Skip to main content

Advertisement

Log in

The quest of cell surface markers for stem cell therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R (2014) Cell-based therapy approaches: the hope for incurable diseases. Regen Med 9(5):649–672. https://doi.org/10.2217/rme.14.35

    Article  CAS  PubMed  Google Scholar 

  3. Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S, Zarchi AS, Bosman A, Blue GM, Pahlavan S, Perry M, Orr Y, Mayorchak Y, Vandenberg J, Talkhabi M, Winlaw DS, Harvey RP, Aghdami N, Baharvand H (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4(12):1482–1494. https://doi.org/10.5966/sctm.2014-0275

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meyfour A, Ansari H, Pahlavan S, Mirshahvaladi S, Rezaei-Tavirani M, Gourabi H, Baharvand H, Salekdeh GH (2017) Y chromosome missing protein, TBL1Y, may play an important role in cardiac differentiation. J Proteome Res 16(12):4391–4402. https://doi.org/10.1021/acs.jproteome.7b00391

    Article  CAS  PubMed  Google Scholar 

  5. Meyfour A, Pahlavan S, Ansari H, Baharvand H, Salekdeh GH (2019) Down-regulation of a male-specific H3K4 demethylase, KDM5D, impairs cardiomyocyte differentiation. J Proteome Res 18(12):4277–4282. https://doi.org/10.1021/acs.jproteome.9b00395

    Article  CAS  PubMed  Google Scholar 

  6. Fathi A, Mirzaei M, Dolatyar B, Sharifitabar M, Bayat M, Shahbazi E, Lee J, Javan M, Zhang SC, Gupta V, Lee B, Haynes PA, Baharvand H, Salekdeh GH (2018) Discovery of novel cell surface markers for purification of embryonic dopamine progenitors for transplantation in parkinson's disease animal models. Mol Cell Proteom MCP 17(9):1670–1684. https://doi.org/10.1074/mcp.RA118.000809

    Article  CAS  Google Scholar 

  7. Bryder D, Rossi DJ, Weissman IL (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169(2):338–346. https://doi.org/10.2353/ajpath.2006.060312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quesenberry PJ, Goldberg L, Aliotta J, Dooner M (2014) Marrow hematopoietic stem cells revisited: they exist in a continuum and are not defined by standard purification approaches; then there are the microvesicles. Front Oncol 4:56. https://doi.org/10.3389/fonc.2014.00056

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126. https://doi.org/10.1038/nbt1338

    Article  CAS  PubMed  Google Scholar 

  10. Almen MS, Nordstrom KJ, Fredriksson R, Schioth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50. https://doi.org/10.1186/1741-7007-7-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun B, Hood L (2014) Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res 13(6):2705–2714. https://doi.org/10.1021/pr500187g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C (2015) A mass spectrometric-derived cell surface protein atlas. PLoS ONE 10(4):e0121314

    Article  PubMed  PubMed Central  Google Scholar 

  13. Waas M, Snarrenberg ST, Littrell J, Jones Lipinski RA, Hansen PA, Corbett JA, Gundry RL (2020) SurfaceGenie: a web-based application for prioritizing cell-type-speciic marker candidates. Bioinformatics 36(11):3447–3456. https://doi.org/10.1093/bioinformatics/btaa092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lehnen D, Barral S, Cardoso T, Grealish S, Heuer A, Smiyakin A, Kirkeby A, Kollet J, Cremer H, Parmar M, Bosio A, Knobel S (2017) IAP-based cell sorting results in homogeneous transplantable dopaminergic precursor cells derived from human pluripotent stem cells. Stem Cell Rep 9(4):1207–1220. https://doi.org/10.1016/j.stemcr.2017.08.016

    Article  CAS  Google Scholar 

  15. Clark G, Stockinger H, Balderas R, van Zelm MC, Zola H, Hart D, Engel P (2016) Nomenclature of CD molecules from the tenth human leucocyte differentiation antigen workshop. Clin Transl Immunol 5(1):e57. https://doi.org/10.1038/cti.2015.38

    Article  Google Scholar 

  16. Bye CR, Jonsson ME, Bjorklund A, Parish CL, Thompson LH (2015) Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors. Proc Natl Acad Sci USA 112(15):E1946–1955. https://doi.org/10.1073/pnas.1501989112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersen P, Tampakakis E, Jimenez DV, Kannan S, Miyamoto M, Shin HK, Saberi A, Murphy S, Sulistio E, Chelko SP, Kwon C (2018) Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nat Commun 9(1):3140. https://doi.org/10.1038/s41467-018-05604-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boheler KR, Bhattacharya S, Kropp EM, Chuppa S, Riordon DR, Bausch-Fluck D, Burridge PW, Wu JC, Wersto RP, Chan GC, Rao S, Wollscheid B, Gundry RL (2014) A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep 3(1):185–203. https://doi.org/10.1016/j.stemcr.2014.05.002

    Article  CAS  Google Scholar 

  19. Jadaliha M, Lee HJ, Pakzad M, Fathi A, Jeong SK, Cho SY, Baharvand H, Paik YK, Salekdeh GH (2012) Quantitative proteomic analysis of human embryonic stem cell differentiation by 8-plex iTRAQ labelling. PLoS ONE 7(6):e38532. https://doi.org/10.1371/journal.pone.0038532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baharvand H, Fathi A, van Hoof D, Salekdeh GH (2007) Concise review: trends in stem cell proteomics. Stem Cells 25(8):1888–1903. https://doi.org/10.1634/stemcells.2007-0107

    Article  CAS  PubMed  Google Scholar 

  21. Ghazizadeh Z, Fattahi F, Mirzaei M, Bayersaikhan D, Lee J, Chae S, Hwang D, Byun K, Tabar MS, Taleahmad S, Mirshahvaladi S, Shabani P, Fonoudi H, Haynes PA, Baharvand H, Aghdami N, Evans T, Lee B, Salekdeh GH (2018) Prospective isolation of ISL1(+) cardiac progenitors from human ESCs for myocardial infarction therapy. Stem Cell Rep 10(3):848–859. https://doi.org/10.1016/j.stemcr.2018.01.037

