Skip to main content

Advertisement

Log in

Autophagy in hypoxic ovary

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Oxygen deprivation affects human health by modulating system as well as cellular physiology. Hypoxia generates reactive oxygen species (ROS), causes oxidative stress and affects female reproductive health by altering ovarian as well as oocyte physiology in mammals. Hypoxic conditions lead to several degenerative changes by inducing various cell death pathways like autophagy, apoptosis and necrosis in the follicle of mammalian ovary. The encircling somatic cell death interrupts supply of nutrients to the oocyte and nutrient deprivation may result in the generation of ROS. Increased level of ROS could induce granulosa cells as well as oocyte autophagy. Although autophagy removes damaged proteins and subcellular organelles to maintain the cell survival, irreparable damages could induce cell death within intra-follicular microenvironment. Hypoxia-induced autophagy is operated through 5′ AMP activated protein kinase–mammalian target of rapamycin, endoplasmic reticulum stress/unfolded protein response and protein kinase C delta–c-junN terminal kinase 1 pathways in a wide variety of somatic cell types. Similar to somatic cells, we propose that hypoxia may induce granulosa cell as well as oocyte autophagy and it could be responsible at least in part for germ cell elimination from mammalian ovary. Hypoxia-mediated germ cell depletion may cause several reproductive impairments including early menopause in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wald NJ, Idle M, Boreham J, Bailey A (1981) Carbon monoxide in breath in relation to smoking and carboxyhaemoglobin levels. Thorax 36:366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Milroy CM (2018) Deaths from environmental hypoxia and raised carbon dioxide. Acad Forensic Pathol 8:2–7

    Article  PubMed  PubMed Central  Google Scholar 

  3. West JB (2012) Respiratory system under stress. In West JB (ed) Respiratory physiology, the essentials. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  4. Eltzzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Eng J Med 364(7):656–665

    Article  Google Scholar 

  5. Gibson HL, Sarnat SE, Suh HH, Coull BA, Schwarts J, Zanobetti A, Gold DR (2014) Short-term effects of air pollution on oxygen saturation in a cohort of senior adults in steubnville, OH. J Occup Environ Med 56:149–154

    Article  CAS  Google Scholar 

  6. DeMeo DL, Zanobetti A, Litonjua AA, Coull BA, Schwartz J, Gold DR (2004) Ambient air pollution and oxygen saturation. Am J Respir Crit Care Med 170:383–387

    Article  PubMed  Google Scholar 

  7. Dutta A, Khramtsova G, Brito K et al (2018) Household air pollution and chronic hypoxia in the placenta of pregnant Nigerian women: a randomized controlled ethanol cookstove intervention. Sci Total Environ 619(620):212–220

    Article  CAS  PubMed  Google Scholar 

  8. Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ (1994) Oxygen regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancer. Proc Natl Acad Sci 91:6496–6500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci 97:9082–9087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Till A, Acker H (2004) Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol 207:3171–3188

    Article  CAS  Google Scholar 

  11. Wiesener MS, Maxwell PH (2003) HIF and oxygen sensing; as important to life as the air we breathe? Ann Med 35:183–190

    Article  CAS  PubMed  Google Scholar 

  12. Semenza GL (2006) Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol 91:803–806

    Article  CAS  PubMed  Google Scholar 

  13. Parraguez VH, Urquieta B, Pérez L et al (2013) Fertility in a high-altitude environment is compromised by luteal dysfunction: the relative roles of hypoxia and oxidative stress. Reprod Biol Endocrinol 11:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oktem O, Urman B (2010) Understanding follicle growth in vivo. Hum Reprod 25:2944–2954

    Article  PubMed  Google Scholar 

  15. Baerwald AR, Adams GP, Pierson RA (2012) Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update 18:73–91

    Article  PubMed  Google Scholar 

  16. Zeleznik AJ (2004) The physiology of follicle selection. Reprod Biol Endocrinol 2:31. https://doi.org/10.1186/1477-7827-2-31

