Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ (2018) Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat Rev Clin Oncol 15:617–638. https://doi.org/10.1038/s41571-018-0036-9
CAS
Article
PubMed
Google Scholar
D’Souza-Schorey Crislyn C, Clancy JW (2012) Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 26:1287–1299. https://doi.org/10.1101/gad.192351.112
CAS
Article
PubMed
PubMed Central
Google Scholar
Briscoe J, Thérond PP (2013) The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429. https://doi.org/10.1038/nrm3598
CAS
Article
PubMed
Google Scholar
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624. https://doi.org/10.1038/ncb1725
CAS
Article
PubMed
Google Scholar
Qian Z, Shen Q, Yang X, Qiu Y, Zhang W (2015) The role of extracellular vesicles: an epigenetic view of the cancer microenvironment. Biomed Res Int. https://doi.org/10.1155/2015/649161
Article
PubMed
PubMed Central
Google Scholar
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–848. https://doi.org/10.1016/j.ccell.2016.10.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Poste G, Nicolson GL (2006) Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci 77:399–403. https://doi.org/10.1073/pnas.77.1.399
Article
Google Scholar
Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138
CAS
Article
PubMed
PubMed Central
Google Scholar
Kultti A, Rilla K, Tiihonen R, Spicer AP, Tammi RH, Tammi MI (2006) Hyaluronan synthesis induces microvillus-like cell surface protrusions. J Biol Chem 281:15821–15828. https://doi.org/10.1074/jbc.M512840200
CAS
Article
PubMed
Google Scholar
Rilla K, Oikari S, Jokela TA, Hyttinen JMT, Kärnä R, Tammi RH, Tammi MI (2013) Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J Biol Chem 288:5973–5983. https://doi.org/10.1074/jbc.M112.443879
CAS
Article
PubMed
PubMed Central
Google Scholar
Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, Tammi MI (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 278:1419–1428. https://doi.org/10.1111/j.1742-4658.2011.08070.x
CAS
Article
PubMed
Google Scholar
Deen AJ, Rilla K, Oikari S, Kärna R, Bart G, Häyrinen J, Bathina AR, Ropponen A, Makkonen K, Tammi RH, Tammi MI (2014) Rab10-mediated endocytosis of the hyaluronan synthase HAS3 regulates hyaluronan synthesis and cell adhesion to collagen. J Biol Chem 289:8375–8389. https://doi.org/10.1074/jbc.M114.552133
CAS
Article
PubMed
PubMed Central
Google Scholar
Porsch H, Bernert B, Mehić M, Theocharis AD, Heldin CH, Heldin P (2013) Efficient TGFβ-induced epithelial-mesenchymal transition depends on hyaluronan synthase HAS2. Oncogene 32:4355–4365. https://doi.org/10.1038/onc.2012.475
CAS
Article
PubMed
Google Scholar
Kuo Y-Z, Fang W-Y, Huang C-C, Tsai S-T, Wang Y-C, Yang C-L, Wu L-W (2017) Hyaluronan synthase 3 mediated oncogenic action through forming inter-regulation loop with tumor necrosis factor alpha in oral cancer. Oncotarget 8:15563–15583. https://doi.org/10.18632/oncotarget.14697
Article
PubMed
PubMed Central
Google Scholar
Kultti A, Zhao C, Singha NC, Zimmerman S, Osgood RJ, Symons R, Jiang P, Li X, Thompson CB, Infante JR, Jacobetz MA, Tuveson DA, Frost GI, Shepard HM, Huang Z (2014) Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. Biomed Res Int. https://doi.org/10.1155/2014/817613
Article
PubMed
PubMed Central
Google Scholar
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S (2015) Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol 35:S25–S54. https://doi.org/10.1016/j.semcancer.2015.02.006.Sustained
Article
PubMed
PubMed Central
Google Scholar
Ortega S, Malumbres M, Barbacid M (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta Rev Cancer 1602:73–87. https://doi.org/10.1016/S0304-419X(02)00037-9