    Article  CAS  Google Scholar 

  22. Boheler KR, Gundry RL (2017) Concise review: cell surface N-linked glycoproteins as potential stem cell markers and drug targets. Stem Cells Transl Med 6(1):131–138. https://doi.org/10.5966/sctm.2016-0109

    Article  PubMed  Google Scholar 

  23. Weldemariam MM, Han CL, Shekari F, Kitata RB, Chuang CY, Hsu WT, Kuo HC, Choong WK, Sung TY, He FC, Chung MCM, Salekdeh GH, Chen YJ (2018) Subcellular proteome landscape of human embryonic stem cells revealed missing membrane proteins. J Proteome Res. https://doi.org/10.1021/acs.jproteome.8b00407

    Article  PubMed  Google Scholar 

  24. Kitchen P, Day RE, Salman MM, Conner MT, Bill RM (1850) Conner AC (2015) Beyond water homeostasis: diverse functional roles of mammalian aquaporins. Biochim Biophys Acta 12:2410–2421. https://doi.org/10.1016/j.bbagen.2015.08.023

    Article  CAS  Google Scholar 

  25. Gundry RL, Burridge PW, Boheler KR (2011) Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics 11(20):3947–3961. https://doi.org/10.1002/pmic.201100100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harkness L, Christiansen H, Nehlin J, Barington T, Andersen JS, Kassem M (2008) Identification of a membrane proteomic signature for human embryonic stem cells independent of culture conditions. Stem Cell Res 1(3):219–227. https://doi.org/10.1016/j.scr.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  27. Gerwe BA, Angel PM, West FD, Hasneen K, Young A, Orlando R, Stice SL (2011) Membrane proteomic signatures of karyotypically normal and abnormal human embryonic stem cell lines and derivatives. Proteomics 11(12):2515–2527. https://doi.org/10.1002/pmic.201000032

    Article  CAS  PubMed  Google Scholar 

  28. Dormeyer W, van Hoof D, Braam SR, Heck AJ, Mummery CL, Krijgsveld J (2008) Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J Proteome Res 7(7):2936–2951. https://doi.org/10.1021/pr800056j

    Article  CAS  PubMed  Google Scholar 

  29. Wollscheid B, Bausch-Fluck D, Henderson C, O'Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27(4):378–386. https://doi.org/10.1038/nbt.1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gundry RL, Riordon DR, Tarasova Y, Chuppa S, Bhattacharya S, Juhasz O, Wiedemeier O, Milanovich S, Noto FK, Tchernyshyov I, Raginski K, Bausch-Fluck D, Tae HJ, Marshall S, Duncan SA, Wollscheid B, Wersto RP, Rao S, Van Eyk JE, Boheler KR (2012) A cell surfaceome map for immunophenotyping and sorting pluripotent stem cells. Mol Cell Proteom MCP 11(8):303–316. https://doi.org/10.1074/mcp.M112.018135

    Article  CAS  Google Scholar 

  31. Sun B, Ma L, Yan X, Lee D, Alexander V, Hohmann LJ, Lorang C, Chandrasena L, Tian Q, Hood L (2013) N-glycoproteome of E14.Tg2a mouse embryonic stem cells. PLoS ONE 8(2):e55722. https://doi.org/10.1371/journal.pone.0055722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rugg-Gunn PJ, Cox BJ, Lanner F, Sharma P, Ignatchenko V, McDonald AC, Garner J, Gramolini AO, Rossant J, Kislinger T (2012) Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev Cell 22(4):887–901. https://doi.org/10.1016/j.devcel.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gu B, Zhang J, Wu Y, Zhang X, Tan Z, Lin Y, Huang X, Chen L, Yao K, Zhang M (2011) Proteomic analyses reveal common promiscuous patterns of cell surface proteins on human embryonic stem cells and sperms. PLoS ONE 6(5):e19386. https://doi.org/10.1371/journal.pone.0019386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu B, Zhang J, Wang W, Mo L, Zhou Y, Chen L, Liu Y, Zhang M (2010) Global expression of cell surface proteins in embryonic stem cells. PLoS ONE 5(12):e15795. https://doi.org/10.1371/journal.pone.0015795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alvarez-Manilla G, Warren NL, Atwood J 3rd, Orlando R, Dalton S, Pierce M (2010) Glycoproteomic analysis of embryonic stem cells: identification of potential glycobiomarkers using lectin affinity chromatography of glycopeptides. J Proteome Res 9(5):2062–2075. https://doi.org/10.1021/pr8007489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gahmberg CG, Tolvanen M (1996) Why mammalian cell surface proteins are glycoproteins. Trends Biochem Sci 21(8):308–311

    Article  CAS  PubMed  Google Scholar 

  37. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, Schiess R, Schmidt A, Mirkowska P, Hartlova A, Van Eyk JE, Bourquin JP, Aebersold R, Boheler KR, Zandstra P, Wollscheid B (2015) A mass spectrometric-derived cell surface protein atlas. PLoS ONE 10(3):e0121314. https://doi.org/10.1371/journal.pone.0121314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kropp EM, Bhattacharya S, Waas M, Chuppa SL, Hadjantonakis AK, Boheler KR, Gundry RL (2014) N-glycoprotein surfaceomes of four developmentally distinct mouse cell types. Proteomics Clin Appl 8(7–8):603–609. https://doi.org/10.1002/prca.201400021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gokce E, Shuford CM, Franck WL, Dean RA, Muddiman DC (2011) Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows. J Am Soc Mass Spectrom 22(12):2199–2208. https://doi.org/10.1007/s13361-011-0237-2

    Article  CAS  PubMed  Google Scholar 

  40. Uchida Y, Ohtsuki S, Kamiie J, Ohmine K, Iwase R, Terasaki T (2015) Quantitative targeted absolute proteomics for 28 human transporters in plasma membrane of Caco-2 cell monolayer cultured for 2, 3, and 4 weeks. Drug Metab Pharmacokinet 30(2):205–208. https://doi.org/10.1016/j.dmpk.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  41. Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J (2016) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem cell Rep 6(4):437–446