    Article  PubMed  PubMed Central  Google Scholar 

  17. Temple-Smith P, Pereleshina E, LaRosa D, Ellery S, Snow R, Walker D, Catt S, Dickinson H (2013) Can birth hypoxia affect ovarian follicular reserve. Hum Reprod 28:i35

    Article  Google Scholar 

  18. Printz RH (1972) The effects of high altitude on the reproductive cycle and pregnancy in the hamster. Anat Rec 173:157–171

    Article  CAS  PubMed  Google Scholar 

  19. Tatone C, Carbone MC, Falone S et al (2006) Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol Hum Reprod 12:655–660

    Article  CAS  PubMed  Google Scholar 

  20. Tatone C, Amicarelli F, Carbone MC et al (2008) Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update 14:31–42

    Article  CAS  Google Scholar 

  21. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. Biol Chem 281:29776–29787

    Article  CAS  Google Scholar 

  22. Degenhardt K, Mathew R, Beaudoin B et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brunelle JK, Chandel NS (2002) Oxygen deprivation induced cell death: an update. Apoptosis 7:475–482

    Article  CAS  PubMed  Google Scholar 

  24. Yoshimori T (2004) Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313:453–458

    Article  CAS  PubMed  Google Scholar 

  25. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin S (2006) Autophagy, mitochondrial quality control and oncogenesis. Autophagy 2:80–84

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez A, Hall MN (2017) Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 36:397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazure NM, Pouyssegur J (2010) Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol 22(2):177–180

    Article  CAS  PubMed  Google Scholar 

  29. Rouschop KM, Van den Beucken T, Dubois L et al (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and A TG5. J Clin Investig 120(1):127–141

    Article  CAS  PubMed  Google Scholar 

  30. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211e216

    Article  Google Scholar 

  32. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 51:1069–1075

    Article  CAS  Google Scholar 

  33. Cuervo AM (2003) Autophagy and aging—when “all you can eat” is yourself. Sci Aging Knowl Environ 36:2

    Google Scholar 

  34. Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14(2):70–77

    Article  CAS  PubMed  Google Scholar 

  35. Choi JY, Jo MW, Lee EY, Yoon BK, Choi DS (2010) The role of autophagy in follicular development and atresia in rat granulosa cells. Fertil Steril 93:2532–2537

    Article  PubMed  Google Scholar 

  36. Choi J, Jo M, Lee E, Choi D (2011) Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells. Fertil Steril 95:1482–1486

    Article  CAS  PubMed  Google Scholar 

  37. Escobar ML, Echeverría OM, Vázquez-Nin GH (2012) Immunohistochemical and ultrastructural visualization of different routes of oocyte elimination in adult rats. Eur J Histochem 56:e17

    Article  Google Scholar 

  38. Lin FH, Zhang WL, Li H et al (2018) Role of autophagy in modulating postmaturation aging of mouse oocytes. Cell Death Dis 9:308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sumarac-Dumanovic M, Apostolovic M, Janjetovic K, Jeremic D (2017) Downregulation of autophagy gene expression in endometria from women with polycystic ovary syndrome. Mol Cell Endocrinol 440:116–124

    Article  CAS  PubMed  Google Scholar 

  40. Li D, You Y, Bi FF et al (2018) Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction 155:85–92

    Article  CAS  PubMed  Google Scholar 

  41. Tuder RM, Yun JH, Bhunia A, Fijalkowska I (2007) Hypoxia and chronic lung disease. J Mol Med 85:1124–1317

    Article  Google Scholar 

  42. Agustí AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X (2003) Systemic effects of chronic obstructive pulmonary disease. Eur Respir J 21:347–360

    Article  PubMed  Google Scholar 

  43. Costa KM, Mendonça DA, Moraes DJA, Machado BH (2014) Evolution and physiology of neural oxygen sensing. Front Physiol 5:302

    PubMed  PubMed Central  Google Scholar 

  44. Yuan XJ, Tod ML, Rubin LJ, Blaustein MP (1990) Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am J Physiol 259:H281–H289

