Unichenko P, Kirischuk S, Yang JW, Baumgart J, Roskoden T, Schneider P, Sommer A, Horta G, Radyushkin K, Nitsch R et al (2016) Plasticity-related gene 1 affects mouse barrel cortex function via strengthening of glutamatergic thalamocortical transmission. Cereb Cortex 26(7):3260–3272
PubMed
PubMed Central
Google Scholar
Vogt J, Kirischuk S, Unichenko P, Schluter L, Pelosi A, Endle H, Yang JW, Schmarowski N, Cheng J, Thalman C et al (2017) Synaptic phospholipid signaling modulates axon outgrowth via glutamate-dependent Ca2+-mediated molecular pathways. Cereb Cortex 27(1):131–145
PubMed
Google Scholar
Vogt J, Yang JW, Mobascher A, Cheng J, Li Y, Liu X, Baumgart J, Thalman C, Kirischuk S, Unichenko P et al (2016) Molecular cause and functional impact of altered synaptic lipid signaling due to a prg-1 gene SNP. EMBO Mol Med 8(1):25–38
CAS
PubMed
Google Scholar
Liu X, Huai J, Endle H, Schluter L, Fan W, Li Y, Richers S, Yurugi H, Rajalingam K, Ji H et al (2016) PRG-1 regulates synaptic plasticity via intracellular PP2A/beta1-integrin signaling. Dev Cell 38(3):275–290
CAS
PubMed
Google Scholar
Thalman C, Horta G, Qiao L, Endle H, Tegeder I, Cheng H, Laube G, Sigrudsson T, Hauser MJ, Tenzer S et al (2018) Synaptic phospholipids as a new target for cortical hyperexcitability and E/I balance in psychiatric disorders. Mol Psychiatry 23(8):1699–1710
CAS
PubMed
PubMed Central
Google Scholar
Hausmann J, Kamtekar S, Christodoulou E, Day JE, Wu T, Fulkerson Z, Albers HM, van Meeteren LA, Houben AJ, van Zeijl L et al (2011) Structural basis of substrate discrimination and integrin binding by autotaxin. Nat Struct Mol Biol 18(2):198–204
CAS
PubMed
PubMed Central
Google Scholar
Moolenaar WH, Perrakis A (2011) Insights into autotaxin: how to produce and present a lipid mediator. Nat Rev Mol Cell Biol 12(10):674–679
CAS
PubMed
Google Scholar
Nishimasu H, Ishitani R, Aoki J, Nureki O (2012) A 3D view of autotaxin. Trends Pharmacol Sci 33(3):138–145
CAS
PubMed
Google Scholar
Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509(7501):507–511
CAS
PubMed
PubMed Central
Google Scholar
Trimbuch T, Beed P, Vogt J, Schuchmann S, Maier N, Kintscher M, Breustedt J, Schuelke M, Streu N, Kieselmann O et al (2009) Synaptic PRG-1 modulates excitatory transmission via lipid phosphate-mediated signaling. Cell 138(6):1222–1235
CAS
PubMed
PubMed Central
Google Scholar
Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178
CAS
PubMed
PubMed Central
Google Scholar
Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B, Konnerth A (2012) Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 109(22):8740–8745
CAS
PubMed
PubMed Central
Google Scholar
Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321(5896):1686–1689
CAS
PubMed
Google Scholar
Busche MA, Konnerth A (2015) Neuronal hyperactivity—a key defect in Alzheimer's disease? BioEssays 37(6):624–632
PubMed
Google Scholar
Lam AD, Deck G, Goldman A, Eskandar EN, Noebels J, Cole AJ (2017) Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer's disease. Nat Med 23(6):678–680
CAS
PubMed
PubMed Central
Google Scholar
Fontana R, Agostini M, Murana E, Mahmud M, Scremin E, Rubega M, Sparacino G, Vassanelli S, Fasolato C (2017) Early hippocampal hyperexcitability in PS2APP mice: role of mutant PS2 and APP. Neurobiol Aging 50:64–76
CAS
PubMed
Google Scholar
Kazim SF, Chuang SC, Zhao W, Wong RK, Bianchi R, Iqbal K (2017) Early-onset network hyperexcitability in presymptomatic Alzheimer's disease transgenic mice is suppressed by passive immunization with anti-human APP/abeta antibody and by mGluR5 blockade. Front Aging Neurosci 9:71
PubMed
PubMed Central
Google Scholar
Simkin D, Hattori S, Ybarra N, Musial TF, Buss EW, Richter H, Oh MM, Nicholson DA, Disterhoft JF (2015) Aging-related hyperexcitability in CA3 pyramidal neurons is mediated by enhanced A-Type K+ channel function and expression. J Neurosci 35(38):13206–13218
CAS
PubMed
PubMed Central
Google Scholar