    Article  CAS  Google Scholar 

  42. Kim E-H, Heo CY (2014) Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells 6(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao W, Ji X, Zhang F, Li L, Ma L (2012) Embryonic stem cell markers. Molecules 17(6):6196–6236. https://doi.org/10.3390/molecules17066196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hagood JS, Prabhakaran P, Kumbla P, Salazar L, MacEwen MW, Barker TH, Ortiz LA, Schoeb T, Siegal GP, Alexander CB, Pardo A, Selman M (2005) Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol 167(2):365–379. https://doi.org/10.1016/S0002-9440(10)62982-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi HS, Kim WT, Ryu CJ (2014) Antibody approaches to prepare clinically transplantable cells from human embryonic stem cells: identification of human embryonic stem cell surface markers by monoclonal antibodies. Biotechnol J 9(7):915–920. https://doi.org/10.1002/biot.201300495

    Article  CAS  PubMed  Google Scholar 

  46. Son YS, Park JH, Kang YK, Park JS, Choi HS, Lim JY, Lee JE, Lee JB, Ko MS, Kim YS, Ko JH, Yoon HS, Lee KW, Seong RH, Moon SY, Ryu CJ, Hong HJ (2005) Heat shock 70-kDa protein 8 isoform 1 is expressed on the surface of human embryonic stem cells and downregulated upon differentiation. Stem Cells 23(10):1502–1513. https://doi.org/10.1634/stemcells.2004-0307

    Article  CAS  PubMed  Google Scholar 

  47. Son YS, Seong RH, Ryu CJ, Cho YS, Bae KH, Chung SJ, Lee B, Min JK, Hong HJ (2011) Brief report: L1 cell adhesion molecule, a novel surface molecule of human embryonic stem cells, is essential for self-renewal and pluripotency. Stem Cells 29(12):2094–2099. https://doi.org/10.1002/stem.754

    Article  CAS  PubMed  Google Scholar 

  48. Tan HL, Fong WJ, Lee EH, Yap M, Choo A (2009) mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27(8):1792–1801. https://doi.org/10.1002/stem.109

    Article  CAS  PubMed  Google Scholar 

  49. Ng VY, Ang SN, Chan JX, Choo AB (2010) Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells 28(1):29–35. https://doi.org/10.1002/stem.221

    Article  CAS  PubMed  Google Scholar 

  50. Drukker M, Muscat C, Weissman IL (2007) Generation of a monoclonal antibody library against human embryonic stem cells. Methods Mol Biol 407:63–81. https://doi.org/10.1007/978-1-59745-536-7_6

    Article  CAS  PubMed  Google Scholar 

  51. Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR, Behr B, Wu JC, Weissman IL, Drukker M (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29(9):829–834. https://doi.org/10.1038/nbt.1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi HS, Kim WT, Kim H, Kim JJ, Ko JY, Lee SW, Jang YJ, Kim SJ, Lee MJ, Jung HS, Kzhyshkowska J, Um SJ, Lee MY, Lee SH, Kim CH, Ryu CJ (2011) Identification and characterization of adenovirus early region 1B-associated protein 5 as a surface marker on undifferentiated human embryonic stem cells. Stem Cells Dev 20(4):609–620. https://doi.org/10.1089/scd.2010.0265

    Article  CAS  PubMed  Google Scholar 

  53. Shekari F, Nezari H, Larijani MR, Han CL, Baharvand H, Chen YJ, Salekdeh GH (2017) Proteome analysis of human embryonic stem cells organelles. J Proteomics 162:108–118. https://doi.org/10.1016/j.jprot.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  54. Prokhorova TA, Rigbolt KT, Johansen PT, Henningsen J, Kratchmarova I, Kassem M, Blagoev B (2009) Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol Cell Proteom MCP 8(5):959–970. https://doi.org/10.1074/mcp.M800287-MCP200

    Article  CAS  Google Scholar 

  55. Sarkar P, Collier TS, Randall SM, Muddiman DC, Rao BM (2012) The subcellular proteome of undifferentiated human embryonic stem cells. Proteomics 12(3):421–430. https://doi.org/10.1002/pmic.201100507

    Article  CAS  PubMed  Google Scholar 

  56. McQuade LR, Schmidt U, Pascovici D, Stojanov T, Baker MS (2009) Improved membrane proteomics coverage of human embryonic stem cells by peptide IPG-IEF. J Proteome Res 8(12):5642–5649. https://doi.org/10.1021/pr900597s

    Article  CAS  PubMed  Google Scholar 

  57. Melo-Braga MN, Schulz M, Liu Q, Swistowski A, Palmisano G, Engholm-Keller K, Jakobsen L, Zeng X, Larsen MR (2014) Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol Cell Proteom MCP 13(1):311–328. https://doi.org/10.1074/mcp.M112.026898

    Article  CAS  Google Scholar 

  58. Shekari F, Han CL, Lee J, Mirzaei M, Gupta V, Haynes PA, Lee B, Baharvand H, Chen YJ, Hosseini Salekdeh G (2018) Surface markers of human embryonic stem cells: a meta analysis of membrane proteomics reports. Expert Rev Proteom 15(11):911–922. https://doi.org/10.1080/14789450.2018.1539669

    Article  CAS  Google Scholar 

  59. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  60. Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, Honig GR, Kim KS, Lanza R (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28(4):704–712. https://doi.org/10.1002/stem.321

    Article  PubMed  Google Scholar 

  61. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215. https://doi.org/10.1038/nature10135

    Article  CAS  PubMed  Google Scholar 

  62. Pripuzova NS, Getie-Kebtie M, Grunseich C, Sweeney C, Malech H, Alterman MA (2015) Development of a protein marker panel for characterization of human induced pluripotent stem cells (hiPSCs) using global quantitative proteome analysis. Stem Cell Res 14(3):323–338. https://doi.org/10.1016/j.scr.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pomeroy JE, Hough SR, Davidson KC, Quaas AM, Rees JA, Pera MF (2016) Stem cell surface marker expression defines late stages of reprogramming to pluripotency in human fibroblasts. Stem Cells Transl Med 5(7):870–882. https://doi.org/10.5966/sctm.2015-0250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pinaire J, Azé J, Bringay S, Cayla G, Landais P (2019) Hospital burden of coronary artery disease: trends of myocardial infarction and/or percutaneous coronary interventions in France 2009–2014. PLoS ONE 14(5):e0215649