    CAS  PubMed  Google Scholar 

  45. Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J16:1151–1162

    Article  Google Scholar 

  46. Weidemann A, Johnson RS (2008) Biology of HIF-1alpha. Cell Death Differ 15:621–627

    Article  CAS  PubMed  Google Scholar 

  47. Brocato JY, Chervona M Costa (2014) Molecular responses to hypoxia-inducible factor 1a and beyond. Mol Pharmacol 85:651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bruick RK, McKnight S (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  CAS  PubMed  Google Scholar 

  49. Ivan M, Haberberger T, Gervasi DC et al (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci 99:13459–13464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  CAS  PubMed  Google Scholar 

  51. Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci 98:9630–9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ivan M, Kondo K, Yang H et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:448–464

    Article  Google Scholar 

  53. Kim J, Bagchi IC, Bagchi MK (2009) Signaling by hypoxia-inducible factors is critical for ovulation in mice. Endocrinology 150:3392–3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci 90:4304–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 306:re12

    Google Scholar 

  56. Neeman M, Abramovitch R, Schiffenbauer YS, Tempel C (1997) Regulation of angiogenesis by hypoxic stress: from solid tumours to the ovarian follicle. Int J Exp Pathol 78:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaipia A, Hsueh AJ (1997) Regulation of ovarian follicle atresia. Ann Rev Physiol 59:349–363

    Article  CAS  Google Scholar 

  58. Molinari E, Bar H, Pyle AM, Patrizio P (2016) Transcriptome analysis of human cumulus cells reveals hypoxia as the main determinant of follicular senescence. Mol Hum Reprod 22:566–576

    Article  CAS  Google Scholar 

  59. Zhang H, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blagosklonn VM (2013) Hypoxia, MTOR and autophagy converging on senescence or quiescence. Autophagy 9:260–262

    Article  Google Scholar 

  61. Blerkom J Van (2004) Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128:269–280

    Article  CAS  PubMed  Google Scholar 

  62. Clark AR, Stokes YM (2011) Follicle structure influences the availability of oxygen to the oocyte in antral follicles. Comput Math Methods Med 2011:287186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Macome JC, Costa LE, Martin IH, TaquiniA C (1977) Steroid biosynthesis by gonads of rats submitted to chronic hypobaric hypoxia. Acta Physiol Lat Am 27:249–257

    CAS  PubMed  Google Scholar 

  64. Martin IH, Costa LE (1992) Reproductive function in female rats submitted to chronic hypobaric hypoxia. Arch Int Physiol Biochim Biophys 100:327–330

    CAS  PubMed  Google Scholar 

  65. Matsuda F, Inoue N, Manabe N, Ohkura S (2012) Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev 58:44–50

    Article  CAS  PubMed  Google Scholar 

  66. Edson MA, Nagaraja AK, Matzuk MM (2009) The mammalian ovary from genesis to revelation. Endocr Rev 30:624–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Oktem O, Oktay K (2008) The ovary: anatomy and function throughout human life. Ann N Y Acad Sci 1127:1–9

    Article  CAS  PubMed  Google Scholar 

  68. Wigglesworth K, Lee KB, O’Brien MJ, Peng J, Matzuk MM, Eppig JJ (2013) Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc Natl Acad Sci 110:E3723–E3729

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sugiura K, Eppig J (2005) Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fertil Dev 17:667–674

    Article  CAS  PubMed  Google Scholar 

  70. Su QY, Wu X, O’Brien MJ, Pendola FL, Denegre JN, Matzuk MM, Eppig JJ (2004) Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence foran oocyte-granulosa cell regulatory loop. Dev Biol 276:64–73

    Article  CAS  PubMed  Google Scholar 

  71. McNatty KP, Lawrence S, Groome NP et al (2006) Oocyte signalling molecules and their effects on reproduction in ruminants. Reprod Fertil Dev 18:403

