAs in high quality and poor quality human spermatozoa. Front Endocrinol 10:435. https://doi.org/10.3389/fendo.2019.00435 (Epub 2019/07/25)

    Article  Google Scholar 

  73. Ge P, Zhang J, Zhou L, Lv MQ, Li YX, Wang J et al (2019) CircRNA expression profile and functional analysis in testicular tissue of patients with non-obstructive azoospermia. Reprod Biol Endocrinol: RB&E. 17(1):100. https://doi.org/10.1186/s12958-019-0541-4 (Epub 2019/11/302)

    Article  CAS  Google Scholar 

  74. Gao L, Chang S, Xia W, Wang X, Zhang C, Cheng L et al (2020) Circular RNAs from BOULE play conserved roles in protection against stress-induced fertility decline. Sci Adv 6(46):eabb7426. https://doi.org/10.1126/sciadv.abb7426 (Epub 2020/11/13)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y et al (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131(4):839–849. https://doi.org/10.1242/dev.00973 (Epub 2004/01/23)

    Article  CAS  PubMed  Google Scholar 

  76. Carmell MA, Girard A, van de Kant HJG, Bourc’his D, Bestor TH, de Rooij DG et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12(4):503–514. https://doi.org/10.1016/j.devcel.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  77. Deng W, Lin HF (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830. https://doi.org/10.1016/S1534-5807(02)00165-X

    Article  CAS  PubMed  Google Scholar 

  78. Trcek T, Lehmann R (2019) Germ granules in drosophila. Traffic (Copenhagen, Denmark). 20(9):650–660. https://doi.org/10.1111/tra.12674 (Epub 2019/06/21)

    Article  CAS  PubMed Central  Google Scholar 

  79. Pal A, Shah VN, Simard MJ (2019) Defend thyself and thy offspring. Dev Cell. 50(6):677–679. https://doi.org/10.1016/j.devcel.2019.09.004 (Epub 2019/09/25)

    Article  CAS  PubMed  Google Scholar 

  80. Belicard T, Jareosettasin P, Sarkies P (2018) The piRNA pathway responds to environmental signals to establish intergenerational adaptation to stress. BMC Biol 16(1):103. https://doi.org/10.1186/s12915-018-0571-y (Epub 2018/09/20)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Han H, Fan G, Song S, Jiang Y, Qian C, Zhang W et al (2020) piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood. https://doi.org/10.1182/blood.2019003764 (Epub 2020/09/24)

    Article  PubMed  PubMed Central  Google Scholar 

  82. Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W et al (2012) A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 22(11):1609–1612. https://doi.org/10.1038/cr.2012.141 (Epub 2012/10/10)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351(6271):397–400. https://doi.org/10.1126/science.aad7977 (Epub 2016/01/02)

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y et al (2018) Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 20(5):535–540. https://doi.org/10.1038/s41556-018-0087-2 (Epub 2018/04/27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nätt D, Kugelberg U, Casas E, Nedstrand E, Zalavary S, Henriksson P et al (2019) Human sperm displays rapid responses to diet. PLoS Biol 17(12):e3000559. https://doi.org/10.1371/journal.pbio.3000559 (Epub 2019/12/27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351(6271):391–396. https://doi.org/10.1126/science.aad6780 (Epub 2016/01/02)

    Article  CAS  PubMed  Google Scholar 

  87. Chu C, Yu L, Wu B, Ma L, Gou LT, He M et al (2017) A sequence of 28S rRNA-derived small RNAs is enriched in mature sperm and various somatic tissues and possibly associates with inflammation. J Mol Cell Biol 9(3):256–259. https://doi.org/10.1093/jmcb/mjx016 (Epub 2017/05/10)