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bulluck H, Yellon DM, Hausenloy DJ (2016) Reducing myocardial infarct size: challenges and future opportunities. Heart 102(5):341–348

    Article  CAS  PubMed  Google Scholar 

  66. Rafatian G, Davis DR (2018) Concise review: heart-derived cell therapy 2.0: paracrine strategies to increase therapeutic repair of injured myocardium. Stem Cells 36(12):1794–1803

    Article  PubMed  Google Scholar 

  67. Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834. https://doi.org/10.1161/CIRCRESAHA.113.300219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M (2014) Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 345(6199):1247391. https://doi.org/10.1126/science.1247391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S (2003) Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 100(13):7808–7811. https://doi.org/10.1073/pnas.1232447100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagege AA (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200. https://doi.org/10.1161/circulationaha.107.734103

    Article  PubMed  Google Scholar 

  71. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grogaard HK, Bjornerheim R, Brekke M, Muller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355(12):1199–1209. https://doi.org/10.1056/NEJMoa055706

    Article  CAS  PubMed  Google Scholar 

  72. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM, Investigators R-A (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221. https://doi.org/10.1056/NEJMoa060186

    Article  CAS  PubMed  Google Scholar 

  73. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668. https://doi.org/10.1038/nature02446

    Article  CAS  PubMed  Google Scholar 

  74. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673. https://doi.org/10.1038/nature02460

    Article  CAS  PubMed  Google Scholar 

  75. Houtgraaf JH, den Dekker WK, van Dalen BM, Springeling T, de Jong R, van Geuns RJ, Geleijnse ML, Fernandez-Aviles F, Zijlsta F, Serruys PW, Duckers HJ (2012) First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 59(5):539–540. https://doi.org/10.1016/j.jacc.2011.09.065

    Article  PubMed  Google Scholar 

  76. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857. https://doi.org/10.1016/S0140-6736(11)61590-0

    Article  PubMed  PubMed Central  Google Scholar 

  77. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marban E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904. https://doi.org/10.1016/S0140-6736(12)60195-0

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fisher SA, Brunskill SJ, Doree C, Mathur A, Taggart DP, Martin-Rendon E (2014) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 4:CD007888. https://doi.org/10.1002/14651858.CD007888.pub2

    Article  Google Scholar 

  79. Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N, Mu H, Pachori A, Dzau V (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104(5):1643–1648. https://doi.org/10.1073/pnas.0610024104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, Pappas P, Tatooles A, Stoddard MF, Lima JA, Slaughter MS, Anversa P, Bolli R (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126(11 Suppl 1):S54–64. https://doi.org/10.1161/circulationaha.112.092627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, Jeong D, Sheng W, Bu L, Xu M, Huang GY, Hajjar RJ, Zhou B, Moon A, Cai CL (2015) Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun 6:8701. https://doi.org/10.1038/ncomms9701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Guillemain R, Suberbielle Boissel C, Tartour E, Desnos M, Larghero J (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36(30):2011–2017. https://doi.org/10.1093/eurheartj/ehv189

    Article  PubMed  Google Scholar 

  83. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Parouchev A, Cacciapuoti I, Al-Daccak R, Benhamouda N, Blons H, Agbulut O, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Charron D, Tartour E, Tachdjian G, Desnos M, Larghero J (2018) Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71(4):429–438. https://doi.org/10.1016/j.jacc.2017.11.047

    Article  PubMed  Google Scholar 

  84. Talkhabi M, Aghdami N, Baharvand H (2016) Human cardiomyocyte generation from pluripotent stem cells: a state-of-art. Life Sci 145:98–113. https://doi.org/10.1016/j.lfs.2015.12.023

    Article  CAS  PubMed  Google Scholar 

  85. Vahdat S, Pahlavan S, Aghdami N, Bakhshandeh B, Baharvand H (2019) Establishment of a protocol for in vitro culture of cardiogenic mesodermal cells derived from human embryonic stem cells. Cell J 20(4):496–504. https://doi.org/10.22074/cellj.2019.5661

    Article  PubMed  Google Scholar 

  86. Vahdat S, Pahlavan S, Mahmoudi E, Barekat M, Ansari H, Bakhshandeh B, Aghdami N, Baharvand H (2019) Expansion of human pluripotent stem cell-derived early cardiovascular progenitor cells by a cocktail of signaling factors. Sci Rep 9(1):16006. https://doi.org/10.1038/s41598-019-52516-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hofsteen P, Robitaille AM, Chapman DP, Moon RT, Murry CE (2016) Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/beta-catenin signaling. Proc Natl Acad Sci USA 113(4):1002–1007. https://doi.org/10.1073/pnas.1523930113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Konze SA, Werneburg S, Oberbeck A, Olmer R, Kempf H, Jara-Avaca M, Pich A, Zweigerdt R, Buettner FF (2017) Proteomic analysis of human pluripotent stem cell cardiomyogenesis revealed altered expression of metabolic enzymes and PDLIM5 isoforms. J Proteome Res 16(3):1133–1149. https://doi.org/10.1021/acs.jproteome.6b00534

    Article  CAS  PubMed  Google Scholar 

  89. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024. https://doi.org/10.1038/nbt1327

    Article  CAS  PubMed  Google Scholar 

  90. Van Hoof D, Dormeyer W, Braam SR, Passier R, Monshouwer-Kloots J, Ward-van Oostwaard D, Heck AJ, Krijgsveld J, Mummery CL (2010) Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res 9(3):1610–1618. https://doi.org/10.1021/pr901138a

