Skip to main content

β-Cell Function in Obese-Hyperglycemic Mice [ob/ob Mice]

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

This review summarizes key aspects of what has been learned about the physiology of pancreatic islets and leptin deficiency from studies in obese ob/ob mice. ob/ob Mice lack functional leptin. They are grossly overweight and hyperphagic particularly at young ages and develop severe insulin resistance with hyperglycemia and hyperinsulinemia. ob/ob Mice have large pancreatic islets. The β-cells respond adequately to most stimuli, and ob/ob mice have been used as a rich source of pancreatic islets with high insulin release capacity. ob/ob Mice can perhaps be described as a model for the prediabetic state. The large capacity for islet growth and insulin release makes ob/ob mice a good model for studies on how β-cells can cope with prolonged functional stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered 1950;41:317–8.

    PubMed  CAS  Google Scholar 

  2. Mayer J, Russel E, Bates MV, Dickie MM. Metabolic, nutritional and endocrine studies of the hereditary obesity-diabetes syndrome of mice and mechanisms of its development. Metabolism 1953;2:9–21.

    PubMed  CAS  Google Scholar 

  3. Garthwaite TL, Martinson DR, Tseng LF, Hagen TC, Menahan LA. A longitudinal hormonal profile of the genetically obese mouse. Endocrinology 1980;107:671–6.

    PubMed  CAS  Google Scholar 

  4. Mayer J, Silides N. A quantitative method of determination of the diabetogenic activity of growth hormone preparations. Endocrinology 1953;52:54–6.

    PubMed  CAS  Google Scholar 

  5. Coleman DL, Hummel KP. The influence of genetic background on the expression of the obese (ob) gene in the mouse. Diabetologia 1973;9:287–93.

    PubMed  CAS  Google Scholar 

  6. Shafrir E, Ziv E, Mosthaf L. Nutritionally induced insulin resistance and receptor defect leading to ß-cell failure in animal models. Ann NY Acad Sci 1999;892:223–46.

    PubMed  CAS  Google Scholar 

  7. Stoehr JP, Byers JE, Clee SM, Lan H, Boronenkov OIV, Schueler KL, Yandell BS, Attie AD. Identification of major quantitative trait loci controlling body weight variation in ob/ob mice. Diabetes 2004;53:245–9.

    PubMed  CAS  Google Scholar 

  8. Coleman DL. Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 1978;14:141–8.

    PubMed  CAS  Google Scholar 

  9. Ranheim T, Dumke C, Schueler KL, Cartee GD, Attie AD. Interaction between BTBR and c57Bl/6 J genomes produces an insulin resistance syndrome in [BTBNR x C57Bl/6 J] F1 mice. Arterioscler Thromb Vasc Biol 1997;17:3286–93.

    PubMed  CAS  Google Scholar 

  10. Clee SM, Nadler ST, Attie AD. Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes. Am J Ther 2005;12:491–8.

    PubMed  Google Scholar 

  11. Garris DR, Garris BL. Cytochemical analysis of pancreatic islet hypercytolipidemia following diabetes (db/db) and obese (ob/ob) mutation expression: influence of genomic background. Pathobiology 2004;71:231–40.

    PubMed  CAS  Google Scholar 

  12. Chua S Jr, Liu SM, Li Q, Yang L, Thassanapaff VT, Fisher P. Differential beta cell responses to hyperglycaemia and insulin resistance in two novel congenic strains of diabetes (FVB- Lepr (db)) and obese (DBA- Lep (ob)) mice. Diabetologia 2002;45:976–90.

    PubMed  CAS  Google Scholar 

  13. Westman S. Development of the obese-hyperglycemic syndrome in mice. Diabetologia 1968;4:141–9.

    PubMed  CAS  Google Scholar 

  14. Edvell A, Lindström P. Development of insulin secretory function in young obese hyperglycemic mice (Umeå ob/ob). Metabolism 1995;44:906–13.

    PubMed  CAS  Google Scholar 

  15. Edvell A, Lindström P. Initiation of increased pancreatic growth in young normoglycemic mice (Umeå +/?). Endocrinology 1999;140:778–83.