Oh MM, Simkin D, Disterhoft JF (2016) Intrinsic hippocampal excitability changes of opposite signs and different origins in CA1 and CA3 pyramidal neurons underlie aging-related cognitive deficits. Front Syst Neurosci 10:52
PubMed
PubMed Central
Google Scholar
Thome A, Gray DT, Erickson CA, Lipa P, Barnes CA (2016) Memory impairment in aged primates is associated with region-specific network dysfunction. Mol Psychiatry 21(9):1257–1262
CAS
PubMed
Google Scholar
Haberman RP, Koh MT, Gallagher M (2017) Heightened cortical excitability in aged rodents with memory impairment. Neurobiol Aging 54:144–151
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson MP (2018) Brain regional synchronous activity predicts tauopathy in 3xTgAD mice. Neurobiol Aging 70:160–169
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Rodriguez I, Temprano-Carazo S, Najera A, Djebari S, Yajeya J, Gruart A, Delgado-Garcia JM, Jimenez-Diaz L, Navarro-Lopez JD (2017) Activation of G-protein-gated inwardly rectifying potassium (Kir3/GirK) channels rescues hippocampal functions in a mouse model of early amyloid-beta pathology. Sci Rep 7(1):14658
PubMed
PubMed Central
Google Scholar
Westerink RH, Beekwilder JP, Wadman WJ (2012) Differential alterations of synaptic plasticity in dentate gyrus and CA1 hippocampal area of Calbindin-D28K knockout mice. Brain Res 1450:1–10
CAS
PubMed
Google Scholar
Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290
CAS
PubMed
Google Scholar
Spriggs MJ, Cadwallader CJ, Hamm JP, Tippett LJ, Kirk IJ (2017) Age-related alterations in human neocortical plasticity. Brain Res Bull 130:53–59
CAS
PubMed
Google Scholar
Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H et al (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373(6510):151–155
CAS
PubMed
Google Scholar
Diering GH, Huganir RL (2018) The AMPA receptor code of synaptic plasticity. Neuron 100(2):314–329
CAS
PubMed
PubMed Central
Google Scholar
Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, Kaiser KM, Koster HJ, Borchardt T, Worley P et al (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284(5421):1805–1811
CAS
PubMed
Google Scholar
Xiong CH, Liu MG, Zhao LX, Chen MW, Tang L, Yan YH, Chen HZ, Qiu Y (2019) M1 muscarinic receptors facilitate hippocampus-dependent cognitive flexibility via modulating GluA2 subunit of AMPA receptors. Neuropharmacology 146:242–251
CAS
PubMed
Google Scholar
Avigan PD, Cammack K, Shapiro ML (2020) Flexible spatial learning requires both the dorsal and ventral hippocampus and their functional interactions with the prefrontal cortex. Hippocampus. 20:20
Google Scholar
Voikar V, Colacicco G, Gruber O, Vannoni E, Lipp HP, Wolfer DP (2010) Conditioned response suppression in the IntelliCage: assessment of mouse strain differences and effects of hippocampal and striatal lesions on acquisition and retention of memory. Behav Brain Res 213(2):304–312
PubMed
Google Scholar
Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103(46):17501–17506
CAS
PubMed
PubMed Central
Google Scholar
Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L et al (2018) Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97(3):670–83.e6
CAS
PubMed
PubMed Central
Google Scholar
Seo DO, Carillo MA, Chih-Hsiung Lim S, Tanaka KF, Drew MR (2015) Adult hippocampal neurogenesis modulates fear learning through associative and nonassociative mechanisms. J Neurosci 35(32):11330–11345. https://doi.org/10.1523/JNEUROSCI.0483-15.2015
CAS
Article
PubMed
PubMed Central
Google Scholar
Mariano TY, Bannerman DM, McHugh SB, Preston TJ, Rudebeck PH, Rudebeck SR, Rawlins JNP, Walton ME, Rushworth MFS, Baxter MG et al (2009) Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task. Eur J Neurosci 30(3):472–484
CAS
PubMed
PubMed Central
Google Scholar
Mohler EG, Ding Z, Rueter LE, Chapin D, Young D, Kozak R (2015) Cross-site strain comparison of pharmacological deficits in the touchscreen visual discrimination test. Psychopharmacology 232(21–22):4033–4041
CAS
PubMed
Google Scholar
