Skip to main content

Advertisement

Log in

The Map3k12 (Dlk)/JNK3 signaling pathway is required for pancreatic beta-cell proliferation during postnatal development

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Unveiling the key pathways underlying postnatal beta-cell proliferation can be instrumental to decipher the mechanisms of beta-cell mass plasticity to increased physiological demand of insulin during weight gain and pregnancy. Using transcriptome and global Serine Threonine Kinase activity (STK) analyses of islets from newborn (10 days old) and adult rats, we found that highly proliferative neonatal rat islet cells display a substantially elevated activity of the mitogen activated protein 3 kinase 12, also called dual leucine zipper-bearing kinase (Dlk). As a key upstream component of the c-Jun amino terminal kinase (Jnk) pathway, Dlk overexpression was associated with increased Jnk3 activity and was mainly localized in the beta-cell cytoplasm. We provide the evidence that Dlk associates with and activates Jnk3, and that this cascade stimulates the expression of Ccnd1 and Ccnd2, two essential cyclins controlling postnatal beta-cell replication. Silencing of Dlk or of Jnk3 in neonatal islet cells dramatically hampered primary beta-cell replication and the expression of the two cyclins. Moreover, the expression of Dlk, Jnk3, Ccnd1 and Ccnd2 was induced in high replicative islet beta cells from ob/ob mice during weight gain, and from pregnant female rats. In human islets from non-diabetic obese individuals, DLK expression was also cytoplasmic and the rise of the mRNA level was associated with an increase of JNK3, CCND1 and CCND2 mRNA levels, when compared to islets from lean and obese patients with diabetes. In conclusion, we find that activation of Jnk3 signalling by Dlk could be a key mechanism for adapting islet beta-cell mass during postnatal development and weight gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ccnd:

Cyclin D

Cdk:

Cyclin-dependent kinase

Cdkn:

Cyclin-dependent kinase inhibitor

DLK:

Dual leucine Zipper Kinase

JNK:

C-Jun amino terminal kinase

MAP3K12:

Mitogen-activated protein kinase 12

MAPK10:

Mitogen-activated protein kinase 10

STK:

Serine threonine kinase

References

  1. Chen C, Cohrs CM, Stertmann J et al (2017) Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 6:943–957. https://doi.org/10.1016/j.molmet.2017.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Golson ML, Misfeldt AA, Kopsombut UG et al (2010) High fat diet regulation of β-cell proliferation and β-cell mass. Open Endocrinol J. https://doi.org/10.2174/1874216501004010066

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baeyens L, Hindi S, Sorenson RL, German MS (2016) β-Cell adaptation in pregnancy. Diabetes Obes Metab 18:63–70. https://doi.org/10.1111/dom.12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davis DB, Lavine JA, Suhonen JI et al (2010) FoxM1 is up-regulated by obesity and stimulates β-cell proliferation. Mol Endocrinol 24:1822–1834. https://doi.org/10.1210/me.2010-0082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanley SC, Austin E, Assouline-Thomas B et al (2010) β-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology 151:1462–1472. https://doi.org/10.1210/en.2009-1277

    Article  CAS  PubMed  Google Scholar 

  6. Mezza T, Kulkarni RN (2014) The regulation of pre- and post-maturational plasticity of mammalian islet cell mass. Diabetologia 57:1291–1303. https://doi.org/10.1007/s00125-014-3251-7

    Article  PubMed  Google Scholar 

  7. Jacovetti C, Matkovich SJ, Rodriguez-Trejo A et al (2015) Postnatal β-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nat Commun. https://doi.org/10.1038/ncomms9084

    Article  PubMed  Google Scholar 

  8. Meier JJ, Butler AE, Saisho Y et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57:1584–1594. https://doi.org/10.2337/db07-1369

    Article  CAS  PubMed  Google Scholar 

  9. Gregg BE, Moore PC, Demozay D et al (2012) Formation of a human β-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 97:3197–3206. https://doi.org/10.1210/jc.2012-1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kushner JA, Ciemerych MA, Sicinska E et al (2005) Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol Cell Biol 25:3752–3762. https://doi.org/10.1128/MCB.25.9.3752-3762.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bononi A, Agnoletto C, De Marchi E et al (2011) Protein kinases and phosphatases in the control of cell fate. Enzyme Res. https://doi.org/10.4061/2011/329098

    Article  PubMed  PubMed Central  Google Scholar 

  12. Daviau A, Couture J-P, Blouin R (2011) Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest. Biochem Biophys Res Commun 413:282–287. https://doi.org/10.1016/j.bbrc.2011.08.086

    Article  CAS  PubMed  Google Scholar 

  13. Kulkarni RN, Mizrachi E-B, Ocana AG, Stewart AF (2012) Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes 61:2205–2213. https://doi.org/10.2337/db12-0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157. https://doi.org/10.1053/j.gastro.2007.03.054

    Article  CAS  PubMed  Google Scholar 

  15. Vantyghem MC, Kerr-Conte J, Arnalsteen L et al (2009) Primary graft function, metabolic control, and graft survival after islet transplantation. Diabetes Care 32:1473–1478. https://doi.org/10.2337/dc08-1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hirai S, Cui DF, Miyata T et al (2006) The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J Neurosci 26:11992–12002. https://doi.org/10.1523/JNEUROSCI.2272-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brajkovic S, Ferdaoussi M, Pawlowski V et al (2016) Islet brain 1 protects insulin producing cells against lipotoxicity. J Diabetes Res. https://doi.org/10.1155/2016/9158562