    Article  CAS  PubMed  Google Scholar 

  88. Slobodin B, Han R, Calderone V, Vrielink J, Loayza-Puch F, Elkon R et al (2017) Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 169(2):326–37.e12. https://doi.org/10.1016/j.cell.2017.03.031 (Epub 2017/04/08)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M et al (2019) Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567(7748):414–419. https://doi.org/10.1038/s41586-019-1016-7 (Epub 2019/03/15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vågbø CB, Geula S et al (2017) m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31(10):990–1006. https://doi.org/10.1101/gad.301036.117 (Epub 2017/06/24)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519(7544):482–485. https://doi.org/10.1038/nature14281 (Epub 2015/03/18)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162(6):1299–1308. https://doi.org/10.1016/j.cell.2015.08.011 (Epub 2015/09/01)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu B, Su S, Patil DP, Liu H, Gan J, Jaffrey SR et al (2018) Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 9(1):420. https://doi.org/10.1038/s41467-017-02770-z (Epub 2018/01/31)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC et al (2019) METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 18(1):110. https://doi.org/10.1186/s12943-019-1036-9 (Epub 2019/06/24)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519(7544):482–485. https://doi.org/10.1038/nature14281 (Epub 2015/03/25)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Klinge CM, Piell KM, Tooley CS, Rouchka EC (2019) HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep. 9(1):9430. https://doi.org/10.1038/s41598-019-45636-8 (Epub 2019/07/03)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen X, Li X, Guo J, Zhang P, Zeng W (2017) The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechnol 8:35. https://doi.org/10.1186/s40104-017-0166-4 (Epub 2017/05/05)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y et al (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27(5):626–641. https://doi.org/10.1038/cr.2017.31 (Epub 2017/03/11)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F et al (2020) Modulation of circRNA metabolism by m(6)A modification. Cell Rep. 31(6):107641. https://doi.org/10.1016/j.celrep.2020.107641 (Epub 2020/05/14)

    Article  CAS  PubMed  Google Scholar 

  100. Huang R, Zhang Y, Bai Y, Han B, Ju M, Chen B et al (2020) N(6)-Methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psychiat. https://doi.org/10.1016/j.biopsych.2020.02.018 (Epub 2020/05/11)

    Article  PubMed  Google Scholar 

  101. Huang T, Guo J, Lv Y, Zheng Y, Feng T, Gao Q et al (2019) Meclofenamic acid represses spermatogonial proliferation through modulating m(6)A RNA modification. J Anim Sci Biotechnol 10:63. https://doi.org/10.1186/s40104-019-0361-6 (Epub 2019/07/25)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang J, Bai R, Li M, Ye H, Wu C, Wang C et al (2019) Excessive miR-25–3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 10(1):1858. https://doi.org/10.1038/s41467-019-09712-x (Epub 2019/04/25)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Han B, Chu C, Su X, Zhang N, Zhou L, Zhang M et al (2020) N(6)-methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats. Nanotoxicology 14(1):1–20. https://doi.org/10.1080/17435390.2019.1661041 (Epub 2019/09/11)

    Article  CAS  PubMed  Google Scholar 

  104. Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W et al (2017) RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature 543(7646):573–576. https://doi.org/10.1038/nature21671 (Epub 2017/03/16. PubMed PMID: 28297716; PubMed Central PMCID: PMCPMC5490984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian S-B (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526(7574):591–594. https://doi.org/10.1038/nature15377 (Epub 2015/10/12. PubMed PMID: 26458103)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, Bühler M (2017) RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol. 24(7):561–569. https://doi.org/10.1038/nsmb.3419 (Epub 2017/06/06. PubMed PMID: 28581511)

    Article  CAS  PubMed  Google Scholar 

  107. Cayir A, Barrow TM, Guo L, Byun HM (2019) Exposure to environmental toxicants reduces global N6-methyladenosine RNA methylation and alters expression of RNA methylation modulator genes. Environ Res. 175:228–234. https://doi.org/10.1016/j.envres.2019.05.011 (Epub 2019/05/31. PubMed PMID: 31146095)

    Article  CAS  PubMed  Google Scholar 

  108. Wang X, Li Y, Chen W, Shi H, Eren AM, Morozov A et al (2019) Transcriptome-wide reprogramming of N(6)-methyladenosine modification by the mouse microbiome. Cell Res. 29(2):167–170. https://doi.org/10.1038/s41422-018-0127-2 (Epub 2018/12/19. PubMed PMID: 30559439; PubMed Central PMCID: PMCPMC6355850)