CAS
Article
Google Scholar
Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O’Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW (2000) Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 97:2229–2234. https://doi.org/10.1073/pnas.050586197
CAS
Article
PubMed
PubMed Central
Google Scholar
Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG, Conti CJ, Rodriguez-Puebla ML (2004) Lack of cyclin-dependent kinase 4 inhibits c-Myc tumorigenic activities in epithelial tissues. Mol Cell Biol 24:7538–7547. https://doi.org/10.1128/MCB.24.17.7538-7547.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166. https://doi.org/10.1038/nrc2602
CAS
Article
PubMed
Google Scholar
Dang CV (2012) MYC on the path to cancer. Cell 149:22–35. https://doi.org/10.1016/j.cell.2012.03.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV, Prochownik EV, Nikiforov MA (2008) c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27:1905–1915. https://doi.org/10.1038/sj.onc.1210823
CAS
Article
PubMed
Google Scholar
Sar F, Lindsey-Boltz LA, Subramanian D, Croteau DL, Hutsell SQ, Griffith JD, Sancar A (2004) Human claspin is a ring-shaped DNA-binding protein with high affinity to branched DNA structures. J Biol Chem 279:39289–39295. https://doi.org/10.1074/jbc.M405793200
CAS
Article
PubMed
Google Scholar
Azenha D, Lopes MC, Martins TC (2017) Claspin functions in cell homeostasis—A link to cancer? DNA Repair 59:27–33. https://doi.org/10.1016/j.dnarep.2017.09.002
CAS
Article
PubMed
Google Scholar
Yang CC, Suzuki M, Yamakawa S, Uno S, Ishii A, Yamazaki S, Fukatsu R, Fujisawa R, Sakimura K, Tsurimoto T, Masai H (2016) Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat Commun 7:12135. https://doi.org/10.1038/ncomms12135
CAS
Article
PubMed
PubMed Central
Google Scholar
i Altaba AR, Sánchez P, Dahmane N (2002) Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2:361–372. https://doi.org/10.1038/nrc796
CAS
Article
Google Scholar
McMillan R, Matsui W (2012) Molecular pathways: the hedgehog signaling pathway in cancer. Clin Cancer Res 18:4883–4888. https://doi.org/10.1158/1078-0432.CCR-11-2509
CAS
Article
PubMed
PubMed Central
Google Scholar
Pak E, Segal RA (2016) Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy. Dev Cell 38:333–344. https://doi.org/10.1016/j.devcel.2016.07.026
CAS
Article
PubMed
PubMed Central
Google Scholar
Pietrobono S, Santini R, Gagliardi S, Dapporto F, Colecchia D, Chiariello M, Leone C, Valoti M, Manetti F, Petricci E, Taddei M, Stecca B (2018) Targeted inhibition of hedgehog-gli signaling by novel acylguanidine derivatives inhibits melanoma cell growth by inducing replication stress and mitotic catastrophe. Cell Death Dis. https://doi.org/10.1038/s41419-017-0142-0
Article
PubMed
PubMed Central
Google Scholar
Soleti R, Benameur T, Porro C, Panaro MA, Andriantsitohaina R, Martínez MC (2009) Microparticles harboring sonic hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis 30:580–588. https://doi.org/10.1093/carcin/bgp030
CAS
Article
PubMed
Google Scholar
MacKie AR, Klyachko E, Thorne T, Schultz KM, Millay M, Ito A, Kamide CE, Liu T, Gupta R, Sahoo S, Misener S, Kishore R, Losordo DW (2012) Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 111:312–321. https://doi.org/10.1161/CIRCRESAHA.112.266015
CAS
Article
PubMed
PubMed Central
Google Scholar
Takabe P, Bart G, Ropponen A, Rilla K, Tammi M, Tammi R, Pasonen-Seppänen S (2015) Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion. Exp Cell Res 337:1–15. https://doi.org/10.1016/j.yexcr.2015.07.026
CAS
Article
PubMed