Kenton JA, Castillo R, Holmes A, Brigman JL (2018) Cortico-hippocampal GluN2B is essential for efficient visual-spatial discrimination learning in a touchscreen paradigm. Neurobiol Learn Mem 156:60–67
CAS
PubMed
PubMed Central
Google Scholar
Brigman JL, Feyder M, Saksida LM, Bussey TJ, Mishina M, Holmes A (2008) Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn Mem 15(2):50–54
PubMed
Google Scholar
Kaufman AM, Geiller T, Losonczy A (2020) A role for the locus coeruleus in hippocampal CA1 place cell reorganization during spatial reward learning. Neuron
Yoshida K, Drew MR, Mimura M, Tanaka KF (2019) Serotonin-mediated inhibition of ventral hippocampus is required for sustained goal-directed behavior. Nat Neurosci 22(5):770–777
CAS
PubMed
Google Scholar
Hirni DI, Kivisaari SL, Krumm S, Monsch AU, Berres M, Oeksuez F, Reinhardt J, Ulmer S, Kressig RW, Stippich C et al (2016) Neuropsychological markers of medial perirhinal and entorhinal cortex functioning are impaired twelve years preceding diagnosis of Alzheimer's dementia. J Alzheimers Dis 52(2):573–580
PubMed
Google Scholar
Maurer AP, Johnson SA, Hernandez AR, Reasor J, Cossio DM, Fertal KE, Mizell JM, Lubke KN, Clark BJ, Burke SN (2017) Age-related changes in lateral entorhinal and CA3 neuron allocation predict poor performance on object discrimination. Front Syst Neurosci 11:49
PubMed
PubMed Central
Google Scholar
Haberman RP, Branch A, Gallagher M (2017) Targeting neural hyperactivity as a treatment to stem progression of late-onset Alzheimer's disease. Neurotherapeutics 14(3):662–676
PubMed
PubMed Central
Google Scholar
Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL, Gallagher M (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74(3):467–474
CAS
PubMed
PubMed Central
Google Scholar
Tran TT, Speck CL, Pisupati A, Gallagher M, Bakker A (2017) Increased hippocampal activation in ApoE-4 carriers and non-carriers with amnestic mild cognitive impairment. NeuroImage Clin 13:237–245
PubMed
Google Scholar
Dockree PM, Barnes JJ, Matthews N, Dean AJ, Abe R, Nandam LS, Kelly SP, Bellgrove MA, O'Connell RG (2017) The effects of methylphenidate on the neural signatures of sustained attention. Biol Psychiatry 82(9):687–694
CAS
PubMed
Google Scholar
Navarra RL, Clark BD, Gargiulo AT, Waterhouse BD (2017) Methylphenidate enhances early-stage sensory processing and rodent performance of a visual signal detection task. Neuropsychopharmacology 42(6):1326–1337
CAS
PubMed
PubMed Central
Google Scholar
Rozas C, Carvallo C, Contreras D, Carreno M, Ugarte G, Delgado R, Zeise ML, Morales B (2015) Methylphenidate amplifies long-term potentiation in rat hippocampus CA1 area involving the insertion of AMPA receptors by activation of beta-adrenergic and D1/D5 receptors. Neuropharmacology 99:15–27
CAS
PubMed
Google Scholar
Pozzi L, Baviera M, Sacchetti G, Calcagno E, Balducci C, Invernizzi RW, Carli M (2011) Attention deficit induced by blockade of N-methyl D-aspartate receptors in the prefrontal cortex is associated with enhanced glutamate release and cAMP response element binding protein phosphorylation: role of metabotropic glutamate receptors 2/3. Neuroscience 176:336–348
CAS
PubMed
Google Scholar
Katz JL, Kohut SJ, Soto P (2018) Vigilance demand and the effects of stimulant drugs in a five-choice reaction-time procedure in mice. Behav Pharmacol 29(8):701–708
PubMed
PubMed Central
Google Scholar
van Dijk RM, Lazic SE, Slomianka L, Wolfer DP, Amrein I (2016) Large-scale phenotyping links adult hippocampal neurogenesis to the reaction to novelty. Hippocampus 26(5):646–657
PubMed
Google Scholar
Kalm M, Karlsson N, Nilsson MK, Blomgren K (2013) Loss of hippocampal neurogenesis, increased novelty-induced activity, decreased home cage activity, and impaired reversal learning one year after irradiation of the young mouse brain. Exp Neurol
Bartko SJ, Romberg C, White B, Wess J, Bussey TJ, Saksida LM (2011) Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropharmacology 61(8):1366–1378. https://doi.org/10.1016/j.neuropharm.2011.08.023(Epub Aug 30)
CAS
Article
PubMed
PubMed Central
Google Scholar