    PubMed  CAS  Google Scholar 

  16. Herberg L, Major E, Hennings U, Grüneklee D, Freytag G, Gries FA. Differences in the development of the obese-hyperglycemic syndrome in obob and NZO mice. Diabetologia 1970;6:292–9.

    PubMed  CAS  Google Scholar 

  17. Danielsson Å, Hellman B, Täljedal I-B. Glucose tolerance in the period preceding the appearance of the manifest obese-hyperglycemic syndrome in mice. Acta Physiol Scand 1968;72:81–4.

    PubMed  CAS  Google Scholar 

  18. Edvell A, Lindström P. Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am J Physiol 1998;274:E1034–9.

    PubMed  CAS  Google Scholar 

  19. Coleman DL. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 1973;9:294–8.

    PubMed  CAS  Google Scholar 

  20. Friedman JM, Leibel RL, Siegel DS, Walsh J, Bahary N. Molecular mapping of the mouse ob mutation. Genomics 1991;11:1054–62.

    PubMed  CAS  Google Scholar 

  21. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–32.

    PubMed  CAS  Google Scholar 

  22. Larcher F, Del Rio M, Serrano F, Segovia JC, Ramirez A, Meana A, Page A, Abad JL, Gonzalez MA, Bueren J, Bernad A, Jorcano JL. A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin-targeted keratinocyte grafts. FASEB J 2001;15:1529–38.

    PubMed  CAS  Google Scholar 

  23. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269: 540–3.

    PubMed  CAS  Google Scholar 

  24. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543–6.

    PubMed  CAS  Google Scholar 

  25. Clement K. Genetics of human obesity. C R Biol 2006;329:608–22.

    PubMed  CAS  Google Scholar 

  26. Chehab FF, Qiu J, Ogus S. The use of animal models to dissect the biology of leptin. Recent Prog Horm Res 2004;59:245–66.

    PubMed  CAS  Google Scholar 

  27. Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J 2001;15:312–21.

    PubMed  CAS  Google Scholar 

  28. Loreti L, Dunbar JC, Chen S, Foà PP. The autoregulation of insulin secretion in the isolated pancreas islets of lean (obob) and obese-hyperglycemic (obob) mice. Diabetologia 1974;10:309–15.

    PubMed  CAS  Google Scholar 

  29. Zawalich WS, Tesz GJ, Zawalich KC. Inhibitors of phosphatidylinositol 3-kinase amplify insulin release from islets of lean but not obese mice. J Endocrinol 2002;174:247–58.

    PubMed  CAS  Google Scholar 

  30. Kieffer TJ, Heller RS, Habener JF. Leptin receptors expressed on pancreatic ß-cells. Biochem Biophys Res Commun 1996;224:522–7.

    PubMed  CAS  Google Scholar 

  31. Emilsson V, Liu YL, Cawthorne MA, Morton NM, Davenport M. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes 1997;46:313–6.

    PubMed  CAS  Google Scholar 

  32. Melloul D, Marshak S, Cerasi E. Regulation of insulin gene transcription. Diabetologia 2002;45:309–26.

    PubMed  CAS  Google Scholar 

  33. Sweeney G. Leptin signaling. Cell Signal 2002;14:655–63.

    PubMed  CAS  Google Scholar 

  34. Frühbeck G. Intracellular signalling pathways activated by leptin. Biochem J 2006; 393:7–20.

    PubMed  Google Scholar 

  35. Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N. Leptin signaling in breast cancer: an overview. J Cell Biochem 2008;10:956–64.

    Google Scholar 

  36. Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J 2003;375:1–16.

    PubMed  CAS  Google Scholar 

  37. Cuenda A, Nebreda AR. p38delta and PKD1: kinase switches for insulin secretion. Cell 2009;136:209–10.

    PubMed  CAS  Google Scholar 

  38. Sumara G, Formentini I, Collins S, Sumara I, Windak R, Bodenmiller B, Ramracheya R, Caille D, Jiang H, Platt KA, Meda P, Aebersold R, Rorsman P, Ricci R. Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell 2009;136:235–48.