    Article  CAS  PubMed  Google Scholar 

  91. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS ONE 6(8):e23657. https://doi.org/10.1371/journal.pone.0023657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29(11):1011–1018. https://doi.org/10.1038/nbt.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sharma P, Abbasi C, Lazic S, Teng ACT, Wang D, Dubois N, Ignatchenko V, Wong V, Liu J, Araki T, Tiburcy M, Ackerley C, Zimmermann WH, Hamilton R, Sun Y, Liu PP, Keller G, Stagljar I, Scott IC, Kislinger T, Gramolini AO (2015) Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nat Commun 6:8391. https://doi.org/10.1038/ncomms9391

    Article  CAS  PubMed  Google Scholar 

  94. Yoon C, Song H, Yin T, Bausch-Fluck D, Frei AP, Kattman S, Dubois N, Witty AD, Hewel JA, Guo H, Emili A, Wollscheid B, Keller G, Zandstra PW (2018) FZD4 marks lateral plate mesoderm and signals with NORRIN to increase cardiomyocyte induction from pluripotent stem cell-derived cardiac progenitors. Stem Cell Rep 10(1):87–100. https://doi.org/10.1016/j.stemcr.2017.11.008

    Article  CAS  Google Scholar 

  95. Burkhard S, van Eif V, Garric L, Christoffels V, Bakkers J (2017) On the evolution of the cardiac pacemaker. J Cardiovasc Dev Dis 4(2):4

    Article  PubMed Central  Google Scholar 

  96. Zhao Y, Rafatian N, Wang EY, Feric NT, Lai BF, Knee-Walden EJ, Backx PH, Radisic M (2019) Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform. Matrix Biol 85–86:189–204. https://doi.org/10.1016/j.matbio.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  97. Poon EN, Luo XL, Webb SE, Yan B, Zhao R, Wu SCM, Yang Y, Zhang P, Bai H, Shao J, Chan CM, Chan GC, Tsang SY, Gundry RL, Yang HT, Boheler KR (2020) The cell surface marker CD36 selectively identifies matured, mitochondria-rich hPSC-cardiomyocytes. Cell Res. https://doi.org/10.1038/s41422-020-0292-y

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bond AM, Ming G-l, Song H (2015) Adult mammalian neural stem cells and neurogenesis: 5 decades later. Cell Stem Cell 17(4):385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tang Y, Yu P, Cheng L (2017) Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 8(10):e3108. https://doi.org/10.1038/cddis.2017.504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. The Company of Biologists Ltd, Cambridge

    Google Scholar 

  101. Yadav K, Diana MML, Bhutia GT, Owoalade SA (2019) Review on aetiology, diagnosis and treatment of alzheimer’s disease. J Drug Deliv Therap 9(3):626–633

    Google Scholar 

  102. Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8(6):427–437. https://doi.org/10.1038/nrn2151

    Article  CAS  PubMed  Google Scholar 

  103. Zuchero JB, Barres BA (2013) Intrinsic and extrinsic control of oligodendrocyte development. Curr Opin Neurobiol 23(6):914–920. https://doi.org/10.1016/j.conb.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guerout N, Li X, Barnabe-Heider F (2014) Cell fate control in the developing central nervous system. Exp Cell Res 321(1):77–83. https://doi.org/10.1016/j.yexcr.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  105. Sloan SA, Barres BA (2014) Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 27:75–81. https://doi.org/10.1016/j.conb.2014.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mothe A, Tator CH (2015) Isolation of neural stem/progenitor cells from the periventricular region of the adult rat and human spinal cord. J Vis Exp 99:e52732. https://doi.org/10.3791/52732

    Article  Google Scholar 

  107. Guo W, Patzlaff NE, Jobe EM, Zhao X (2012) Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat Protoc 7(11):2005–2012. https://doi.org/10.1038/nprot.2012.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22(2):152–165. https://doi.org/10.1101/gad.1616208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wen Y, Jin S (2014) Production of neural stem cells from human pluripotent stem cells. J Biotechnol 188:122–129. https://doi.org/10.1016/j.jbiotec.2014.07.453

    Article  CAS  PubMed  Google Scholar 

  110. Feng N, Han Q, Li J, Wang S, Li H, Yao X, Zhao RC (2014) Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev 23(5):515–529. https://doi.org/10.1089/scd.2013.0263

    Article  CAS  PubMed  Google Scholar 

  111. Shahbazi E, Moradi S, Nemati S, Satarian L, Basiri M, Gourabi H, Zare Mehrjardi N, Gunther P, Lampert A, Handler K, Hatay FF, Schmidt D, Molcanyi M, Hescheler J, Schultze JL, Saric T, Baharvand H (2016) Conversion of human fibroblasts to stably self-renewing neural stem cells with a single zinc-finger transcription factor. Stem Cell Rep 6(4):539–551. https://doi.org/10.1016/j.stemcr.2016.02.013

    Article  CAS  Google Scholar 

  112. Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103(1):38–45. https://doi.org/10.3171/jns.2005.103.1.0038

    Article  PubMed  Google Scholar 

  113. Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7(1):75–84. https://doi.org/10.1038/nrn1829

    Article  CAS  PubMed  Google Scholar 

  114. Erceg S, Ronaghi M, Stojkovic M (2009) Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 27(1):78–87. https://doi.org/10.1634/stemcells.2008-0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mokhtarzadeh Khanghahi A, Satarian L, Deng W, Baharvand H, Javan M (2018) In vivo conversion of astrocytes into oligodendrocyte lineage cells with transcription factor Sox10; Promise for myelin repair in multiple sclerosis. PLoS ONE 13(9):e0203785. https://doi.org/10.1371/journal.pone.0203785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zizkova M, Sucha R, Tyleckova J, Jarkovska K, Mairychova K, Kotrcova E, Marsala M, Gadher SJ, Kovarova H (2015) Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies. Expert Rev Proteom 12(1):83–95. https://doi.org/10.1586/14789450.2015.977381

    Article  CAS  Google Scholar 

  117. Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, Corbeil D (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319(1):15–26. https://doi.org/10.1007/s00441-004-1018-z