Google Scholar
Deen AJ, Arasu UT, Pasonen-Seppänen S, Hassinen A, Takabe P, Wojciechowski S, Kärnä R, Rilla K, Kellokumpu S, Tammi R, Tammi M, Oikari S (2016) UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cell Mol Life Sci 73:3183–3204. https://doi.org/10.1007/s00018-016-2158-5
CAS
Article
PubMed
Google Scholar
Lesley J, Hascall VC, Tammi M, Hyman R (2000) Hyaluronan binding by cell surface CD44. J Biol Chem 275:26967–26975. https://doi.org/10.1074/jbc.M002527200
CAS
Article
PubMed
Google Scholar
Moon S-O, Lee J-H, Kim T-J (1998) Changes in the expression of c-Myc, RB and tyrosine-phosphorylated proteins during proliferation of NIH 3T3 cells induced by hyaluronic acid. Exp Mol Med 30:29–33. https://doi.org/10.1038/emm.1998.4
CAS
Article
PubMed
Google Scholar
Ohkawa T, Ueki N, Taguchi T, Shindo Y, Adachi M, Amuro Y, Hada T, Higashino K (1999) Stimulation of hyaluronan synthesis by tumor necrosis factor-α is mediated by the p50/p65 NF-κB complex in MRC-5 myofibroblasts. Biochim Biophys Acta Mol Cell Res 1448:416–424. https://doi.org/10.1016/S0167-4889(98)00155-4
CAS
Article
Google Scholar
Karjalainen JM, Tammi RH, Tammi MI, Eskelinen MJ, Ågren UM, Parkkinen JJ, Alhava EM, Kosma VM (2000) Reduced level of CD44 and hyaluronan associated with unfavorable prognosis in clinical stage I cutaneous melanoma. Am J Pathol 157:957–965. https://doi.org/10.1016/S0002-9440(10)64608-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang SJ, Bourguignon LYW (2006) Hyaluronan and the interaction between CD44 and epidermal growth factor receptor in oncogenic signaling and chemotherapy resistance in head and neck cancer. Arch Otolaryngol Head Neck Surg 132:771–778. https://doi.org/10.1001/archotol.132.7.771
Article
PubMed
Google Scholar
Bin Park G, Ko HS, Kim D (2017) Sorafenib controls the epithelial-mesenchymal transition of ovarian cancer cells via EGF and the CD44-HA signaling pathway in a cell type-dependent manner. Mol Med Rep 16:1826–1836. https://doi.org/10.3892/mmr.2017.6773
CAS
Article
Google Scholar
Bouchard C, Staller P, Eilers M (1998) Control of cell proliferation by Myc. Trends Cell Biol 8:202–206. https://doi.org/10.1016/S0962-8924(98)01251-3
CAS
Article
PubMed
Google Scholar
Cannonier SA, Gonzales CB, Ely K, Guelcher SA, Sterling JA (2016) Hedgehog and TGFβ signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma. Oncotarget 7:76062–76075. https://doi.org/10.18632/oncotarget.12584
Article
PubMed
PubMed Central
Google Scholar
Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811. https://doi.org/10.1038/nature03845
CAS
Article
PubMed
PubMed Central
Google Scholar
Conzen SD, Gottlob K, Kandel ES, Khanduri P, Wagner AJ, O’Leary M, Hay N (2000) Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol 20:6008–6018. https://doi.org/10.1128/mcb.20.16.6008-6018.2000
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang X, Cunningham M, Zhang X, Tokarz S, Laraway B, Troxell M, Sears RC (2011) Phosphorylation regulates c-Myc’s oncogenic activity in the mammary gland. Cancer Res 71:925–936. https://doi.org/10.1158/0008-5472.CAN-10-1032
CAS
Article
PubMed
PubMed Central
Google Scholar
Bart G, Vico NO, Hassinen A, Pujol FM, Deen AJ, Ruusala A, Tammi RH, Squire A, Heldin P, Kellokumpu S, Tammi MI (2015) Fluorescence resonance energy transfer (FRET) and proximity ligation assays reveal functionally relevant homo-and heteromeric complexes among hyaluronan synthases HAS1 HAS2, and HAS3. J Biol Chem 290:11479–11490. https://doi.org/10.1074/jbc.M115.640581
CAS
Article
PubMed
PubMed Central
Google Scholar