    PubMed  CAS  Google Scholar 

  39. Seufert J. Leptin effects on pancreatic ß-cell gene expression and function. Diabetes 2004;53 Suppl 1:S152–8.

    PubMed  CAS  Google Scholar 

  40. Dyck DJ, Heigenhauser GJ, Bruce CR. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol 2006;186:5–16.

    CAS  Google Scholar 

  41. Lulu Strat A, Kokta TA, Dodson MV, Gertler A, Wu Z, Hill RA. Early signaling interactions between the insulin and leptin pathways in bovine myogenic cells. Biochim Biophys Acta 2005;1744:164–75.

    PubMed  CAS  Google Scholar 

  42. Rattarasarn C. Physiological and pathophysiological regulation of regional adipose tissue in the development of insulin resistance and type 2 diabetes. Acta Physiol 2006;186:87–101.

    CAS  Google Scholar 

  43. Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG Jr, Chua SC Jr, Kim JK, Kaestner KH, Karsenty G. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol 2008;183:1235–42.

    PubMed  CAS  Google Scholar 

  44. Tentolouris N, Argyrakopoulou G, Katsilambros N. Perturbed autonomic nervous system function in metabolic syndrome. Neuromol Med 2008;10:169–78.

    CAS  Google Scholar 

  45. Tassava TM, Okuda T, Romsos DR. Insulin secretion from ob/ob mouse pancreatic islets: effects of neurotransmitters. Am J Physiol 1992;262:E338–43.

    PubMed  CAS  Google Scholar 

  46. Chen NG, Romsos DR. Enhanced sensitivity of pancreatic islets from preobese 2-week-old ob/ob mice to neurohormonal stimulation of insulin secretion. Endocrinology 1995;13: 505–11.

    Google Scholar 

  47. Persson-Sjögren S, Lindström P. Effects of cholinergic m-receptor agonists on insulin release in islets from obese and lean mice of different ages: the importance of bicarbonate. Pancreas 2004;29:90–9.

    Google Scholar 

  48. Persson-Sjögren S, Forsgren S, Lindström P. Vasoactive intestinal polypeptide and pituitary adenylate cyclase activating polypeptide: effects on insulin release in isolated mouse islets in relation to metabolic status and age. Neuropeptides 2006;40:283–90.

    PubMed  Google Scholar 

  49. Gautam D, Jeon J, Li JH, Han SJ, Hamdan FF, Cui Y, Lu H, Deng C, Gavrilova O, Wess J. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J Recept Signal Transduct Res 2008;28:93–108.

    PubMed  CAS  Google Scholar 

  50. Carlsson PO, Andersson A, Jansson, L. Pancreatic islet blood flow in normal and obese-hyperglycemic (ob/ob) mice. Am J Physiol 1996;271:E990–5.

    PubMed  CAS  Google Scholar 

  51. Rooth P, Täljedal I-B. Vital microscopy of islet blood flow: catecholamine effects in normal and ob/ob mice. Am J Physiol 1987;252:E130–5.

    PubMed  CAS  Google Scholar 

  52. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. ß-Cell deficit and increased ß-cell apoptosis in hmans with type 2 diabetes. Diabetes 2003;52:102–10.

    PubMed  CAS  Google Scholar 

  53. Leckström A, Lundquist I, Ma Z, Westermark P. Islet amyloid polypeptide and insulin relationship in a longitudinal study of the genetically obese (ob/ob) mouse. Pancreas 1999;18:266–73.

    PubMed  Google Scholar 

  54. Takada K, Kanatsuka A, Tokuyama Y, Yagui K, Nishimura M, Saito Y, Makino H. Islet amyloid polypeptide/amylin contents in pancreas change with increasing age in genetically obese and diabetic mice. Diabetes Res Clin Pract 1996;33:153–8.

    PubMed  CAS  Google Scholar 

  55. Karlsson E, Stridsberg M, Sandler S. Leptin regulation of islet amyloid polypeptide secretion from mouse pancreatic islets. Biochem Pharmacol 1998;56:1339–46.