    Article  CAS  PubMed  Google Scholar 

  72. Sugiura K, Su YQ, Diaz FJ et al (2008) Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 135:786

    Article  CAS  Google Scholar 

  73. Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ (1990) FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specificfactor(s) secreted by the oocyte. Dev Biol 138:16–25

    Article  CAS  PubMed  Google Scholar 

  74. Eppig J, Wigglesworth K, Pendola F, Hirao Y (1997) Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod 56:976–984

    Article  CAS  PubMed  Google Scholar 

  75. Hussein TS (2005) Oocytes prevent cumulus cell apoptosis by maintaining amorphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci 118:5257–5268

    Article  CAS  PubMed  Google Scholar 

  76. Bianco F, Basini G, Santini S, Grasselli F (2005) Angiogenic activity of swine granulosa cells: effects of hypoxia and the role of VEGF. Vet Res Commun 29(suppl 2):157–159

    Article  PubMed  Google Scholar 

  77. Sugino N, Nakamura Y, Okuno N, Ishimatsu M, Teyama T, Kato H (1993) Effects of ovarian ischemia–reperfusion on luteal function in pregnant rats. Biol Reprod 49:354–358

    Article  CAS  PubMed  Google Scholar 

  78. Chaube SK, Prasad PV, Thakur SC, Shrivastav TG (2005) Hydrogen peroxide modulates meiotic cell cycle and induces morphological feature characteristics of apoptosis in rat oocytes cultured in vitro. Apoptosis 10:863–874

    Article  CAS  PubMed  Google Scholar 

  79. Chaube SK, Shrivastav TG, Prasad S, Tiwari M, Tripathi A, Pandey AN, Premkumar KV (2014) Clomiphene citrate induces ROS-mediated apoptosis in mammalian oocytes. Open J Apoptosis 3:52–58

    Article  CAS  Google Scholar 

  80. Tripathi A, Shrivastava TG, Chaube SK (2012) Aqueous extract of Azadiracta indica (neem) leaf induces generation of reactive oxygen species and mitochondria-mediated apoptosis in rat oocyte. J Assist Reprod Genet 29:15–23

    Article  PubMed  Google Scholar 

  81. Tripathi A, Shrivastava TG, Chaube SK (2013) An increase in granulosa cell apoptosis mediates aqueous neem (Azadirachta indica) leaf extract-induced oocyte apoptosis in rat. Intl J Appl Basic Med Res 3:27–36

    Article  Google Scholar 

  82. Tiwari M, Tripathi A, Chaube SK (2017) Presence of encircling granulosa cells protects against oxidative stress-induced apoptosis in rat eggs cultured in vitro. Apoptosis 22:98–107

    Article  CAS  PubMed  Google Scholar 

  83. Tiwari M, Prasad S, Tripathi A et al (2015) Apoptosis in mammalian oocytes: a review. Apoptosis 20:1019–1025

    Article  CAS  PubMed  Google Scholar 

  84. Tiwari M, Prasad S, Tripathi A, Pandey AN, Singh AK, Shrivastava TG, Chaube SK (2016) Involvement of reactive oxygen species in meiotic cell cycle regulation and apoptosis in mammalian oocytes. React Oxyg Species 1:110–116

    Google Scholar 

  85. Venkatesh S, Kumar M, Sharma A et al (2010) Oxidative stress and ATPase6 mutation is associated with primary ovarian insufficiency. Arch Gynecol Obstet 282:313–318

    Article  CAS  PubMed  Google Scholar 

  86. Tokmak A, Yıldırım G, Sarıkaya E et al (2015) Increased oxidative stress markers may be a promising indicator of risk for primary ovarian insufficiency: a cross-sectional case control study. Rev Bras Ginecol Obstet 37(9):411–416

    PubMed  Google Scholar 

  87. Zhen X, Wu B, Wang J, Lu C, Gao H, Qiao J (2015) Increased incidence of mitochondrial cytochrome c oxidase 1 gene mutations in patients with primary ovarian insufficiency. PLoS One 10(7):e0132610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee JY, Baw CK, Gupta S, Aziz N, Agarwal A (2010) Role of oxidative stress in polycystic ovary syndrome. Curr Womens Health Rev 6:96–107

