Skip to main content

Advertisement

Log in

Yolk sac hematopoiesis: does it contribute to the adult hematopoietic system?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In most vertebrates, the yolk sac (YS) represents the very first tissue where blood cells are detected. Therefore, it was thought for a long time that it generated all the blood cells present in the embryo. This model was challenged using different animal models, and we now know that YS hematopoietic precursors are mostly transient although their contribution to the adult system cannot be excluded. In this review, we aim at properly define the different waves of blood progenitors that are produced by the YS and address the fate of each of them. Indeed, in the last decade, many evidences have emphasized the role of the YS in the emergence of several myeloid tissue-resident adult subsets. We will focus on the development of microglia, the resident macrophages in the central nervous system, and try to untangle the recent controversy about their origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Busch K et al (2015) Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518(7540):542–546

    CAS  PubMed  Google Scholar 

  2. Wilson A et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129

    CAS  PubMed  Google Scholar 

  3. Carrelha J et al (2018) Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554(7690):106–111

    CAS  PubMed  Google Scholar 

  4. Sawai CM et al (2016) Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45(3):597–609

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439–449

    CAS  PubMed  Google Scholar 

  6. Bertrand JY et al (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464(7285):108–111

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Boisset JC et al (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464(7285):116–120

    CAS  PubMed  Google Scholar 

  8. Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464(7285):112–115

    CAS  PubMed  Google Scholar 

  9. Lam EY et al (2010) Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 116(6):909–914

    CAS  PubMed  Google Scholar 

  10. Ciau-Uitz A, Walmsley M, Patient R (2000) Distinct origins of adult and embryonic blood in Xenopus. Cell 102(6):787–796

    CAS  PubMed  Google Scholar 

  11. Davidson AJ, Zon LI (2004) The 'definitive' (and 'primitive') guide to zebrafish hematopoiesis. Oncogene 23(43):7233–7246

    CAS  PubMed  Google Scholar 

  12. Weissman IL, Gardner R (1978) Fetal hematopoietic origins of the adult hematolymphoid system. In: Clarckson MPB, Till JE (eds) Differentiation of normal and neoplastic hematopoietic cells. Cold Spring Harbor Laboratory, New York, pp 33–47

    Google Scholar 

  13. Dieterlen-Lievre F (1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33(3):607–619

    CAS  PubMed  Google Scholar 

  14. Dieterlen-Lievre F, Beaupain D, Martin C (1976) Origin of erythropoietic stem cells in avian development: shift from the yolk sac to an intraembryonic site. Ann Immunol (Paris) 127(6):857–863

    CAS  Google Scholar 

  15. Cumano A et al (2001) Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15(3):477–485

    CAS  PubMed  Google Scholar 

  16. Samokhvalov IM, Samokhvalova NI, Nishikawa S (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446(7139):1056–1061

    CAS  PubMed  Google Scholar 

  17. Tanaka Y et al (2012) Early ontogenic origin of the hematopoietic stem cell lineage. Proc Natl Acad Sci U S A 109(12):4515–4520

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Senserrich J et al (2018) Analysis of Runx1 using induced gene ablation reveals its essential role in pre-liver HSC development and limitations of an in vivo approach. Stem Cell Rep 11(3):784–794

    CAS  Google Scholar 

  19. Beaudin AE et al (2016) A transient developmental hematopoietic stem cell gives rise to innate-like B and T cells. Cell Stem Cell 19(6):768–783

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yvernogeau L et al (2019) In vivo generation of haematopoietic stem/progenitor cells from bone marrow-derived haemogenic endothelium. Nat Cell Biol 21(11):1334–1345

    CAS  PubMed  Google Scholar 

  21. Sabin F (1920) Studies on the origin of blood-vessels and of red corpuscules as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Contrib Embryol 272:214–262

    Google Scholar 

  22. McGrath KE et al (2003) Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101(5):1669–1676

    CAS  PubMed  Google Scholar 

  23. Drake CJ, Fleming PA (2000) Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95(5):1671–1679

    CAS  PubMed  Google Scholar 

  24. Manaia A et al (2000) Lmo2 and GATA-3 associated expression in intraembryonic hemogenic sites. Development 127(3):643–653

    CAS  PubMed  Google Scholar 

  25. Ueno H, Weissman IL (2006) Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 11(4):519–533

    CAS  PubMed  Google Scholar 

  26. Livet J et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62

    CAS  PubMed  Google Scholar 

  27. Choi K et al (1998) A common precursor for hematopoietic and endothelial cells. Development 125(4):725–732

    CAS  PubMed  Google Scholar 

  28. Huber TL et al (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432(7017):625–630

    CAS  PubMed  Google Scholar 

  29. Bertrand JY et al (2005) Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci U S A 102(1):134–139

    CAS  PubMed  Google Scholar 

  30. Bertrand JY et al (2005) Three pathways to mature macrophages in the early mouse yolk sac. Blood 106:3004–3011

    CAS  PubMed  Google Scholar 

  31. Craig ML, Russell ES (1964) A developmental change in hemoglobins correlated with an embryonic red cell population in the mouse. Dev Biol 10:191–201