    Article  PubMed  Google Scholar 

  18. Abderrahmani A, Yengo L, Caiazzo R et al (2018) Increased hepatic PDGF-AA signaling mediates liver insulin resistance in obesity-associated type 2 diabetes. Diabetes 67:1310–1321. https://doi.org/10.2337/db17-1539

    Article  CAS  PubMed  Google Scholar 

  19. Wallbach M, Duque Escobar J, Babaeikelishomi R et al (2016) Distinct functions of the dual leucine zipper kinase depending on its subcellular localization. Cell Signal 28:272–283. https://doi.org/10.1016/j.cellsig.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  20. Holzman LB, Merritt SE, Fan G (1994) Identification, molecular cloning, and characterization of dual leucine zipper bearing kinase. A novel serine/threonine protein kinase that defines a second subfamily of mixed lineage kinases. J Biol Chem 269:30808–30817

    Article  CAS  PubMed  Google Scholar 

  21. Beeler N, Riederer BM, Waeber G, Abderrahmani A (2009) Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes. Brain Res Bull 80:274–281. https://doi.org/10.1016/j.brainresbull.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  22. Stahnke M-J, Dickel C, Schröder S et al (2014) Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase. Cell Signal 26:1792–1799. https://doi.org/10.1016/j.cellsig.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacovetti C, Abderrahmani A, Parnaud G et al (2012) MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Investig 122:3541–3551. https://doi.org/10.1172/JCI64151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rieck S, Kaestner KH (2010) Expansion of beta-cell mass in response to pregnancy. Trends Endocrinol Metab 21:151–158. https://doi.org/10.1016/j.tem.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  25. Mosser RE, Maulis MF, Moullé VS et al (2015) High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice. Am J Physiol Endocrinol Metab 308:E573–E582. https://doi.org/10.1152/ajpendo.00460.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lindström P (2010) Beta-cell function in obese-hyperglycemic mice [ob/ob Mice]. Adv Exp Med Biol 654:463–477. https://doi.org/10.1007/978-90-481-3271-3_20

    Article  CAS  PubMed  Google Scholar 

  27. Plaisance V, Brajkovic S, Tenenbaum M et al (2016) Endoplasmic reticulum stress links oxidative stress to impaired pancreatic beta-cell function caused by human oxidized LDL. PLoS ONE. https://doi.org/10.1371/journal.pone.0163046

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chan JY, Luzuriaga J, Bensellam M et al (2013) Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in β-cell gene expression and progression to diabetes. Diabetes 62:1557–1568. https://doi.org/10.2337/db12-0701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P (2017) Endoplasmic reticulum stress and eIF2α phosphorylation: the Achilles heel of pancreatic β cells. Mol Metab. https://doi.org/10.1016/j.molmet.2017.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  30. Douziech M, Grondin G, Loranger A et al (1998) Zonal induction of mixed lineage kinase ZPK/DLK/MUK gene expression in regenerating mouse liver. Biochem Biophys Res Commun 249:927–932. https://doi.org/10.1006/bbrc.1998.9249

    Article  CAS  PubMed  Google Scholar 

  31. Kragelj J, Palencia A, Nanao MH et al (2015) Structure and dynamics of the MKK7-JNK signaling complex. Proc Natl Acad Sci USA 112(11):3409–3414. https://doi.org/10.1073/pnas.1419528112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Mrs Laure Rolland for the technical assistance and, Antonino Bongiovanni and Meryem Tardivel from the BICeL-Campus HU Facility for access to systems and technical advice.

Funding

This work was supported by grants from “Société Francophone du Diabète (SFD)”, “European Genomic Institute for Diabetes” (E.G.I.D., ANR-10-LABEX-46) and European Commission, European Research Council (GEPIDIAB 294785 to P.F.), and by a grant from the Swiss National Science Foundation (310030-169480 to RR). Human islets were provided by the European Consortium for Islet Transplantation, funded by the Juvenile Diabetes Research Foundation International.

Author information

Authors and Affiliations

Authors

Contributions

MT, JKC, FP, RR, AB, PF and AA contributed to the study design and interpretation of the data. MT, SD, AB, PF and AA wrote and edited the manuscript. MT, VPL, VP, CSP, HE, RB, VG, CJ, JB, NB, GP performed the experiments and analysed the data. All authors read and approved the submission of the manuscript.

Corresponding authors

Correspondence to Mathie Tenenbaum or Amar Abderrahmani.

Ethics declarations

Conflict of interest

The authors declare that there is no duality of interest associated with the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Supplementary file2 (PPTX 7066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenenbaum, M., Plaisance, V., Boutry, R. et al. The Map3k12 (Dlk)/JNK3 signaling pathway is required for pancreatic beta-cell proliferation during postnatal development. Cell. Mol. Life Sci. 78, 287–298 (2021). https://doi.org/10.1007/s00018-020-03499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03499-7

Keywords

Navigation