Skip to main content

Advertisement

Log in

Role of the chanzyme TRPM7 in the nervous system in health and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The channel kinase (chanzyme) transient receptor potential melastatin-like 7 (TRPM7) has a unique dual protein structure composed of an ion channel with an α-kinase domain on its C-terminus. In the nervous system, under physiological conditions, TRPM7 contributes to critical neurobiological processes ranging from synaptic transmission to cognitive functions. Following certain pathological triggers, TRPM7 mediates neurotoxicity, neuro-injuries, and neuronal death. Here, we summarize the current knowledge of TRPM7 functions in neuronal systems in health and disease. The molecular mechanisms by which this chanzyme might regulate synaptic and cognitive functions are discussed. We also discuss the lack of knowledge regarding the molecular mechanisms responsible for turning TRPM7 into “a vicious tool” that mediates neuronal death following certain pathological triggers. Some synthetic and natural pharmacological modulators of the TRPM7 channel and its α-kinase are reviewed. We suggest that based on current knowledge, we should reshape our thinking regarding the implications of TRPM7 in neurological and neurodegenerative disorders. Moreover, we propose a paradigm shift concerning the targeting of TRPM7 as a therapeutic approach for treating certain neurological diseases. We agree that TRPM7 overexpression or overactivation may mediate neurodegenerative processes following certain triggers. However, TRPM7 dysfunction and/or downregulation might also be among the pathological changes leading to neurodegeneration. Consequently, further investigations are required before we decide whether blocking or activating the chanzyme is the correct therapeutic approach to treat certain neurological and/or neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TRPM7:

Transient receptor potential melastatin-like 7

Zn2+ :

Zinc

Mg2+ :

Magnesium

Ca2+ :

Calcium

CNS:

Central nervous system

GABA:

Gamma-aminobutyric acid

Akt:

Serine–threonine kinase

mTOR:

Mammalian target of rapamycin complex

eEF2:

Eukaryotic elongation factor-2

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

APP:

The amyloid precursor protein

Aβ:

A-beta peptide

TRPM6:

Transient receptor potential melastatin-like 6

NMDA:

N-Methyl-d-aspartic acid

2-APB:

2-Aminoethyl diphenyl borinate

PI3K:

Phosphoinositide 3-kinase

References

  1. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411(6837):590–595

    Article  CAS  PubMed  Google Scholar 

  2. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291(5506):1043–1047

    Article  CAS  PubMed  Google Scholar 

  3. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121(1):49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25(12):633–639

    Article  CAS  PubMed  Google Scholar 

  5. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2 + homeostasis by TRPM7. Cell 114(2):191–200

    Article  CAS  PubMed  Google Scholar 

  6. Sahni J, Scharenberg AM (2008) TRPM7 ion channels are required for sustained phosphoinositide 3-kinase signaling in lymphocytes. Cell Metab 8(1):84–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen KH, Xu XH, Liu Y, Hu Y, Jin MW, Li GR (2014) TRPM7 channels regulate proliferation and adipogenesis in 3T3-L1 preadipocytes. J Cell Physiol 229(1):60–67

    CAS  PubMed  Google Scholar 

  8. Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y, Clapham DE (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell 22(6):1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg(2 +) homeostasis. Science 322(5902):756–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin J, Wu LJ, Jun J, Cheng X, Xu H, Andrews NC, Clapham DE (2011) The channel kinase, TRPM7, is required for early embryonic development. Proc Natl Acad Sci USA 109(5):E225–E233

    Article  PubMed  Google Scholar 

  11. Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Perraud AL, Zhao X, Ryazanov AG, Schmitz C (2010) The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal 23(3):586–593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE (2014) The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 157(5):1061–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fleig A, Chubanov V (2014) Trpm7. Handb Exp Pharmacol 222:521–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abumaria N, Li W, Liu Y (2018) TRPM7 functions in non-neuronal and neuronal systems: perspectives on its role in the adult brain. Behav Brain Res 340:81–86

    Article  CAS  PubMed  Google Scholar 

  16. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115(7):863–877

    Article  CAS  PubMed  Google Scholar 

  17. Jiang H, Tian SL, Zeng Y, Li LL, Shi J (2008) TrkA pathway(s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation. Brain Res Bull 76(1–2):124–130