Rilla K, Siiskonen H, Spicer AP, Hyttinen JMT, Tammi MI, Tammi RH (2005) Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J Biol Chem 280:31890–31897. https://doi.org/10.1074/jbc.M504736200
CAS
Article
PubMed
Google Scholar
Spicer AP, Seldin MF, Olsen AS, Brown N, Wells DE, Doggett NA, Itano N, Kimata K, Inazawa J, McDonald JA (1997) Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 41:493–497. https://doi.org/10.1006/geno.1997.4696
CAS
Article
PubMed
Google Scholar
Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A (2012) Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNacylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem 287:35544–35555. https://doi.org/10.1074/jbc.M112.402347
CAS
Article
PubMed
PubMed Central
Google Scholar
Siiskonen H, Poukka M, Tyynelä-Korhonen K, Sironen R, Pasonen-Seppänen S (2013) Inverse expression of hyaluronidase 2 and hyaluronan synthases 1–3 is associated with reduced hyaluronan content in malignant cutaneous melanoma. BMC Cancer 13:1. https://doi.org/10.1186/1471-2407-13-181
CAS
Article
Google Scholar
Qu X, Shen L, Zheng Y, Cui Y, Feng Z, Liu F, Liu J (2014) A signal transduction pathway from TGF-β1 to SKP2 via Akt1 and c-Myc and its correlation with progression in human melanoma. J Investig Dermatol 134:159–167. https://doi.org/10.1038/jid.2013.281
CAS
Article
PubMed
Google Scholar
Van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228. https://doi.org/10.1038/nrm.2017.125
CAS
Article
PubMed
Google Scholar
Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A, Ivan C, Calin GA, Kalluri R (2014) Cancer exosomes perform cell-independent MicroRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721. https://doi.org/10.1016/j.ccell.2014.09.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, García-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IMB, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17:816–826. https://doi.org/10.1038/ncb3169
CAS
Article
PubMed
PubMed Central
Google Scholar
Watt FM, Frye M, Benitah SA (2008) MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer 8:316. https://doi.org/10.1038/nrc2328
CAS
Article
Google Scholar
Leung JY, Ehmann GL, Giangrande PH, Nevins JR (2008) A role for Myc in facilitating transcription activation by E2F1. Oncogene 27:4172–4179. https://doi.org/10.1038/onc.2008.55
CAS
Article
PubMed
Google Scholar
Hallmann A (2009) Key elements of the retinoblastoma tumor suppressor pathway in Volvox carteri. Commun Integr Biol 2:396–399. https://doi.org/10.4161/cib.2.5.8761
CAS
Article
PubMed
PubMed Central
Google Scholar
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF (2014) Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. https://doi.org/10.7554/eLife.02872
Article
PubMed
PubMed Central
Google Scholar
Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129. https://doi.org/10.1101/gad.1067003
CAS
Article
PubMed
PubMed Central
Google Scholar
Müller H, Helin K (2000) The E2F transcription factors: key regulators of cell proliferation. Biochim Biophys Acta Rev Cancer 1470:M1–M12. https://doi.org/10.1016/S0304-419X(99)00030-X
Article
Google Scholar
Helin K (1998) Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev 8:28–35. https://doi.org/10.1016/S0959-437X(98)80058-0
CAS
Article
PubMed
Google Scholar
Bertoli C, Skotheim JM, De Bruin RAM (2013) Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14:518–528. https://doi.org/10.1038/nrm3629
CAS
Article
PubMed
PubMed Central
Google Scholar
Verlinden L, Vanden Bempt I, Eelen G, Drijkoningen M, Verlinden I, Marchal K, De Wolf-Peeters C, Christiaens MR, Michiels L, Bouillon R, Verstuyf A (2007) The E2F-regulated Gene Chk1 is highly expressed in triple-negative estrogen receptor-/progesterone receptor-/HER-2-breast carcinomas. Cancer Res 67:6574–6581. https://doi.org/10.1158/0008-5472.can-06-3545