    Article  CAS  PubMed  Google Scholar 

  118. Yuan SH, Martin J, Elia J, Flippin J, Paramban RI, Hefferan MP, Vidal JG, Mu Y, Killian RL, Israel MA, Emre N, Marsala S, Marsala M, Gage FH, Goldstein LS, Carson CT (2011) Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS ONE 6(3):e17540. https://doi.org/10.1371/journal.pone.0017540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pruszak J, Sonntag KC, Aung MH, Sanchez-Pernaute R, Isacson O (2007) Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25(9):2257–2268. https://doi.org/10.1634/stemcells.2006-0744

    Article  PubMed  PubMed Central  Google Scholar 

  120. Singec I, Crain AM, Hou J, Tobe BTD, Talantova M, Winquist AA, Doctor KS, Choy J, Huang X, La Monaca E, Horn DM, Wolf DA, Lipton SA, Gutierrez GJ, Brill LM, Snyder EY (2016) Quantitative analysis of human pluripotency and neural specification by in-depth (phospho)proteomic profiling. Stem Cell Rep 7(3):527–542. https://doi.org/10.1016/j.stemcr.2016.07.019

    Article  CAS  Google Scholar 

  121. Colucci-D'Amato L, Farina A, Vissers JP, Chambery A (2011) Quantitative neuroproteomics: classical and novel tools for studying neural differentiation and function. Stem Cell Rev 7(1):77–93. https://doi.org/10.1007/s12015-010-9136-3

    Article  Google Scholar 

  122. Fathi A, Hatami M, Vakilian H, Han CL, Chen YJ, Baharvand H, Salekdeh GH (2014) Quantitative proteomics analysis highlights the role of redox hemostasis and energy metabolism in human embryonic stem cell differentiation to neural cells. J Proteom 101:1–16. https://doi.org/10.1016/j.jprot.2014.02.002

    Article  CAS  Google Scholar 

  123. Shoemaker LD, Kornblum HI (2016) Neural stem cells (NSCs) and proteomics. Mol Cell Proteom MCP 15(2):344–354. https://doi.org/10.1074/mcp.O115.052704

    Article  CAS  Google Scholar 

  124. DeVeale B, Bausch-Fluck D, Seaberg R, Runciman S, Akbarian V, Karpowicz P, Yoon C, Song H, Leeder R, Zandstra PW, Wollscheid B, van der Kooy D (2014) Surfaceome profiling reveals regulators of neural stem cell function. Stem Cells 32(1):258–268. https://doi.org/10.1002/stem.1550

    Article  CAS  PubMed  Google Scholar 

  125. Chaerkady R, Letzen B, Renuse S, Sahasrabuddhe NA, Kumar P, All AH, Thakor NV, Delanghe B, Gearhart JD, Pandey A, Kerr CL (2011) Quantitative temporal proteomic analysis of human embryonic stem cell differentiation into oligodendrocyte progenitor cells. Proteomics 11(20):4007–4020. https://doi.org/10.1002/pmic.201100107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Djuric U, Rodrigues DC, Batruch I, Ellis J, Shannon P, Diamandis P (2017) Spatiotemporal proteomic profiling of human cerebral development. Mol Cell Proteom MCP 16(9):1548–1562. https://doi.org/10.1074/mcp.M116.066274

    Article  CAS  Google Scholar 

  127. Cao R, Chen K, Song Q, Zang Y, Li J, Wang X, Chen P, Liang S (2012) Quantitative proteomic analysis of membrane proteins involved in astroglial differentiation of neural stem cells by SILAC labeling coupled with LC-MS/MS. J Proteome Res 11(2):829–838. https://doi.org/10.1021/pr200677z

    Article  CAS  PubMed  Google Scholar 

  128. Boroviak T, Rashbass P (2011) The apical polarity determinant Crumbs 2 is a novel regulator of ESC-derived neural progenitors. Stem Cells 29(2):193–205. https://doi.org/10.1002/stem.567

    Article  CAS  PubMed  Google Scholar 

  129. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375. https://doi.org/10.1038/nature04108

    Article  CAS  PubMed  Google Scholar 

  130. Lange C, Mix E, Rateitschak K, Rolfs A (2006) Wnt signal pathways and neural stem cell differentiation. Neurodegener Dis 3(1–2):76–86. https://doi.org/10.1159/000092097

    Article  CAS  PubMed  Google Scholar 

  131. Tyleckova J, Valekova I, Zizkova M, Rakocyova M, Marsala S, Marsala M, Gadher SJ, Kovarova H (2016) Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation. J Proteomics 132:13–20. https://doi.org/10.1016/j.jprot.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  132. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480(7378):547–551. https://doi.org/10.1038/nature10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL, Hantraye P, Bjorklund A, Parmar M (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson's disease. Cell Stem Cell 15(5):653–665. https://doi.org/10.1016/j.stem.2014.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Doi D, Morizane A, Kikuchi T, Onoe H, Hayashi T, Kawasaki T, Motono M, Sasai Y, Saiki H, Gomi M, Yoshikawa T, Hayashi H, Shinoyama M, Refaat MM, Suemori H, Miyamoto S, Takahashi J (2012) Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson's disease. Stem Cells 30(5):935–945. https://doi.org/10.1002/stem.1060

    Article  CAS  PubMed  Google Scholar 

  135. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson PS, Li JY (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24(6):1433–1440. https://doi.org/10.1634/stemcells.2005-0393

    Article  CAS  PubMed  Google Scholar 

  136. Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D (2007) Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson's disease. J Neurosci 27(30):8011–8022. https://doi.org/10.1523/JNEUROSCI.2079-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Politis M (2010) Dyskinesias after neural transplantation in Parkinson's disease: what do we know and what is next? BMC Med 8:80. https://doi.org/10.1186/1741-7015-8-80

    Article  PubMed  PubMed Central  Google Scholar 

  138. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, Sekiguchi K, Nakagawa M, Parmar M, Takahashi J (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2(3):337–350. https://doi.org/10.1016/j.stemcr.2014.01.013