    Article  CAS  PubMed  Google Scholar 

  18. Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP, Golde TE, Orser BA, Macdonald JF, Tymianski M (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12(10):1300–1307

    Article  CAS  PubMed  Google Scholar 

  19. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, Turlova E, Barszczyk A, Zhong X, Sun CL, Britto LR, Feng ZP, Sun HS (2015) TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 8:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xu HL, Liu MD, Yuan XH, Liu CX (2018) Suppression of cortical TRPM7 protein attenuates oxidative damage after traumatic brain injury via Akt/endothelial nitric oxide synthase pathway. Neurochem Int 112:197–205

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Chen C, Liu Y, Li W, Wang Z, Sun Q, Zhou H, Chen X, Yu Y, Wang Y, Abumaria N (2018) TRPM7 is required for normal synapse density, learning, and memory at different developmental stages. Cell Rep 23(12):3480–3491

    Article  CAS  PubMed  Google Scholar 

  22. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE (2006) The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52(3):485–496

    Article  CAS  PubMed  Google Scholar 

  23. Low SE, Amburgey K, Horstick E, Linsley J, Sprague SM, Cui WW, Zhou W, Hirata H, Saint-Amant L, Hume RI, Kuwada JY (2011) TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors. J Neurosci 31(32):11633–11644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ratnam M, Chan J, Lesani N, Sidorova-Darmos E, Eubanks JH, Aarts MM (2018) mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. Int J Dev Neurosci 69:23–31

    Article  CAS  PubMed  Google Scholar 

  25. Turlova E, Bae CYJ, Deurloo M, Chen WL, Barszczyk A, Horgen FD, Fleig A, Feng ZP, Sun HS (2016) TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons. Mol Neurobiol 53(1):595–610

    Article  CAS  PubMed  Google Scholar 

  26. Decker AR, McNeill MS, Lambert AM, Overton JD, Chen YC, Lorca RA, Johnson NA, Brockerhoff SE, Mohapatra DP, MacArthur H, Panula P, Masino MA, Runnels LW, Cornell RA (2013) Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern. Dev Biol 386(2):428–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Brauchi S, Krapivinsky G, Krapivinsky L, Clapham DE (2008) TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane. Proc Natl Acad Sci USA 105(24):8304–8308

    Article  CAS  PubMed  Google Scholar 

  28. Middelbeek J, Vrenken K, Visser D, Lasonder E, Koster J, Jalink K, Clark K, van Leeuwen FN (2016) The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 95(11):465–474

    Article  CAS  PubMed  Google Scholar 

  29. MacDonald JF, Belrose JC, Xie YF, Jackson MF (2012) Nonselective cation channels and links to hippocampal ischemia, aging, and dementia. Adv Exp Med Biol 961:433–447

    Article  CAS  Google Scholar 

  30. Asrar S, Aarts M (2013) TRPM7, the cytoskeleton and neuronal death. Channels (Austin) 7(1):6–16

    Article  CAS  Google Scholar 

  31. Visser D, Middelbeek J, van Leeuwen FN, Jalink K (2014) Function and regulation of the channel-kinase TRPM7 in health and disease. Eur J Cell Biol 93(10–12):455–465

    Article  CAS  PubMed  Google Scholar 

  32. Sun Y, Sukumaran P, Schaar A, Singh BB (2015) TRPM7 and its role in neurodegenerative diseases. Channels (Austin) 9(5):253–261

    Article  Google Scholar 

  33. Yang CP, Zhang ZH, Zhang LH, Rui HC (2016) Neuroprotective role of MicroRNA-22 in a 6-hydroxydopamine-induced cell model of parkinson’s disease via regulation of its target gene TRPM7. J Mol Neurosci 60(4):445–452

    Article  CAS  PubMed  Google Scholar 

  34. Oh HG, Chung S (2017) Activation of transient receptor potential melastatin 7 (TRPM7) channel increases basal autophagy and reduces amyloid beta-peptide. Biochem Biophys Res Commun 493(1):494–499