    PubMed  CAS  Google Scholar 

  56. Ahrén B, Sörhede Winzell M. Disturbed α-cell function in mice with ß-cell specific overexpression of human islet amyloid polypeptide. Exp Diab Res 2008;2008:304–13.

    Google Scholar 

  57. Nyholm B, Fineman MS, Koda JE, Schmitz O. Plasma amylin immunoreactivity and insulin resistance in insulin resistant relatives of patients with non-insulin-dependent diabetes mellitus. Horm Metab Res 1998;30:206–12.

    PubMed  CAS  Google Scholar 

  58. Bleisch VR, Mayer J, Dickie MM. Familiar diabetes mellitus in mice associated with insulin resistance, obesity, and hyperplasia of the islands of Langerhans. Am J Pathol 1952;28: 369–85.

    PubMed  CAS  Google Scholar 

  59. Gepts W, Christophe J, Mayer J. Pancreatic islets in mice with the obese-hyperglycemic syndrome: lack of effect of carbutamide. Diabetes 1960;9:63–9.

    PubMed  CAS  Google Scholar 

  60. Westman S. The endocrine pancreas of old obese-hyperglycemic mice. Acta Med Upsal 1968;73:81–9.

    CAS  Google Scholar 

  61. Baetens D, Stefan Y, Ravazzola M, Malaisse-Lagae F, Coleman DL, Orci L. Alteration of islet cell populations in spontaneously diabetic mice. Diabetes 1978;27:1–7.

    PubMed  CAS  Google Scholar 

  62. Chen L, Komiya I, Inman L, McCorkle K, Alam T, Unger RH. Molecular and cellular responses of islets during perturbations of glucose homeostasis determined by in situ hybridization histochemistry. Proc Natl Acad Sci USA 1989;86:1367–71.

    PubMed  CAS  Google Scholar 

  63. Tomita T, Doull V, Pollock HG, Krizsan D. Pancreatic islets of obese hyperglycemic mice (ob/ob). Pancreas 1992;7:367–75.

    PubMed  CAS  Google Scholar 

  64. Wajchenberg BL. ß-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007;28:187–218.

    PubMed  CAS  Google Scholar 

  65. Hahn HJ, Hellman B, Lernmark Å, Sehlin J, Täljedal I-B. The pancreatic ß-cell recognition of insulin secretogogues. Influence of neuraminidase treatment on the release of insulin and the islet content of insulin, sialic acid, and cyclic adenosine 3':5'-monophosphate. J Biol Chem 1974;249:5275–84.

    PubMed  CAS  Google Scholar 

  66. Hellman B, Idahl L-Å, Lernmark Å, Sehlin J, Täljedal I-B. The pancreatic ß-cell recognition of insulin secretagogues. Comparisons of glucose with glyceraldehyde isomers and dihydroxyacetone. Arch Biochem Biophys 1974;162:448–57.

    PubMed  CAS  Google Scholar 

  67. Lavine RL, Voyles N, Perrino PV, Recant L. Functional abnormalities of islets of Langerhans of obese hyperglycemic mouse. Am J Physiol 1977;233:E86–90.

    PubMed  CAS  Google Scholar 

  68. Barker CF, Frangipane LG, Silvers WK. Islet transplantation in genetically determined diabetes. Ann Surg 1977;186:401–10.

    PubMed  CAS  Google Scholar 

  69. Chen NG, Tassava TM, Romsos DR. Threshold for glucose-stimulated insulin secretion in pancreatic islets of genetically obese (ob/ob) mice is abnormally low. J Nutr 1993;123: 1567–74.

    PubMed  CAS  Google Scholar 

  70. Ling Z, Pipeleers DG. Prolonged exposure of human beta cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. J Clin Invest 1996;98:2805–12.

    PubMed  CAS  Google Scholar 

  71. Khaldi MZ, Guiot Y, Gilon P, Henquin JC, Jonas JC. Increased glucose sensitivity of both triggering and amplifying pathways of insulin secretion in rat islets cultured for 1 wk in high glucose. Am J Physiol 2004;287:E207–17.

    CAS  Google Scholar 

  72. Heart E, Smith PJ. Rhythm of the ß-cell oscillator is not governed by a single regulator: multiple systems contribute to oscillatory behavior. Am J Physiol 2007;292:E1295–1300.