    Article  CAS  PubMed  Google Scholar 

  109. Johnson GD, Mackie P, Jodar M, Moskovtsev S, Krawetz SA (2015) Chromatin and extracellular vesicle associated sperm RNAs. Nucleic Acids Res. 43(14):6847–6859. https://doi.org/10.1093/nar/gkv591 (Epub 2015/06/15. PubMed PMID: 26071953; PubMed Central PMCID: PMCPMC4538811)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sharma U, Sun F, Conine CC, Reichholf B, Kukreja S, Herzog VA et al (2018) Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell. 46(4):481–94.e6. https://doi.org/10.1016/j.devcel.2018.06.023 (Epub 2018/07/31. PubMed PMID: 30057273; PubMed Central PMCID: PMCPMC6103849)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gòdia M, Swanson G, Krawetz SA (2018) A history of why fathers’ RNA matters. Biol Reprod. 99(1):147–159. https://doi.org/10.1093/biolre/ioy007 (Epub 2018/03/08. PubMed PMID: 29514212)

    Article  PubMed  Google Scholar 

  112. Nilsson EE, Skinner MK (2015) environmentally induced epigenetic transgenerational inheritance of reproductive disease. Biol Reprod. 93(6):145. https://doi.org/10.1095/biolreprod.115.134817 (Epub 2015/10/30. PubMed PMID: 26510870; PubMed Central PMCID: PMCPMC6058737)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Grandjean V, Fourré S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M (2015) RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep. 5:18193. https://doi.org/10.1038/srep18193 (Epub 2015/12/15. PubMed PMID: 26658372; PubMed Central PMCID: PMCPMC4677355)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J et al (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669. https://doi.org/10.1038/nn.3695 (Epub 2014/04/15. PubMed PMID: 24728267; PubMed Central PMCID: PMCPMC4333222)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang Y, Chen ZP, Hu H, Lei J, Zhou Z, Yao B et al (2021) Sperm microRNAs confer depression susceptibility to offspring. Sci Adv. 7(7):eabd7608. https://doi.org/10.1126/sciadv.abd7605 (Epub 2021/02/12. . PubMed PMID: 33568480)

    Article  CAS  Google Scholar 

  116. Gapp K, van Steenwyk G, Germain PL, Matsushima W, Rudolph KLM, Manuella F et al (2020) Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol Psychiatry 25(9):2162–2174. https://doi.org/10.1038/s41380-018-0271-6 (Epub 2018/10/31)

    Article  CAS  PubMed  Google Scholar 

  117. Patil DP, Chen C-K, Pickering BF, Chow A, Jackson C, Guttman M et al (2016) m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537(7620):369–373. https://doi.org/10.1038/nature19342 (Epub 2016/09/07)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH et al (2018) Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes Dev 32(5–6):415–429. https://doi.org/10.1101/gad.309146.117 (Epub 2018/03/15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z et al (2018) VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell discovery. 4:10. https://doi.org/10.1038/s41421-018-0019-0 (Epub 2018/03/07)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Panneerdoss S, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S et al (2018) Cross-talk among writers, readers, and erasers of mA regulates cancer growth and progression. Sci Adv 4(10):eaar8263. https://doi.org/10.1126/sciadv.aar8263 (Epub 2018/10/12)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY et al (2017) 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 27(5):606–625. https://doi.org/10.1038/cr.2017.55 (Epub 2017/04/19)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang Y, Wang L, Han X, Yang WL, Zhang M, Ma HL et al (2019) RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 75(6):1188–202.e11. https://doi.org/10.1016/j.molcel.2019.06.033 (Epub 2019/08/11)

    Article  CAS  PubMed  Google Scholar 

  123. Chen H, Yang H, Zhu X, Yadav T, Ouyang J, Truesdell SS et al (2020) m(5)C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat Commun. 11(1):2834. https://doi.org/10.1038/s41467-020-16722-7 (Epub 2020/06/07)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81971444 to S.Y.), the Science Technology and Innovation Commission of Shenzhen Municipality (JCYJ20170244 to S.Y.), and the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine, Ferring Pharmaceuticals and Chinese Academy of Sciences (FIRMSCOV02 to S.Y.).

Author information

Authors and Affiliations

Authors

Contributions

YG reviewed the literature and wrote the manuscript, SY conceived and revised the manuscript.

Corresponding author

Correspondence to Shuiqiao Yuan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, Y., Yuan, S. Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond. Cell. Mol. Life Sci. 78, 4893–4905 (2021). https://doi.org/10.1007/s00018-021-03823-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03823-9

Keywords

Navigation