    Article  CAS  Google Scholar 

  89. Zuo T, Zhu M, Xu W (2016) Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev 2016:8589318

    Article  CAS  PubMed  Google Scholar 

  90. Igawa Y, Keating AF, Rajapaksa KS, Sipes IG, Hoyer PB (2009) Evaluation of ovotoxicity induced by 7, 12-dimethylbenz[a]anthracene and its 3,4-diol metabolite utilizing a rat in vitro ovarian culture system. Toxicol Appl Pharmacol 234:361–369

    Article  CAS  PubMed  Google Scholar 

  91. Hoyer PB (2001) Reproductive toxicology: current and future directions. Biochem Pharmacol 41:1557–1564

    Article  Google Scholar 

  92. Mattison DR, Schulman JD (1980) How xenobiotic chemicals can destroy oocytes. Contemp Obstet Gynecol 15:157

    Google Scholar 

  93. Weitzman M, Gortmaker S, Sobol A (1992) Maternal smoking and behavior problems of children. Pediatrics 90:342–349

    CAS  PubMed  Google Scholar 

  94. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    Article  CAS  PubMed  Google Scholar 

  95. Sobinoff AP, Mahony M, Nixon B, Roman SD, McLaughlin EA (2011) Understanding the Villain: DMBA induced preantral ovotoxicity involves selective follicular destruction and primordial follicle activation through PI3K/Akt and mTOR signaling. Toxicol Sci 123:563–575

    Article  CAS  PubMed  Google Scholar 

  96. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through HIF-induction of BNIP3 and BNIP3L via their BH3-domains. Mol Cell Biol 29:2570–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schaaf MB, Cojocari D, Keulers TG et al (2013) The autophagy associated gene, ULK1, promotes tolerance to chronic and acute hypoxia. Radiother Oncol 108:529–534

    Article  CAS  PubMed  Google Scholar 

  98. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    CAS  PubMed  Google Scholar 

  99. Papandreou I, Lim AL, Laderoute K, Denko NC (2008) Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15:1572–1581

    Article  CAS  PubMed  Google Scholar 

  100. Guo K, Searfoss G, Krolikowski D et al (2001) Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell 8:367–376

    CAS  Google Scholar 

  101. Mazure NM, Pouyssegur J (2009) Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy 5:868–869

    Article  PubMed  Google Scholar 

  102. Liu XW, Su Y, Zhu H et al (2010) IF-1a-dependent autophagy protects HeLa cells fromfenretinide (4-HPR)-induced apoptosis in hypoxia. Pharmacol Res 62:416–425

    Article  CAS  PubMed  Google Scholar 

  103. Wang W, Fang H, Groom L et al (2008) Superoxide flashes in single mitochondria. Cell 134:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Berchner-Pfannschmidt U, Tug S, Trinidad B et al (2008) Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem 283:31745–31753

    Article  CAS  PubMed  Google Scholar 

  105. Tug S, Delos Reyes B, Fandrey J, Berchner-Pfannschmidt U (2009) Nonhypoxic activation of the negative regulatory feedback loop of prolylhydroxylase oxygen sensors. Biochem Biophys Res Commun 384:519–523

    Article  CAS  PubMed  Google Scholar 

  106. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M (2003) Regulation of hypoxia-inducible factor-1 protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/ glycogen synthase kinase 3-pathway in HepG2 cells. J Biol Chem 278:31277–31285

    Article  CAS  PubMed  Google Scholar 

  107. Wilkinson S, O’Prey J, Fricker M, Ryan KM (2009) Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev 23:1283–1288