    Article  CAS  Google Scholar 

  139. Chung S, Moon JI, Leung A, Aldrich D, Lukianov S, Kitayama Y, Park S, Li Y, Bolshakov VY, Lamonerie T, Kim KS (2011) ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proc Natl Acad Sci USA 108(23):9703–9708. https://doi.org/10.1073/pnas.1016443108

    Article  PubMed  PubMed Central  Google Scholar 

  140. Paik EJ, O'Neil AL, Ng SY, Sun C, Rubin LL (2018) Using intracellular markers to identify a novel set of surface markers for live cell purification from a heterogeneous hIPSC culture. Sci Rep 8(1):804. https://doi.org/10.1038/s41598-018-19291-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lu CC, Brennan J, Robertson EJ (2001) From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev 11(4):384–392

    Article  CAS  PubMed  Google Scholar 

  142. Tahamtani Y, Azarnia M, Farrokhi A, Sharifi-Zarchi A, Aghdami N, Baharvand H (2013) Treatment of human embryonic stem cells with different combinations of priming and inducing factors toward definitive endoderm. Stem Cells Dev 22(9):1419–1432. https://doi.org/10.1089/scd.2012.0453

    Article  CAS  PubMed  Google Scholar 

  143. Farzaneh Z, Najarasl M, Abbasalizadeh S, Vosough M, Baharvand H (2018) Developing a cost-effective and scalable production of human hepatic competent endoderm from size-controlled pluripotent stem cell aggregates. Stem Cells Dev 27(4):262–274. https://doi.org/10.1089/scd.2017.0074

    Article  CAS  PubMed  Google Scholar 

  144. Broda TR, McCracken KW, Wells JM (2019) Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat Protoc 14(1):28–50. https://doi.org/10.1038/s41596-018-0080-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sharivkin R, Walker MD, Soen Y (2012) Proteomics-based dissection of human endoderm progenitors by differential cell capture on antibody array. Mol Cell Proteom MCP 11(9):586–595. https://doi.org/10.1074/mcp.M111.016840

    Article  CAS  Google Scholar 

  146. Coombe L, Kadri A, Martinez JF, Tatachar V, Gallicano GI (2018) Current approaches in regenerative medicine for the treatment of diabetes: introducing CRISPR/CAS9 technology and the case for non-embryonic stem cell therapy. Am J Stem Cells 7(5):104–113

    CAS  PubMed  PubMed Central  Google Scholar 

  147. El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, Terzic A, Kudva YC, Ikeda Y (2016) Tumor-free transplantation of patient-derived induced pluripotent stem cell progeny for customized islet regeneration. Stem Cells Transl Med 5(5):694–702. https://doi.org/10.5966/sctm.2015-0017

    Article  PubMed  PubMed Central  Google Scholar 

  148. Akpinar P, Kuwajima S, Krutzfeldt J, Stoffel M (2005) Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell Metab 2(6):385–397. https://doi.org/10.1016/j.cmet.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  149. Vats D, Wang H, Esterhazy D, Dikaiou K, Danzer C, Honer M, Stuker F, Matile H, Migliorini C, Fischer E, Ripoll J, Keist R, Krek W, Schibli R, Stoffel M, Rudin M (2012) Multimodal imaging of pancreatic beta cells in vivo by targeting transmembrane protein 27 (TMEM27). Diabetologia 55(9):2407–2416. https://doi.org/10.1007/s00125-012-2605-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, Deng H (2011) CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells 29(4):609–617. https://doi.org/10.1002/stem.608

    Article  CAS  PubMed  Google Scholar 

  151. Lindskog C, Korsgren O, Ponten F, Eriksson JW, Johansson L, Danielsson A (2012) Novel pancreatic beta cell-specific proteins: antibody-based proteomics for identification of new biomarker candidates. J Proteom 75(9):2611–2620. https://doi.org/10.1016/j.jprot.2012.03.008

    Article  CAS  Google Scholar 

  152. Sharivkin R, Walker MD, Soen Y (2015) Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets. PLoS ONE 10(2):e0115100. https://doi.org/10.1371/journal.pone.0115100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452. https://doi.org/10.1038/nbt1393

    Article  CAS  PubMed  Google Scholar 

  154. Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O'Neil JJ, Kieffer TJ (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31(11):2432–2442. https://doi.org/10.1002/stem.1489

    Article  CAS  PubMed  Google Scholar 

  155. Cogger KF, Sinha A, Sarangi F, McGaugh EC, Saunders D, Dorrell C, Mejia-Guerrero S, Aghazadeh Y, Rourke JL, Screaton RA, Grompe M, Streeter PR, Powers AC, Brissova M, Kislinger T, Nostro MC (2017) Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat Commun 8(1):331. https://doi.org/10.1038/s41467-017-00561-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, Richardson M, Carpenter MK, D'Amour KA, Kroon E, Moorman M, Baetge EE, Bang AG (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29(8):750–756. https://doi.org/10.1038/nbt.1931

    Article  CAS  PubMed  Google Scholar 

  157. Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, Semb H (2017) Efficient generation of glucose-responsive beta cells from isolated GP2(+) human pancreatic progenitors. Cell Rep 19(1):36–49. https://doi.org/10.1016/j.celrep.2017.03.032

    Article  CAS  PubMed  Google Scholar 

  158. Mallanna SK, Waas M, Duncan SA, Gundry RL (2017) N-glycoprotein surfaceome of human induced pluripotent stem cell derived hepatic endoderm. Proteomics. https://doi.org/10.1002/pmic.201600397

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ducret A, Kux van Geijtenbeek S, Roder D, Simon S, Chin D, Berrera M, Gruenbaum L, Ji C, Cutler P (2015) Identification of six cell surface proteins for specific liver targeting. Proteom Clin Appl 9(7–8):651–661. https://doi.org/10.1002/prca.201400194

    Article  CAS  Google Scholar 

  160. Mallanna SK, Cayo MA, Twaroski K, Gundry RL, Duncan SA (2016) Mapping the cell-surface N-glycoproteome of human hepatocytes reveals markers for selecting a homogeneous population of iPSC-derived hepatocytes. Stem Cell Rep 7(3):543–556. https://doi.org/10.1016/j.stemcr.2016.07.016