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y, Leng TD, Inoue K, Yang T, Liu M, Horgen FD, Fleig A, Li J, Xiong ZG (2018) TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem. 293(37):14393–14406. https://doi.org/10.1074/jbc.RA117.001032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Zhao F, Zhao Y, Wang J, Pei L, Sun N, Shi J (2011) Hypoxia induces an increase in intracellular magnesium via transient receptor potential melastatin 7 (TRPM7) channels in rat hippocampal neurons in vitro. J Biol Chem 286(23):20194–20207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim Y, Oh HG, Cho YY, Kwon OH, Park MK, Chung S (2016) Stress hormone potentiates Zn2 + -induced neurotoxicity via TRPM7 channel in dopaminergic neuron. Biochem Biophys Res Commun 470(2):362–367

    Article  CAS  PubMed  Google Scholar 

  38. Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong ZG, Jackson MF, Tymianski M, MacDonald JF (2007) TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci USA 104(41):16323–16328

    Article  CAS  PubMed  Google Scholar 

  39. Nakashima AS, Dyck RH (2009) Zinc and cortical plasticity. Brain Res Rev 59(2):347–373

    Article  CAS  PubMed  Google Scholar 

  40. Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao MG, Zhuo M, Tonegawa S, Liu G (2010) Enhancement of learning and memory by elevating brain magnesium. Neuron 65(2):165–177

    Article  CAS  PubMed  Google Scholar 

  41. Abumaria N, Yin B, Zhang L, Li XY, Chen T, Descalzi G, Zhao L, Ahn M, Luo L, Ran C, Zhuo M, Liu G (2011) Effects of elevation of brain magnesium on fear conditioning, fear extinction, and synaptic plasticity in the infralimbic prefrontal cortex and lateral amygdala. J Neurosci 31(42):14871–14881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dribben WH, Eisenman LN, Mennerick S (2010) Magnesium induces neuronal apoptosis by suppressing excitability. Cell Death Dis 1:e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dodge FA Jr, Rahamimoff R (1967) Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol 193(2):419–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chubanov V, Schafer S, Ferioli S, Gudermann T (2014) Natural and synthetic modulators of the TRPM7 channel. Cells 3(4):1089–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chubanov V, Ferioli S, Gudermann T (2017) Assessment of TRPM7 functions by drug-like small molecules. Cell Calcium 67:166–173

    Article  CAS  PubMed  Google Scholar 

  46. Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2 + -inhibited cation (MIC) channels. J Gen Physiol 119(5):487–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chokshi R, Fruasaha P, Kozak JA (2012) 2-Aminoethyl diphenyl borinate (2-APB) inhibits TRPM7 channels through an intracellular acidification mechanism. Channels 6(5):362–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kozak JA, Kerschbaum HH, Cahalan MD (2002) Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 120(2):221–235

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen HC, Xie J, Zhang Z, Su LT, Yue L, Runnels LW (2010) Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase. PLoS One 5(6):e11161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chubanov V, Mederos Y, Schnitzler M, Meissner M, Schafer S, Abstiens K, Hofmann T, Gudermann T (2012) Natural and synthetic modulators of SK (K(ca)2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7. Br J Pharmacol 166(4):1357–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siddiqui T, Lively S, Ferreira R, Wong R, Schlichter LC (2014) Expression and contributions of TRPM7 and KCa2.3/SK3 channels to the increased migration and invasion of microglia in anti-inflammatory activation states. PLoS One. 9(8):e106087. https://doi.org/10.1371/journal.pone.0106087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leng TD, Lin J, Sun HW, Zeng Z, O’Bryant Z, Inoue K, Xiong ZG (2015) Local anesthetic lidocaine inhibits TRPM7 current and TRPM7-mediated zinc toxicity. CNS Neurosci Ther 21(1):32–39

    Article  CAS  PubMed  Google Scholar 

  53. Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45(3):300–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zierler S, Yao G, Zhang Z, Kuo WC, Porzgen P, Penner R, Horgen FD, Fleig A (2011) Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem 286(45):39328–39335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qin X, Yue ZC, Sun BN, Yang WZ, Xie J, Ni E, Feng Y, Mahmood R, Zhang YH, Yue LX (2013) Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels. Br J Pharmacol 168(6):1294–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hofmann T, Schafer S, Linseisen M, Sytik L, Gudermann T, Chubanov V (2014) Activation of TRPM7 channels by small molecules under physiological conditions. Pflugers Arch. 466(12):2177–2189. https://doi.org/10.1007/s00424-014-1488-0