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114:549–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Takei N, Nawa H (2014) MTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci 7:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cam H, Easton JB, High A, Houghton PJ (2010) MTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1a. Mol Cell 40:509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wolff NC, Vega-Rubin-de-Celis S, Xie XJ, Castrillon DH, Kabbani W, Brugarolas J (2011) Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol Cell Biol 31:1870–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cam H, Houghton PJ (2011) Regulation of mammalian target of rapamycin complex 1 (mTORC1) by hypoxia: causes and consequences. Target Oncol 6:95–102

    Article  PubMed  Google Scholar 

  114. Fang Y, Tan J, Zhang Q (2015) Signalling pathways and mechanism of hypoxia induced autophagy in animal cells. Cell Biol Int 9999:1–8

    Google Scholar 

  115. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–522

    Article  CAS  PubMed  Google Scholar 

  116. Ogata M, Hino S, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-kB by integrating functions of basal IKK activity IRE1 and PERK. PLoS One 7:e45078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gade P, Ramachandran G, Maachani UB et al (2012) An IFN-g-stimulated ATF6-C/EBP-b signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc Natl Acad Sci 109:10316–10321

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chen JL, Lin HH, Kim KJ, Lin A, Forman HJ, Ann DK (2008) Novel roles for protein kinase Cδ-dependent signaling pathways in acute hypoxic stress-induced autophagy. J Biol Chem 283:34432–34444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cho DH, Jo YK, Hwang JJ, Lee YM, Roh SA, Kim JC (2009) Caspase-mediated cleavage of Atg6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 274:95–100

    Article  CAS  PubMed  Google Scholar 

  121. Clavijo C, Chen JL, Kim KJ, Reyland ME, Ann DK (2007) Protein kinase C delta-dependent and -independent signaling in genotoxic response to treatment of desferroxamine, a hypoxia-mimetic agent. Am J Physiol Cell Physiol 292:C2150–C2160

    Article  CAS  PubMed  Google Scholar 

  122. Colell A, Ricci JE, Tait S et al (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983–997

    Article  CAS  PubMed  Google Scholar 

  123. Zhou J, Yao W, Li C, Wu W, Li Q, Liu H (2017) Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death Dis 8:e3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou J, Li C, Yao W, Alsiddig MC, Huo L, Liu H, Miao Y (2018) Hypoxia-inducible factor-1α-dependent autophagy plays a role in glycolysis switch in mouse granulosa cells. Biol Reprod 99:308–318

    Article  PubMed  Google Scholar 

  125. Gannon AM, Stampfli MR, Foster WG (2012) Cigarette smoke exposure leads to follicle loss via an alternative ovarian cell death pathway in a mouse model. Toxicol Sci 125:274–284

    Article  CAS  PubMed  Google Scholar 

  126. Gannon AM, Stampfli MR, Foster WG (2013) Cigarette smoke exposure elicits increased autophagy and dysregulation of mitochondrial dynamics in murine granulosa cells. Biol Reprod 88:1–11

    Article  CAS  Google Scholar 

  127. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    Article  CAS  PubMed  Google Scholar 

  128. Choi J, Jo M, Lee E, Choi D (2011) The role of autophagy in corpus luteum regression in the rat. Biol Reprod 85:465–472

    Article  CAS  PubMed  Google Scholar 

  129. Escobar ML, Echeverrıa OM, Sanchez-Sanchez L, Mendez C, Pedernera E, Vázquez-Nin GH (2010) Analysis of different cell death processes of prepubertal rat oocytes in vitro. Apoptosis 15:511–526

    Article  CAS  PubMed  Google Scholar 

  130. Lee S, Hiradate Y, Hoshino Y, Tanemura K, Sato E (2014) Quantitative analysis in LC3-II protein in vitro maturation of porcine oocyte. Zygote 22:404–410

    Article  CAS  PubMed  Google Scholar 

  131. D’Herde K, De Prest B, Roels F (1996) Subtypes of active cell death in the granulosa of ovarian atretic follicles in the quail (Coturnix coturnix japonica). Reprod Nutr Dev 36:175–189