CAS
Article
PubMed
Google Scholar
Bertoli C, Herlihy AE, Pennycook BR, Kriston-Vizi J, De Bruin RAM (2016) Sustained E2F-dependent transcription is a key mechanism to prevent replication-stress-induced DNA damage. Cell Rep 15:1412–1422. https://doi.org/10.1016/j.celrep.2016.04.036
CAS
Article
PubMed
PubMed Central
Google Scholar
Smits VAJ, Cabrera E, Freire R, Gillespie DA (2018) Claspin -checkpoint adaptor and DNA replication factor. FEBS J 286:441–455. https://doi.org/10.1111/febs.14594
CAS
Article
PubMed
Google Scholar
Rovida E, Stecca B (2015) Mitogen-activated protein kinases and hedgehog-gli signaling in cancer: a crosstalk providing therapeutic opportunities? Semin Cancer Biol 35:154–167. https://doi.org/10.1016/j.semcancer.2015.08.003
CAS
Article
PubMed
Google Scholar
Mas C, Correa R, i Altaba AR, Clement V, Zbinden M, Beermann F, Stecca B, Piguet V (2007) Melanomas require hedgehog-gli signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci 104:5895–5900. https://doi.org/10.1073/pnas.0700776104
CAS
Article
PubMed
PubMed Central
Google Scholar
O’Reilly KE, de Miera EVS, Segura MF, Friedman E, Poliseno L, Han SW, Zhong J, Zavadil J, Pavlick A, Hernando E, Osman I (2013) Hedgehog pathway blockade inhibits melanoma cell growth in vitro and in vivo. Pharmaceuticals 6:1429–1450. https://doi.org/10.3390/ph6111429
CAS
Article
PubMed
PubMed Central
Google Scholar
Faião-Flores F, Alves-Fernandes DK, Pennacchi PC, Sandri S, Vicente ALSA, Scapulatempo-Neto C, Vazquez VL, Reis RM, Chauhan J, Goding CR, Smalley KS, Maria-Engler SS (2017) Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene 36:1849–1861. https://doi.org/10.1038/onc.2016.348
CAS
Article
PubMed
Google Scholar
Pelillo C, Bergamo A, Mollica H, Bestagno M, Sava G (2015) Colorectal cancer metastases settle in the hepatic microenvironment through α5β1 integrin. J Cell Biochem 116:2385–2396. https://doi.org/10.1002/jcb.25189
CAS
Article
PubMed
Google Scholar
Zhang Y, Hu C (2018) WIF-1 and Ihh expression and clinical significance in patients with lung squamous cell carcinoma and adenocarcinoma. Appl Immunohistochem Mol Morphol 26:454–461. https://doi.org/10.1097/PAI.0000000000000449
CAS
Article
PubMed
Google Scholar
Mohelnikova-Duchonova B, Kocik M, Duchonova B, Brynychova V, Oliverius M, Hlavsa J, Honsova E, Mazanec J, Kala Z, Ojima I, Hughes DJ, Doherty JE, Murray HA, Crockard MA, Lemstrova R, Soucek P (2017) Hedgehog pathway overexpression in pancreatic cancer is abrogated by new-generation taxoid SB-T-1216. Pharmacogenomics J 17:452–460. https://doi.org/10.1038/tpj.2016.55
CAS
Article
PubMed
Google Scholar
Fukaya M, Isohata N, Ohta H, Aoyagi K, Ochiya T, Saeki N, Yanagihara K, Nakanishi Y, Taniguchi H, Sakamoto H, Shimoda T, Nimura Y, Yoshida T, Sasaki H (2006) Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology 131:14–29. https://doi.org/10.1053/j.gastro.2006.05.008
CAS
Article
PubMed
Google Scholar
Dagklis A, Demeyer S, DeBie J, Radaelli E, Pauwels D, Degryse S, Gielen O, Vicente C, Vandepoel R, Geerdens E, Uyttebroeck A, Boeckx N, De Bock CE, Cools J (2016) Hedgehog pathway activation in T cell acute lymphoblastic leukemia predicts response to SMO and GLI1 inhibitors. Blood 128:2642–2654. https://doi.org/10.1182/blood-2016-03-703454
CAS
Article
PubMed
Google Scholar
Hollern DP, Yuwanita I, Andrechek ER (2013) A mouse model with T58A mutations in Myc reduces the dependence on KRas mutations and has similarities to claudin-low human breast cancer. Oncogene 32:1296–1304. https://doi.org/10.1038/onc.2012.142