    CAS  Google Scholar 

  73. Grapengiesser E, Gylfe E, Hellman B. Cyclic AMP as a determinant for glucose induction of fast Ca2+ oscillations in isolated pancreatic ß-cells. J Biol Chem 1991;266:12207–10.

    PubMed  CAS  Google Scholar 

  74. Dyachok O, Isakov Y, Sågetorp J, Tengholm A. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting ß-cells. Nature 2006;439:349–52.

    PubMed  CAS  Google Scholar 

  75. Black MA, Heick HM, Begin-Heick N. Abnormal regulation of cAMP accumulation in pancreatic islets of obese mice. Am J Physiol 1988;255:E833–8.

    PubMed  CAS  Google Scholar 

  76. Black MA, Heick HM, Begin-Heick N. Abnormal regulation of insulin secretion in the genetically obese (ob/ob) mouse. Biochem J 1986;238:863–69.

    PubMed  CAS  Google Scholar 

  77. Elmi A. Increased number of Na+/K+ ATPase enzyme units in Ob/Ob mouse pancreatic islets. Pancreas 2001;23:113–5.

    PubMed  CAS  Google Scholar 

  78. Fournier LA, Heick HM, Begin-Heick N. The influence of K(+)-induced membrane depolarization on insulin secretion in islets of lean and obese (ob/ob) mice. Biochem Cell Biol 1990;68:243–8.

    PubMed  CAS  Google Scholar 

  79. Black MA, Fournier LA, Heick HM, Begin-Heick N. Different insulin-secretory responses to calcium-channel blockers in islets of lean and obese (ob/ob) mice. Biochem J 1988;249:401–7.

    PubMed  CAS  Google Scholar 

  80. Ravier MA, Sehlin J, Henquin JC. Disorganization of cytoplasmic Ca(2+) oscillations and pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 2002;45:1154–63.

    PubMed  CAS  Google Scholar 

  81. Gustavsson N, Larsson-Nyren G, Lindström P. Cell specificity of the cytoplasmic Ca2+ response to tolbutamide is impaired in ß-cells from hyperglycemic mice. J Endocrinol 2006;190:461–70.

    PubMed  CAS  Google Scholar 

  82. Ahmed M, Grapengiesser E. Pancreatic ß-cells from obese-hyperglycemic mice are characterized by excessive firing of cytoplasmic Ca2+ transients. Endocrine 2001;15:73–8.

    PubMed  CAS  Google Scholar 

  83. Islam MS. The ryanodine receptor calcium channel of ß-cells: molecular regulation and physiological significance. Diabetes 2002;51:1299–309.

    PubMed  CAS  Google Scholar 

  84. Bruton JD, Lemmens R, Shi CL, Persson-Sjögren S, Westerblad H, Ahmed M, Pyne NJ, Frame M, Furman BL, Islam MS. Ryanodine receptors of pancreatic beta-cells mediate a distinct context-dependent signal for insulin secretion. FASEB J 2003;17:301–3.

    PubMed  CAS  Google Scholar 

  85. Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, Okamoto H. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic ß-cells. J Biol Chem 1998;273:2497–2500.

    PubMed  CAS  Google Scholar 

  86. McQuaid TS, Saleh MC, Joseph JW, Gyulkhandanyan A, Manning-Fox JE, MacLellan JD, Wheeler MB, Chan CB. cAMP-mediated signaling normalizes glucose-stimulated insulin secretion in uncoupling protein-2 overexpressing ß-cells. J Endocrinol 2006;190:669–80.

    PubMed  CAS  Google Scholar 

  87. Saleh MC, Wheeler MB, Chan CB. Endogenous islet uncoupling protein-2 expression and loss of glucose homeostasis in ob/ob mice. Endocrinol 2006;190:659–67.

    CAS  Google Scholar 

  88. Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, Lowell BB. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, ß cell dysfunction, and type 2 diabetes. Cell 2001;105:745–55.