Vila-Ballo A, Mas-Herrero E, Ripolles P, Simo M, Miro J, Cucurell D, Lopez-Barroso D, Juncadella M, Marco-Pallares J, Falip M et al (2017) Unraveling the role of the hippocampus in reversal learning. J Neurosci 37(28):6686–6697
CAS
PubMed
PubMed Central
Google Scholar
Mineur YS, Belzung C, Crusio WE (2007) Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience 150(2):251–259 (Epub 2007 Sep 26)
CAS
PubMed
Google Scholar
Ju YE, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP, Morris JC, Holtzman DM (2013) Sleep quality and preclinical Alzheimer disease. JAMA Neurol 70(5):587–593
PubMed
PubMed Central
Google Scholar
Kirszenblat L, Ertekin D, Goodsell J, Zhou Y, Shaw PJ, van Swinderen B (2018) Sleep regulates visual selective attention in Drosophila. J Exp Biol 221:Pt 24
Google Scholar
Vorster AP, Born J (2015) Sleep and memory in mammals, birds and invertebrates. Neurosci Biobehav Rev 50:103–119
PubMed
Google Scholar
Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126
CAS
PubMed
Google Scholar
Poe GR (2017) Sleep is for forgetting. J Neurosci 37(3):464–473
CAS
PubMed
PubMed Central
Google Scholar
Sara SJ (2017) Sleep to remember. J Neurosci 37(3):457–463
CAS
PubMed
PubMed Central
Google Scholar
Wilckens KA, Ferrarelli F, Walker MP, Buysse DJ (2018) Slow-wave activity enhancement to improve cognition. Trends Neurosci 41(7):470–482
CAS
PubMed
PubMed Central
Google Scholar
Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, Brown JH, Chun J (2002) Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 22(19):6921–6929
CAS
PubMed
PubMed Central
Google Scholar
Bicker F, Vasic V, Horta G, Ortega F, Nolte H, Kavyanifar A, Keller S, Stankovic ND, Harter PN, Benedito R et al (2017) Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception. Nat Commun 8:15922
CAS
PubMed
PubMed Central
Google Scholar
Hernandez AR, Reasor JE, Truckenbrod LM, Lubke KN, Johnson SA, Bizon JL, Maurer AP, Burke SN (2017) Medial prefrontal-perirhinal cortical communication is necessary for flexible response selection. Neurobiol Learn Mem 137:36–47
PubMed
Google Scholar
Watson DJ, Loiseau F, Ingallinesi M, Millan MJ, Marsden CA, Fone KC (2012) Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology 37(3):770–786
CAS
PubMed
Google Scholar
Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ, Ferenczi E, Gunaydin LA, Mirzabekov JJ, Ye L et al (2015) Basomedial amygdala mediates top–down control of anxiety and fear. Nature 527(7577):179–185
CAS
PubMed
PubMed Central
Google Scholar
Albuquerque B, Haussler A, Vannoni E, Wolfer DP, Tegeder I (2013) Learning and memory with neuropathic pain: impact of old age and progranulin deficiency. Front Behav Neurosci 7:174
PubMed
PubMed Central
Google Scholar
Hardt S, Heidler J, Albuquerque B, Valek L, Altmann C, Wilken-Schmitz A, Schafer MKE, Wittig I, Tegeder I (2017) Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain. Biochim Biophys Acta 1863(11):2727–2745
CAS
Google Scholar
Hardt S, Valek L, Zeng-Brouwers J, Wilken-Schmitz A, Schaefer L, Tegeder I (2018) Progranulin deficient mice develop nephrogenic diabetes insipidus. Aging Dis 9(5):817–830
PubMed
PubMed Central
Google Scholar
Krackow S, Vannoni E, Codita A, Mohammed AH, Cirulli F, Branchi I, Alleva E, Reichelt A, Willuweit A, Voikar V et al (2010) Consistent behavioral phenotype differences between inbred mouse strains in the IntelliCage. Genes Brain Behav 9(7):722–731
CAS
PubMed
Google Scholar
Endo T, Maekawa F, Voikar V, Haijima A, Uemura Y, Zhang Y, Miyazaki W, Suyama S, Shimazaki K, Wolfer DP et al (2011) Automated test of behavioral flexibility in mice using a behavioral sequencing task in IntelliCage. Behav Brain Res 221(1):172–181
PubMed
Google Scholar
Voikar V, Krackow S, Lipp HP, Rau A, Colacicco G, Wolfer DP (2018) Automated dissection of permanent effects of hippocampal or prefrontal lesions on performance at spatial, working memory and circadian timing tasks of C57BL/6 mice in IntelliCage. Behav Brain Res 352:8–22
PubMed
PubMed Central
Google Scholar