    Article  PubMed  Google Scholar 

  132. Kovacs J, Forgo V, Peczely P (1992) The fine structure of the follicular cells of the domestic goose. Cell Tissue Res 267:561–569

    Article  CAS  PubMed  Google Scholar 

  133. Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB III (2011) Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction 141:759–765

    Article  CAS  PubMed  Google Scholar 

  134. Song ZH, Yu HY, Wang P et al (2015) Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis 6:e1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Delcour C, Amazit L, Patino LC et al (2018) ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure. Genet Med. https://doi.org/10.1038/s41436-018-0287-y

    Article  PubMed  Google Scholar 

  136. Adhikari D, Flohr G, Gorre N et al (2009) Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 15:765–770

    Article  CAS  PubMed  Google Scholar 

  137. Adhikari D, Zheng W, Shen Y et al (2010) Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 19:397–410

    Article  CAS  PubMed  Google Scholar 

  138. Zhang XM, Li L, Xu JJ et al (2013) Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene 523:82–87

    Article  CAS  PubMed  Google Scholar 

  139. Vilser C, Hueller H, Nowicki M, Hmeidan FA, Blumenauer V, Spanel-Borowski K (2010) The variable expression of lectin-like oxidized low-densitylipoprotein receptor (LOX-1) and signs of autophagy and apoptosis in freshlyharvested human granulosa cells depend on gonadotropin dose, age, and body weight. Fertil Steril 93:2706–2715

    Article  CAS  PubMed  Google Scholar 

  140. Wu J, Carlock C, Zhou C, Nakae S, Hicks J, Adams HP, Lou Y (2015) IL-33 is required for disposal of unnecessary cells during ovarian atresia through regulation of autophagy and macrophage migration. J Immunol 194:2140–2147

    Article  CAS  PubMed  Google Scholar 

  141. Hale BJ, Hager CL, Seibert JT, Selsby JT (2017) Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod 97(3):426–437

    Article  PubMed  Google Scholar 

  142. Watanabe R, Kimura N (2018) Non-suckling starvation of neonatal mice promotes primordial follicle. J Reprod Dev 64:89–94

    Article  CAS  PubMed  Google Scholar 

  143. Duerrschmidt N, Zabirnyk O, Nowicki M et al (2006) Lectin-like oxidized low-densitylipoprotein receptor-1-mediated autophagy in human granulosa cells as analternative of programmed cell death. Endocrinology 147:3851–3860

    Article  CAS  PubMed  Google Scholar 

  144. Serke H, Vilser C, Nowicki M et al (2009) Granulosa cell subtypes respond byautophagy or cell death to oxLDL-dependent activation of the oxidizedlipoprotein receptor 1 and toll-like 4 receptor. Autophagy 5:991–1003

    Article  CAS  PubMed  Google Scholar 

  145. Shen M, Jiang Y, Guan Z, Cao Y, Sun SC, Liu H (2016) FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy. Sci Rep 6:380–390

    Google Scholar 

  146. Shen M, Jiang Y, Zhiqiang G, Yan C et al (2017) Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 13(8):1364–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cao Y, Shen M, Jiang Y, Sun SC, Liu H (2018) Melatonin reduces oxidative damage in mouse granulosa 1 cells via restraining JNK-dependent autophagy. Reproduction 155(3):307–319

    Article  CAS  PubMed  Google Scholar 

  148. Escobar ML, Echeverría OM, Casasa AS, García G, Aguilar SJ, Vázquez-Nin GH (2013) Involvement of pro-apoptotic and pro-autophagic proteins in granulosa cell death. Cell Biol 1:9–17

    Article  Google Scholar 

  149. Gioacchini G, Dalla Valle L, Benato F et al (2013) Interplay between autophagy and apoptosis in the development of Danio rerio follicles and the effects of a probiotic. Reprod Fertil Dev 25:1115–1125

    Article  PubMed  Google Scholar 

  150. Zhou J, Yao W, Liu K, Wen Q, Wu W, Liu H, Li Q (2016) MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor. Int J Biochem Cell Biol 78:130–140