    CAS  PubMed  Google Scholar 

  32. Wong PM et al (1983) Adult hemoglobins are synthesized in murine fetal hepatic erythropoietic cells. Blood 62(6):1280–1288

    CAS  PubMed  Google Scholar 

  33. Baron MH (2013) Concise Review: early embryonic erythropoiesis: not so primitive after all. Stem Cells 31(5):849–856

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kingsley PD et al (2004) Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood 104(1):19–25

    CAS  PubMed  Google Scholar 

  35. Isern J et al (2008) The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A 105(18):6662–6667

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McGrath KE et al (2008) Enucleation of primitive erythroid cells generates a transient population of "pyrenocytes" in the mammalian fetus. Blood 111(4):2409–2417

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tober J et al (2007) The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood 109(4):1433–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu MJ et al (2001) Evidence for the presence of murine primitive megakaryocytopoiesis in the early yolk sac. Blood 97(7):2016–2022

    CAS  Google Scholar 

  39. Cortegano I et al (2019) CD45 expression discriminates waves of embryonic megakaryocytes in the mouse. Haematologica 104(9):1853–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Potts KS et al (2015) Mouse prenatal platelet-forming lineages share a core transcriptional program but divergent dependence on MPL. Blood 126(6):807–816

    CAS  PubMed  Google Scholar 

  41. Naito M et al (1996) Development, differentiation, and phenotypic heterogeneity of murine tissue macrophages. J Leukoc Biol 59(2):133–138

    CAS  PubMed  Google Scholar 

  42. Naito M et al (1989) Development, differentiation, and maturation of fetal mouse yolk sac macrophages in cultures. J Leukoc Biol 46(1):1–10

    CAS  PubMed  Google Scholar 

  43. Takahashi K, Yamamura F, Naito M (1989) Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J Leukoc Biol 45(2):87–96

    CAS  PubMed  Google Scholar 

  44. Palis J et al (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126(22):5073–5084

    CAS  PubMed  Google Scholar 

  45. Herbomel P, Thisse B, Thisse C (1999) Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126(17):3735–3745

    CAS  PubMed  Google Scholar 

  46. Stefanska M et al (2017) Primitive erythrocytes are generated from hemogenic endothelial cells. Sci Rep 7(1):6401

    PubMed  PubMed Central  Google Scholar 

  47. Akashi K et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193–197

    CAS  PubMed  Google Scholar 

  48. McGrath KE et al (2011) A transient definitive erythroid lineage with unique regulation of the beta-globin locus in the mammalian embryo. Blood 117(17):4600–4608

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen MJ et al (2011) Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9(6):541–552

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Burns CE et al (2005) Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 19(19):2331–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hadland BK et al (2004) A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104(10):3097–3105

    CAS  PubMed  Google Scholar 

  52. Bertrand JY et al (2010) Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood 115(14):2777–2783

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferrero G et al (2018) Embryonic microglia derive from primitive macrophages and are replaced by cmyb-dependent definitive microglia in zebrafish. Cell Rep 24(1):130–141

    CAS  PubMed  Google Scholar 

  54. Yokomizo T et al (2019) Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors. J Exp Med 216(7):1599–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kobayashi M et al (2014) Functional B-1 progenitor cells are present in the hematopoietic stem cell-deficient embryo and depend on Cbfbeta for their development. Proc Natl Acad Sci U S A 111(33):12151–12156

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yoshimoto M et al (2011) Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci U S A 108(4):1468–1473

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Boiers C et al (2013) Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13(5):535–548

    PubMed  Google Scholar 

  58. Yoshimoto M et al (2012) Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119(24):5706–5714

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gentek R et al (2018) Epidermal gammadelta T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J Exp Med 215(12):2994–3005

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ghosn E et al (2019) Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development 146(15):dev170571

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tian Y et al (2017) The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells. J Exp Med 214(11):3347–3360

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Allen TD, Dexter TM (1984) The essential cells of the hemopoietic microenvironment. Exp Hematol 12(7):517–521

    CAS  PubMed  Google Scholar 

  63. Lichtman MA (1981) The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol 9(4):391–410

    CAS  PubMed  Google Scholar 

  64. Vacaru AM et al (2013) Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice. Genesis 51(11):751–762

    CAS  PubMed  Google Scholar 

  65. Sasmono RT et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101(3):1155–1163

    CAS  PubMed  Google Scholar 

  66. Ovchinnikov DA (2008) Macrophages in the embryo and beyond: much more than just giant phagocytes. Genesis 46(9):447–462

    PubMed  Google Scholar 

  67. McGrath KE et al (2015) Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep 11(12):1892–1904

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ajami B et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543