CAS
Article
PubMed
Google Scholar
Yang Z, Zhang C, Qi W, Cui Y, Xuan Y (2018) GLI1 promotes cancer stemness through intracellular signaling pathway PI3K/Akt/NFκB in colorectal adenocarcinoma. Exp Cell Res 373:145–154. https://doi.org/10.1016/j.yexcr.2018.10.006
CAS
Article
PubMed
Google Scholar
Kim J, Hyun J, Wang S, Lee C, Jung Y (2018) MicroRNA-378 is involved in hedgehog-driven epithelial-to-mesenchymal transition in hepatocytes of regenerating liver article. Cell Death Dis. https://doi.org/10.1038/s41419-018-0762-z
Article
PubMed
PubMed Central
Google Scholar
Jo JH, Park SB, Park S, Lee HS, Kim C, Jung DE, Song SY (2019) Novel gastric cancer stem cell-related marker LINGO2 is associated with cancer cell phenotype and patient outcome. Int J Mol Sci 20:1–17. https://doi.org/10.3390/ijms20030555
CAS
Article
Google Scholar
Tian L, Deng Z, Xu L, Yang T, Yao W, Ji L, Lu Y, Zhang J, Liu Y, Wang J (2018) Downregulation of ASPP2 promotes gallbladder cancer metastasis and macrophage recruitment via aPKC-ι/GLI1 pathway. Cell Death Dis. https://doi.org/10.1038/s41419-018-1145-1
Article
PubMed
PubMed Central
Google Scholar
Jian W, Bai Y, Li X, Kang J, Lei Y, Xue Y (2018) Phosphatidylethanolamine-binding protein 4 promotes the epithelial-to-mesenchymal transition in non–small cell lung cancer cells by activating the sonic hedgehog signaling pathway. J Cell Biochem 120:5386–5395. https://doi.org/10.1002/jcb.27817
CAS
Article
PubMed
Google Scholar
Adolphe C, Hetherington R, Ellis T, Wainwright B (2006) Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 66:2081–2088. https://doi.org/10.1158/0008-5472.CAN-05-2146
CAS
Article
PubMed
Google Scholar
Maurer J, Brabletz S, Orian-Rousseau V, Mock K, Preca B-T, Brabletz T, Bajdak K, Lehmann W, Sundararajan V, Bronsert P, Stemmler MP, Matzge-Ogi A (2017) A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget 8:11530–11543. https://doi.org/10.18632/oncotarget.14563
Article
PubMed
PubMed Central
Google Scholar
Liu S, Cheng C (2017) Akt signaling is sustained by a CD44 splice isoform–mediated positive feedback loop. Cancer Res 77:3791–3801. https://doi.org/10.1158/0008-5472.CAN-16-2545
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu J, Li Q, Kuehn MR, Litingtung Y, Vokes SA, Chiang C (2013) Sonic hedgehog signaling directly targets hyaluronic acid synthase 2, an essential regulator of phalangeal joint patterning. Dev Biol 375:160–171. https://doi.org/10.1016/j.ydbio.2012.12.018
CAS
Article
PubMed
Google Scholar
Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, Massi D, Fonsatti E, Staibano S, Nappi O, Pagani E, Casula M, Manca A, Sini MC, Franco R, Botti G, Caracò C, Mozzillo N, Ascierto PA, Palmieri G (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30:2522–2529. https://doi.org/10.1200/JCO.2011.41.2452
Article
PubMed
Google Scholar
Hogan SA, Levesque MP, Cheng PF (2018) Melanoma immunotherapy: next-generation biomarkers. Front Oncol 8:1–10. https://doi.org/10.3389/fonc.2018.00178
CAS
Article
Google Scholar
Franklin C, Livingstone E, Roesch A, Schilling B, Schadendorf D (2017) Immunotherapy in melanoma: recent advances and future directions. Eur J Surg Oncol 43:604–611. https://doi.org/10.1016/j.ejso.2016.07.145
CAS
Article
PubMed
Google Scholar
Rodríguez-Cerdeira C, Gregorio MC, López-Barcenas A, Sánchez-Blanco E, Sánchez-Blanco B, Fabbrocini G, Bardhi B, Sinani A, Guzman RA (2017) Advances in immunotherapy for melanoma: a comprehensive review. Mediat Inflamm. https://doi.org/10.1155/2017/3264217
Article
Google Scholar