    PubMed  CAS  Google Scholar 

  89. De Souza CT, Araújo EP, Stoppiglia LF, Pauli JR, Ropelle E, Rocco SA, Marin RM, Franchini KG, Carvalheira JB, Saad MJ, Boschero AC, Carneiro EM, Velloso LA. Inhibition of UCP2 expression reverses diet-induced diabetes mellitus by effects on both insulin secretion and action. FASEB J 2007;21:1153–63.

    PubMed  Google Scholar 

  90. Enyeart JJ. Biochemical and ionic signaling mechanisms for ACTH-stimulated cortisol production. Vitam Horm 2005;70:265–79.

    PubMed  CAS  Google Scholar 

  91. Malendowicz LK, Rucinski M, Belloni AS, Ziolkowska A, Nussdorfer GG. Leptin and the regulation of the hypothalamic-pituitary-adrenal axis. Int Rev Cytol 2007;263:63–102.

    PubMed  CAS  Google Scholar 

  92. Bailey CJ, Flatt PR. Insulin releasing effects of adrenocorticotropin (ACTH 1-39) and ACTH fragments (1–24 and 18–39) in lean and genetically obese hyperglycaemic (ob/ob) mice. Int J Obes 1987;11:175–81.

    PubMed  CAS  Google Scholar 

  93. Bonner-Weir S, Deery D, Leahy JL, Weir GC. Compensatory growth of pancreatic ß-cells in adult rats after short-term glucose infusion. Diabetes 1989;38:49–53.

    PubMed  CAS  Google Scholar 

  94. Andersson A, Korsgren O, Naeser P. DNA replication in transplanted and endogenous pancreatic islets of obese-hyperglycemic mice at different stages of the syndrome. Metabolism 1989;38:974–78.

    PubMed  CAS  Google Scholar 

  95. Norlund R, Norlund L, Täljedal I-B. Morphogenetic effects of glucose on mouse islet-cell re-aggregation in culture. Med Biol 1987;65:209–16.

    PubMed  CAS  Google Scholar 

  96. Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M, Chan L. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci U S A 2004;101:2458–63.

    PubMed  CAS  Google Scholar 

  97. Bock T, Pakkenberg B, Buschard K. Increased islet volume but unchanged islet number in ob/ob mice. Diabetes 2003;52:1716–22.

    PubMed  CAS  Google Scholar 

  98. Tyrberg B, Ustinov J, Otonkoski T, Andersson A. Stimulated endocrine cell proliferation and differentiation in transplanted human pancreatic islets: effects of the ob gene and compensatory growth of the implantation organ. Diabetes 2001;50:301–7.

    PubMed  CAS  Google Scholar 

  99. Flier SN, Kulkarni RN, Kahn CR. Evidence for a circulating islet cell growth factor in insulin-resistant states. Proc Natl Acad Sci U S A 2001;98:7475–80.

    PubMed  CAS  Google Scholar 

  100. Lee YC, Nielsen JH. Regulation of beta cell replication. Mol Cell Endocrinol 2009; 297:18–27.

    PubMed  CAS  Google Scholar 

  101. Welsh M, Welsh N, Nilsson T, Arkhammar P, Pepinsky RB, Steiner DF, Berggren PO. Stimulation of pancreatic islet ß-cell replication by oncogenes. Proc Natl Acad Sci U S A 1988;85:116–20.

    PubMed  CAS  Google Scholar 

  102. Cho YR, Kim CW. Neuropeptide Y promotes ß-cell replication via extracellular signal-regulated kinase activation. Biochem Biophys Res Commun 2004;314:773–80.

    PubMed  CAS  Google Scholar 

  103. Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF, Egan JM. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000;49:741–7.

    PubMed  CAS  Google Scholar 

  104. Blandino-Rosano M, Perez-Arana G, Mellado-Gil JM, Segundo C, Aguilar-Diosdado M. Anti-proliferative effect of pro-inflammatory cytokines in cultured beta cells is associated with extracellular signal-regulated kinase 1/2 pathway inhibition: protective role of glucagon-like peptide-1. J Mol Endocrinol 2008;41:35–44.