    Article  CAS  PubMed  Google Scholar 

  57. Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG (2004) Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279(5):3708–3716

    Article  CAS  PubMed  Google Scholar 

  58. Soltoff SP (2007) Rottlerin: an inappropriate and ineffective inhibitor of PKC delta. Trends Pharmacol Sci 28(9):453–458

    Article  CAS  PubMed  Google Scholar 

  59. Song C, Bae Y, Jun J, Lee H, Kim ND, Lee KB, Hur W, Park JY, Sim T (2017) Identification of TG100-115 as a new and potent TRPM7 kinase inhibitor, which suppresses breast cancer cell migration and invasion. Biochim Biophys Acta Gen Subj 1861(4):947–957

    Article  CAS  PubMed  Google Scholar 

  60. Doukas J, Wrasidlo W, Noronha G, Dneprovskaia E, Fine R, Weis S, Hood J, Demaria A, Soll R, Cheresh D (2006) Phosphoinositide 3-kinase gamma/delta inhibition limits infarct size after myocardial ischemia/reperfusion injury. Proc Natl Acad Sci USA 103(52):19866–19871

    Article  CAS  PubMed  Google Scholar 

  61. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1(6):383–386

    Article  CAS  PubMed  Google Scholar 

  62. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468(7321):305–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH, Carmichael ST (2010) An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 13(12):1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Overman JJ, Clarkson AN, Wanner IB, Overman WT, Eckstein I, Maguire JL, Dinov ID, Toga AW, Carmichael ST (2012) A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci USA 109(33):E2230–E2239

    Article  CAS  PubMed  Google Scholar 

  65. Kurosinski P, Guggisberg M, Gotz J (2002) Alzheimer’s and Parkinson’s disease-overlapping or synergistic pathologies? Trends Mol Med 8(1):3–5

    Article  CAS  PubMed  Google Scholar 

  66. Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R (2017) Metabolic dysfunction in Parkinson’s disease: bioenergetics, redox homeostasis and central carbon metabolism. Brain Res Bull 133:12–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cardoso S, Seica R, Moreira PI (2017) Diabesity and brain energy metabolism: the case of Alzheimer’s disease. Adv Neurobiol 19:117–150

    Article  PubMed  Google Scholar 

  68. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464

    Article  CAS  PubMed  Google Scholar 

  69. Bellucci A, Mercuri NB, Venneri A, Faustini G, Longhena F, Pizzi M, Missale C, Spano P (2016) Review: Parkinson’s disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol 42(1):77–94

    Article  CAS  PubMed  Google Scholar 

  70. Andrasi E, Igaz S, Molnar Z, Mako S (2000) Disturbances of magnesium concentrations in various brain areas in Alzheimer’s disease. Magnes Res 13(3):189–196

    CAS  PubMed  Google Scholar 

  71. Andrasi E, Pali N, Molnar Z, Kosel S (2005) Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis 7(4):273–284

    Article  CAS  PubMed  Google Scholar 

  72. Bai J, Zhang Z, Liu M, Li C (2015) alpha-synuclein-lanthanide metal ions interaction: binding sites, conformation and fibrillation. BMC Biophys 9:1

    Article  CAS  PubMed  Google Scholar 

  73. Landman N, Jeong SY, Shin SY, Voronov SV, Serban G, Kang MS, Park MK, Di Paolo G, Chung S, Kim TW (2006) Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci USA 103(51):19524–19529

    Article  CAS  PubMed  Google Scholar 

  74. Deng Y, Wei J, Cheng J, Zhong P, Xiong Z, Liu A, Lin L, Chen S, Yan Z (2016) Partial amelioration of synaptic and cognitive deficits by inhibiting cofilin dephosphorylation in an animal model of Alzheimer’s disease. J Alzheimers Dis 53(4):1419–1432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Natural Science Foundation (NSF) of China Grants (81573408 and 81270048), Fudan University-Shanghai Institute of Materia Medica Chinese Academy of science joint Grant (FU-SIMM20174015) and NSF of Shanghai Grant (16ZR1403200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashat Abumaria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abumaria, N., Li, W. & Clarkson, A.N. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cell. Mol. Life Sci. 76, 3301–3310 (2019). https://doi.org/10.1007/s00018-019-03124-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03124-2

Keywords

Navigation