Friedlander P, Wassmann K, Christenfeld AM, Fisher D, Kyi C, Kirkwood JM, Bhardwaj N, Oh WK (2017) Whole-blood RNA transcript-based models can predict clinical response in two large independent clinical studies of patients with advanced melanoma treated with the checkpoint inhibitor, tremelimumab. J Immunother Cancer. https://doi.org/10.1186/s40425-017-0272-z
Article
PubMed
PubMed Central
Google Scholar
Sharma P, Ludwig S, Muller L, Hong CS, Kirkwood JM, Ferrone S, Whiteside TL (2018) Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles 7:1435138. https://doi.org/10.1080/20013078.2018.1435138
CAS
Article
PubMed
PubMed Central
Google Scholar
Broggi MAS, Maillat L, Clement CC, Bordry N, Corthésy P, Auger A, Matter M, Hamelin R, Potin L, Demurtas D, Romano E, Harari A, Speiser DE, Santambrogio L, Swartz MA (2019) Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J Exp Med 216:1091–1107. https://doi.org/10.1084/jem.20181618
CAS
Article
PubMed
PubMed Central
Google Scholar
García-Silva S, Benito-Martín A, Sánchez-Redondo S, Hernández-Barranco A, Ximénez-Embún P, Nogués L, Mazariegos MS, Brinkmann K, Amor López A, Meyer L, Rodríguez C, García-Martín C, Boskovic J, Letón R, Montero C, Robledo M, Santambrogio L, Sue Brady M, Szumera-Ciećkiewicz A, Kalinowska I, Skog J, Noerholm M, Muñoz J, Ortiz-Romero PL, Ruano Y, Rodríguez-Peralto JL, Rutkowski P, Peinado H (2019) Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAF V600E mutation. J Exp Med 216:1061–1070. https://doi.org/10.1084/jem.20181522
CAS
Article
PubMed
PubMed Central
Google Scholar
Koistinen V, Härkönen K, Kärnä R, Arasu UT, Oikari S, Rilla K (2017) EMT induced by EGF and wounding activates hyaluronan synthesis machinery and EV shedding in rat primary mesothelial cells. Matrix Biol 63:38–54. https://doi.org/10.1016/j.matbio.2016.12.007
CAS
Article
PubMed
Google Scholar
Arasu UT, Kärnä R, Härkönen K, Oikari S, Koistinen A, Kröger H, Qu C, Lammi MJ, Rilla K (2017) Human mesenchymal stem cells secrete hyaluronan-coated extracellular vesicles. Matrix Biol 64:54–68. https://doi.org/10.1016/j.matbio.2017.05.001
CAS
Article
PubMed
Google Scholar
Hiltunen ELJ, Anttila M, Kultti A, Ropponen K, Penttinen J, Yliskoski M, Kuronen AT, Juhola M, Tammi R, Tammi M, Kosma VM (2002) Elevated hyaluronan concentration without hyaluronidase activation in malignant epithelial ovarian tumors. Cancer Res 62:6410–6413. https://doi.org/10.1177/000842989902800304
CAS
Article
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
CAS
Article
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36
CAS
Article
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, Debski J, Uusi-Rauva K, Dadlez M, Gingras AC, Tyynelä J, Simonati A, Jalanko A, Baumann MH, Lalowski M (2015) Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics 123:42–53. https://doi.org/10.1016/j.jprot.2015.03.038
CAS
Article
PubMed
Google Scholar
Laakkonen EK, Soliymani R, Karvinen S, Kaprio J, Kujala UM, Baumann M, Sipilä S, Kovanen V, Lalowski M (2017) Estrogenic regulation of skeletal muscle proteome: a study of premenopausal women and postmenopausal MZ cotwins discordant for hormonal therapy. Aging Cell 16:1276–1287. https://doi.org/10.1111/acel.12661
CAS
Article
PubMed
PubMed Central
Google Scholar
Lalowski MM, Björk S, Finckenberg P, Soliymani R, Tarkia M, Calza G, Blokhina D, Tulokas S, Kankainen M, Lakkisto P, Baumann M, Kankuri E, Mervaala E (2018) Characterizing the key metabolic pathways of the neonatal mouse heart using a quantitative combinatorial omics approach. Front Physiol. https://doi.org/10.3389/fphys.2018.00365
Article
PubMed
PubMed Central
Google Scholar