    CAS  PubMed  Google Scholar 

  69. Mildner A et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553

    CAS  PubMed  Google Scholar 

  70. Cuadros MA et al (1993) First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J Comp Neurol 330(1):113–129

    CAS  PubMed  Google Scholar 

  71. Kurz H, Christ B (1998) Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. Glia 22(1):98–102

    CAS  PubMed  Google Scholar 

  72. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    CAS  PubMed  Google Scholar 

  73. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  74. DeFalco T et al (2014) Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A 111(23):E2384–E2393

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Epelman S et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91–104

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gomez Perdiguero E et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540):547–551

    PubMed  Google Scholar 

  77. Hoeffel G et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42(4):665–678

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mossadegh-Keller N et al (2017) Developmental origin and maintenance of distinct testicular macrophage populations. J Exp Med 214(10):2829–2841

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schulz C et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90

    CAS  PubMed  Google Scholar 

  80. Yona S et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91

    CAS  PubMed  Google Scholar 

  81. Kierdorf K et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280

    CAS  PubMed  Google Scholar 

  82. Bertrand JY, Traver D (2009) Hematopoietic cell development in the zebrafish embryo. Curr Opin Hematol 16(4):243–248

    CAS  PubMed  Google Scholar 

  83. Azzoni E et al (2018) Kit ligand has a critical role in mouse yolk sac and aorta-gonad-mesonephros hematopoiesis. EMBO Rep 19:e45477

    PubMed  PubMed Central  Google Scholar 

  84. Hoeffel G et al (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209(6):1167–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Molawi K et al (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211(11):2151–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  86. De S et al (2018) Two distinct ontogenies confer heterogeneity to mouse brain microglia. Development 145(13):dev152306

    PubMed  PubMed Central  Google Scholar 

  87. Xu J et al (2015) Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev Cell 34(6):632–641

    CAS  PubMed  Google Scholar 

  88. Moignard V et al (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 33(3):269–276

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Popescu DM et al (2019) Decoding human fetal liver haematopoiesis. Nature 574(7778):365–371

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.W. is an investigator of WELBIO and is also supported by grants from the Fonds National de la Recherche Scientifique (FNRS) and The Minerve Foundation. J.Y.B. is funded by the swiss national fund (#310030_184814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Y. Bertrand.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Box 1: a few definitions about developmental hematopoiesis

Monopotent blood progenitor: blood precursor endowed with a single differentiation capacity.

Multipotent blood progenitor: blood progenitor that can give rise to multiple lineages after differentiation.

Hematopoietic stem cells: multipotent self-renewable hematopoietic precursors. They are the only ones with the ability to reconstitute all blood lineages after transplantation. In the adult animal they are located mainly in the bone marrow, whereas their niche is the fetal liver during embryogenesis in mammals. These cells are specified during a very short time window during embryogenesis from the main arteries, through a process called endothelial-to-hematopoiesis transition (EHT).

Hemogenic endothelium: it consists of a limited number of endothelial cells that undergo EHT to give rise to hematopoietic progenitors.

Hemangioblast: mesoderm-derived precursor endowed with endothelial and hematopoietic potential at the single-cell level.

Primitive hematopoiesis: historically, represents the very first wave of hematopoiesis in the embryo. The blood cells produced from this wave are specified from mesoderm immediately after gastrulation. This wave does not originate from hematopoietic stem cells.

Definitive hematopoiesis: historically, represents the process that generates blood cells in the adult, and by extension all hematopoietic phenomena that concern HSCs.

Box2: time to revisit nomenclature in developmental hematopoiesis?

EMPs are referred to as transient definitive progenitors. However, using the term “definitive” similarly between HSCs and EMPs could be misleading, as it may imply that those progenitors are not transient and remain throughout life. Since it is widely accepted that HSCs are truly definitive (they seed the bone marrow prior to birth and regenerate immune cells throughout life), limiting the use of “definitive” for cells that are indeed derived from HSCs may thus better reflect the biology. As a consequence, mono- or bi- (i.e., mesoderm/hemangioblastderived cells) versus multi-potency (hemogenic endotheliumderived progenitors) could be addressed separately from the term “primitive”. Such approach would also leave room for additional progenitors that may be identified in the future, as well as for the transient lymphoid-primed progenitors that emerge from the hemogenic endothelium before the HSCs. However, perhaps the most appropriate designation would be to describe hematopoiesis as pre- (independent of) HSCs and post- (dependent of) HSCs, with the HSC-independent hematopoiesis compartment including monopotent (mesoderm/hemangioblast-derived) progenitors in the blood island and later multi-potent progenitors derived from the hemogenic endothelium. While these ideas can certainly serve as a starting point for discussion, deciding on a revised terminology will however require a large community effort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittamer, V., Bertrand, J.Y. Yolk sac hematopoiesis: does it contribute to the adult hematopoietic system?. Cell. Mol. Life Sci. 77, 4081–4091 (2020). https://doi.org/10.1007/s00018-020-03527-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03527-6

Keywords

Navigation