    PubMed  CAS  Google Scholar 

  105. Imai Y, Patel HR, Hawkins EJ, Doliba NM, Matschinsky FM, Ahima RS. Insulin secretion is increased in pancreatic islets of neuropeptide Y-deficient mice. Endocrinology 2007;148:5716–23.

    PubMed  CAS  Google Scholar 

  106. Imai J, Katagiri H, Yamada T, Ishigaki Y, Suzuki T, Kudo H, Uno K, Hasegawa Y, Gao J, Kaneko K, Ishihara H, Niijima A, Nakazato M, Asano T, Minokoshi Y, Oka Y. Regulation of pancreatic ß cell mass by neuronal signals from the liver. Science 2008;322:1250–4.

    PubMed  CAS  Google Scholar 

  107. Lindberg K, Rønn SG, Tornehave D, Richter H, Hansen JA, Rømer J, Jackerott M, Billestrup N. Regulation of pancreatic ß-cell mass and proliferation by SOCS-3. J Mol Endocrinol 2005;35:231–43.

    PubMed  CAS  Google Scholar 

  108. Gysemans C, Callewaert H, Overbergh L, Mathieu C. Cytokine signalling in the ß-cell: a dual role for INFγ. Biochem Soc Trans 2008;36:328–33.

    PubMed  CAS  Google Scholar 

  109. Hill MJ, Metcalfe D, McTernan PG. Obesity and diabetes: lipids, 'nowhere to run to'. Clin Sci 2009;116:113–23.

    PubMed  CAS  Google Scholar 

  110. Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 2008;31 Suppl 2:S161–4.

    PubMed  CAS  Google Scholar 

  111. Lam QJ, Lu L. Role of leptin in immunity. Cell Mol Immunol 2007;4:1–13.

    PubMed  CAS  Google Scholar 

  112. Prieto J, Kaaya EE, Juntti-Berggren L, Berggren PO, Sandler S, Biberfeld P, Patarroyo M. Induction of intercellular adhesion molecule-1 (CD54) on isolated mouse pancreatic beta cells by inflammatory cytokines. Clin Immunol Immunopathol 1992;65:247–53.

    PubMed  CAS  Google Scholar 

  113. Zaitseva II, Sharoyko V, Størling J, Efendic S, Guerin C, Mandrup-Poulsen T, Nicotera P, Berggren PO, Zaitsev SV. RX871024 reduces NO production but does not protect against pancreatic beta-cell death induced by proinflammatory cytokines. Biochem Biophys Res Commun 2006;347:1121–28.

    PubMed  CAS  Google Scholar 

  114. Peterson SJ, Drummond G, Kim DH, Li M, Kruger AL, Ikehara S, Abraham NG. L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice. J Lipid Res 2008;49:1658–69.

    PubMed  CAS  Google Scholar 

  115. Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008;29:42–61.

    PubMed  CAS  Google Scholar 

  116. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 2009;9:35–51.

    PubMed  CAS  Google Scholar 

  117. Marí M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, García-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 2006;4:185–98.

    PubMed  Google Scholar 

  118. Yang L, Jhaveri R, Huang J, Qi Y, Diehl AM. Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers. Lab Invest 2007;87:927–37.

    PubMed  CAS  Google Scholar 

  119. Sreejayan N, Dong F, Kandadi MR, Yang X, Ren J. Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice. Obesity 2008;16:1331–7.

    PubMed  CAS  Google Scholar 

  120. Sener A, Anak O, Leclercq-Meyer V, Herberg L, Malaisse WJ. FAD-glycerophosphate dehydrogenase activity in pancreatic islets and liver of ob/ob mice. Biochem Mol Biol Int 1993;30:397–402.

    PubMed  CAS  Google Scholar 

  121. Khan A, Hong-Lie C, Landau BR. Glucose-6-phosphatase activity in islets from ob/ob and lean mice and the effect of dexamethasone. Endocrinology 1995;136:1934–8.

    PubMed  CAS  Google Scholar 

  122. Jetton TL, Liang Y, Cincotta AH. Systemic treatment with sympatholytic dopamine agonists improves aberrant ß-cell hyperplasia and GLUT2, glucokinase, and insulin immunoreactive levels in ob/ob mice. Metabolism 2001;50:1377–84.