    Article  CAS  Google Scholar 

  161. Specht H, Slavov N (2018) Transformative opportunities for single-cell proteomics. J Proteome Res 17(8):2565–2571. https://doi.org/10.1021/acs.jproteome.8b00257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Choi YH, Kim JK (2019) Dissecting cellular heterogeneity using single-cell RNA sequencing. Mol Cells 42(3):189–199. https://doi.org/10.14348/molcells.2019.2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Palii CG, Cheng Q, Gillespie MA, Shannon P, Mazurczyk M, Napolitani G, Price ND, Ranish JA, Morrissey E, Higgs DR, Brand M (2019) Single-cell proteomics reveal that quantitative changes in co-expressed lineage-specific transcription factors determine cell fate. Cell Stem Cell 24(5):812–820.e815. https://doi.org/10.1016/j.stem.2019.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Graf T (2019) Transcription factor stoichiometry drives cell fate: single-cell proteomics to the rescue. Cell Stem Cell 24(5):673–674. https://doi.org/10.1016/j.stem.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  165. Li L, Yan S, Lin B, Shi Q, Lu Y (2018) Single-cell proteomics for cancer immunotherapy. Adv Cancer Res 139:185–207. https://doi.org/10.1016/bs.acr.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  166. Wang Z, Zhang X (2018) Single cell proteomics for molecular targets in lung cancer: high-dimensional data acquisition and analysis. Adv Exp Med Biol 1068:73–87. https://doi.org/10.1007/978-981-13-0502-3_7

    Article  CAS  PubMed  Google Scholar 

  167. Levy E, Slavov N (2018) Single cell protein analysis for systems biology. Essays Biochem 62(4):595–605. https://doi.org/10.1042/EBC20180014

    Article  PubMed  PubMed Central  Google Scholar 

  168. Marcon E, Jain H, Bhattacharya A, Guo H, Phanse S, Pu S, Byram G, Collins BC, Dowdell E, Fenner M, Guo X, Hutchinson A, Kennedy JJ, Krastins B, Larsen B, Lin ZY, Lopez MF, Loppnau P, Miersch S, Nguyen T, Olsen JB, Paduch M, Ravichandran M, Seitova A, Vadali G, Vogelsang MS, Whiteaker JR, Zhong G, Zhong N, Zhao L, Aebersold R, Arrowsmith CH, Emili A, Frappier L, Gingras AC, Gstaiger M, Paulovich AG, Koide S, Kossiakoff AA, Sidhu SS, Wodak SJ, Graslund S, Greenblatt JF, Edwards AM (2015) Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nat Methods 12(8):725–731. https://doi.org/10.1038/nmeth.3472

    Article  CAS  PubMed  Google Scholar 

  169. Budnik B, Levy E, Harmange G, Slavov N (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19(1):161. https://doi.org/10.1186/s13059-018-1547-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Specht H, Emmott E, Perlman DH, Koller A, Slavov N (2019) High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity. bioRxiv. https://doi.org/10.1101/665307

    Article  Google Scholar 

  171. Willison KR, Klug DR (2013) Quantitative single cell and single molecule proteomics for clinical studies. Curr Opin Biotechnol 24(4):745–751. https://doi.org/10.1016/j.copbio.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  172. Marx V (2019) A dream of single-cell proteomics. Nat Methods 16(9):809–812. https://doi.org/10.1038/s41592-019-0540-6

    Article  CAS  PubMed  Google Scholar 

  173. Waas M, Snarrenberg ST, Littrell J, Jones Lipinski RA, Hansen PA, Corbett JA, Gundry RL (2020) SurfaceGenie: a web-based application for prioritizing cell-type-specific marker candidates. Bioinformatics 36(11):3447–3456. https://doi.org/10.1093/bioinformatics/btaa092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li M, Izpisua Belmonte JC (2019) Organoids—preclinical models of human disease. N Engl J Med 380(6):569–579. https://doi.org/10.1056/NEJMra1806175

    Article  PubMed  Google Scholar 

  175. Choo AB, Tan HL, Ang SN, Fong WJ, Chin A, Lo J, Zheng L, Hentze H, Philp RJ, Oh SK, Yap M (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26(6):1454–1463. https://doi.org/10.1634/stemcells.2007-0576

    Article  CAS  PubMed  Google Scholar 

  176. Choi HS, Kim H, Won A, Kim JJ, Son CY, Kim KS, Ko JH, Lee MY, Kim CH, Ryu CJ (2008) Development of a decoy immunization strategy to identify cell-surface molecules expressed on undifferentiated human embryonic stem cells. Cell Tissue Res 333(2):197–206. https://doi.org/10.1007/s00441-008-0632-6

    Article  CAS  PubMed  Google Scholar 

  177. Veevers J, Farah EN, Corselli M, Witty AD, Palomares K, Vidal JG, Emre N, Carson CT, Ouyang K, Liu C, van Vliet P, Zhu M, Hegarty JM, Deacon DC, Grinstein JD, Dirschinger RJ, Frazer KA, Adler ED, Knowlton KU, Chi NC, Martin JC, Chen J, Evans SM (2018) Cell-surface marker signature for enrichment of ventricular cardiomyocytes derived from human embryonic stem cells. Stem Cell Rep 11(3):828–841. https://doi.org/10.1016/j.stemcr.2018.07.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Royan Institute.

Funding

This study was supported by grants from the Royan Institute.

Author information

Authors and Affiliations

Authors

Contributions

AM performed the literature search and wrote the manuscript. SP wrote the manuscript. MM and JK revised the manuscript. HB and GHS supervised the manuscript.

Corresponding author

Correspondence to Ghasem Hosseini Salekdeh.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Informed consent

Written informed consent for publication was obtained and attached.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyfour, A., Pahlavan, S., Mirzaei, M. et al. The quest of cell surface markers for stem cell therapy. Cell. Mol. Life Sci. 78, 469–495 (2021). https://doi.org/10.1007/s00018-020-03602-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03602-y

Keywords

Navigation