Robinson L, Riedel G (2014) Comparison of automated home-cage monitoring systems: emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions. J Neurosci Methods 234:13–25
CAS
PubMed
Google Scholar
Keefer SE, Petrovich GD (2020) The basolateral amygdala-medial prefrontal cortex circuitry regulates behavioral flexibility during appetitive reversal learning. Behav Neurosci 134(1):34–44
PubMed
Google Scholar
Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci USA 104(12):5181–5186
CAS
PubMed
PubMed Central
Google Scholar
LeGates TA, Kvarta MD, Tooley JR, Francis TC, Lobo MK, Creed MC, Thompson SM (2018) Reward behaviour is regulated by the strength of hippocampus-nucleus accumbens synapses. Nature 564(7735):258–262
CAS
PubMed
PubMed Central
Google Scholar
Garthe A, Behr J, Kempermann G (2009) Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE 4(5):e5464
PubMed
PubMed Central
Google Scholar
Mao D, Neumann AR, Sun J, Bonin V, Mohajerani MH, McNaughton BL (2018) Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex. Proc Natl Acad Sci USA 115(31):8015–8018
PubMed
PubMed Central
Google Scholar
Cho YH, Jeantet Y (2010) Differential involvement of prefrontal cortex, striatum, and hippocampus in DRL performance in mice. Neurobiol Learn Mem 93(1):85–91
PubMed
Google Scholar
Jackson PA, Kesner RP, Amann K (1998) Memory for duration: role of hippocampus and medial prefrontal cortex. Neurobiol Learn Mem 70(3):328–348
CAS
PubMed
Google Scholar
Silverman JL, Gastrell PT, Karras MN, Solomon M, Crawley JN (2015) Cognitive abilities on transitive inference using a novel touchscreen technology for mice. Cereb Cortex 25(5):1133–1142
CAS
PubMed
Google Scholar
Izquierdo A, Wiedholz LM, Millstein RA, Yang RJ, Bussey TJ, Saksida LM, Holmes A (2006) Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav Brain Res 171(2):181–188
CAS
PubMed
Google Scholar
Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SR, Alsio J, Oomen CA, Holmes A, Saksida LM et al (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8(10):1961–1984. https://doi.org/10.1038/nprot.2013.122(Epub Sep 19)
CAS
Article
PubMed
PubMed Central
Google Scholar
Pezze MA, Dalley JW, Robbins TW (2007) Differential roles of dopamine D1 and D2 receptors in the nucleus accumbens in attentional performance on the five-choice serial reaction time task. Neuropsychopharmacology 32(2):273–283
CAS
PubMed
Google Scholar
Pezze M, McGarrity S, Mason R, Fone KC, Bast T (2014) Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci 34(23):7931–7946
CAS
PubMed
PubMed Central
Google Scholar
Brigman JL, Rothblat LA (2008) Stimulus specific deficit on visual reversal learning after lesions of medial prefrontal cortex in the mouse. Behav Brain Res 187(2):405–410
CAS
PubMed
Google Scholar
Brigman JL, Daut RA, Saksida L, Bussey TJ, Nakazawa K, Holmes A (2015) Impaired discrimination learning in interneuronal NMDAR-GluN2B mutant mice. NeuroReport 26(9):489–494
CAS
PubMed
PubMed Central
Google Scholar
Gould RW, Dencker D, Grannan M, Bubser M, Zhan X, Wess J, Xiang Z, Locuson C, Lindsley CW, Conn PJ et al (2015) Role for the M1 muscarinic acetylcholine receptor in top-down cognitive processing using a touchscreen visual discrimination task in mice. ACS Chem Neurosci 6(10):1683–1695
CAS
PubMed
Google Scholar
Zeleznikow-Johnston AM, Renoir T, Churilov L, Li S, Burrows EL, Hannan AJ (2018) Touchscreen testing reveals clinically relevant cognitive abnormalities in a mouse model of schizophrenia lacking metabotropic glutamate receptor 5. Sci Rep 8(1):16412
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21
CAS
PubMed
Google Scholar
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550
PubMed
PubMed Central
Google Scholar
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613
CAS
PubMed
Google Scholar
Schaefer MH, Fontaine JF, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA (2012) HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS ONE 7(2):e31826
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504
CAS
PubMed
PubMed Central
Google Scholar