    PubMed  CAS  Google Scholar 

  123. Berne C. The metabolism of lipids in mouse pancreatic islets. The oxidation of fatty acids and ketone bodies. Biochem J 1975;152:661–6.

    PubMed  CAS  Google Scholar 

  124. Camus MC, Aubert R, Bourgeois F, Herzog J, Alexiu A, Lemonnier D. Serum lipoprotein and apolipoprotein profiles of the genetically obese ob/ob mouse. Biochim Biophys Acta 1988;961:53–64.

    PubMed  CAS  Google Scholar 

  125. Flowers JB, Rabaglia ME, Schueler KL, Flowers MT, Lan H, Keller MP, Ntambi JM, Attie AD. Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes 2007;5:1228–39.

    Google Scholar 

  126. Cullinan CA, Brady EJ, Saperstein R, Leibowitz MD. Glucose-dependent alterations of intracellular free calcium by glucagon-like peptide-1(7-36amide) in individual ob/ob mouse ß-cells. Cell Calcium 1994;15:391–400.

    PubMed  CAS  Google Scholar 

  127. Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, Denaro M. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes 1999;48:1026–34.

    PubMed  CAS  Google Scholar 

  128. Rolin B, Larsen MO, Gotfredsen CF, Deacon CF, Carr RD, Wilken M, Knudsen LB. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases ß-cell mass in diabetic mice. Am J Physiol 2002;283:E745–52.

    CAS  Google Scholar 

  129. Moritoh Y, Takeuchi K, Asakawa T, Kataoka O, Odaka H. Chronic administration of alogliptin, a novel, potent, and highly selective dipeptidyl peptidase-4 inhibitor, improves glycemic control and ß-cell function in obese diabetic ob/ob mice. Eur J Pharmacol 2008;588:325–32.

    PubMed  CAS  Google Scholar 

  130. Gault VA, Irwin N, Green BD, McCluskey JT, Greer B, Bailey CJ, Harriott P, O’harte FP, Flatt PR. Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 2005;54:2436–46.

    PubMed  CAS  Google Scholar 

  131. Irwin N, McClean PL, O’Harte FP, Gault VA, Harriott P, Flatt PR. Early administration of the glucose-dependent insulinotropic polypeptide receptor antagonist (Pro3)GIP prevents the development of diabetes and related metabolic abnormalities associated with genetically inherited obesity in ob/ob mice. Diabetologia 2007;50:1532–40.

    PubMed  CAS  Google Scholar 

  132. Dubuc PU, Mobley PW, Mahler RJ, Ensinck JW. Immunoreactive glucagon levels in obese-hyperglycemic (ob/ob) mice. Diabetes 1977;26:841–6.

    PubMed  CAS  Google Scholar 

  133. Mayer J. The obese hyperglycaemic syndrome of mice as an example of “metabolic” obesity. Am J Clin Nutr 1960;8:712–8.

    Google Scholar 

  134. Sorensen H, Brand CL, Neschen S, Holst JJ, Fosgerau K, Nishimura E, Shulman GI. Immunoneutralization of endogenous glucagon reduces hepatic glucose output and improves long-term glycemic control in diabetic ob/ob mice. Diabetes 2006;55:2843–8.

    PubMed  Google Scholar 

  135. Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau BR, Ferrannini E. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 2000;49:1367–73.

    PubMed  CAS  Google Scholar 

  136. Diani AR, Sawada G, Wyse B, Murray FT, Khan M. Pioglitazone preserves pancreatic islet structure and insulin secretory function in three murine models of type 2 diabetes. Am J Physiol 2004;286:E116–22.

    CAS  Google Scholar 

  137. Lalloyer F, Vandewalle B, Percevault F, Torpier G, Kerr-Conte J, Oosterveer M, Paumelle R, Fruchart JC, Kuipers F, Pattou F, Fiévet C, Staels B. Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 2006;55:1605–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Lindström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lindström, P. (2010). β-Cell Function in Obese-Hyperglycemic Mice [ob/ob Mice]. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_20

Download citation

Publish with us

Policies and ethics