    Article  CAS  PubMed  Google Scholar 

  151. Alam H, Maizels ET, Park Y, Ghaey S, Feiger ZJ, Chandel NS, Hunzicker-Dunn M (2004) Follicle stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follic. J Biol Chem 279:19431–19440

    Article  CAS  PubMed  Google Scholar 

  152. Hunzicker-Dunn ME, Lopez-Biladeau B, Law NC, Fiedler SE, Carr DW, Maizels ET (2012) PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci 109:E2979–E2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kayampilly KM, Menon PP (2007) Follicle-stimulating hormone increases tuberin phosphorylation and mammalian target of rapamycin signaling through an extracellular signal-regulated kinase-dependent pathway in rat granulosa cells. Endocrinology 148:3950–3957

    Article  CAS  PubMed  Google Scholar 

  154. Choi JY, Jo MW, Lee EY, Choi DS (2014) AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia. Reproduction 147:73–80

    Article  CAS  PubMed  Google Scholar 

  155. Ortiz R, Echeverrıa OM, Salgado R, Escobar ML, Vazquez-Nin GH (2006) Fine structural and cytochemical analysis of the processes of cell death of oocytes in atretic follicles in new born and prepubertal rats. Apoptosis 11:25–37

    Article  CAS  PubMed  Google Scholar 

  156. Escobar ML, Echeverrıa OM, Ortız R, Vazquez-Nin GH (2008) Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis 13:1253–1266

    Article  CAS  PubMed  Google Scholar 

  157. D’Ignazio L, Michel M, Beyer M et al (2018) Lhx8 ablation leads to massive autophagy of mouse oocytes associated with DNA damage. Biol Reprod 98(4):532–542

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bang S, Shin H, Song H, Suh CS, Lim HJ (2014) Autophagic activation in vitrified-warmed mouse oocytes. Reproduction 148(1):11–19

    Article  CAS  PubMed  Google Scholar 

  159. Lee GK, Shin H, Lim HJ (2016) Rapamycin influences the efficiency of in vitro fertilization and development in the mouse: a role for autophagic activation. Asian Australas J Anim Sci 29(8):1102–1110

    Article  CAS  PubMed  Google Scholar 

  160. Gao HH, Li JT, Liu JJ, Yang QA, Zhang ZM (2017) Autophagy inhibition of immature oocytes during vitrification-warming and in vitro mature activates apoptosis via caspase-9 and -12 pathway. Eur J Obstet Gynecol Reprod Biol 217:89–93

    Article  CAS  PubMed  Google Scholar 

  161. Shen XS, Jin YX, Liang S et al (2018) Autophagy is required for proper meiosis of porcine oocytes maturing in vitro. Sci Rep 8:12581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fraser HM, Lunn SF, Cowen GM, Illingworth PJ (1995) Induced luteal regression in the primate: evidence for apoptosis and changes in c-myc protein. J Endocrinol 147:131–137

    Article  CAS  PubMed  Google Scholar 

  163. Canto FD, Sierralta W, Kohen P, Munoz A, Strauss JF, Devoto L (2007) Features of natural and gonadotropin-releasing hormone antagonist induced corpus luteum regression and effects of in vivo human chorionic gonadotropin. J Clin Endocrinol Metab 92:4436–4443

    Article  CAS  PubMed  Google Scholar 

  164. Morales C, Garcia-Pardo L, Reymundo C, Bellido C, Sanchez-Criado JE, Gaytan F (2000) Different patterns of structural luteolysis in the human corpus luteum of menstruation. Hum Reprod 15:2119–2128

    Article  CAS  PubMed  Google Scholar 

  165. Davis JR, Rueda BR (2000) The corpus luteum: an intraovarian structure with maternal instincts and suicidal tendencies. Front Biosci 7:949–978

    Google Scholar 

  166. Zeng X, Chai W (2018) Role of senp3 in the autophagy of granulosa. Fertil Steril 110(4):e119

    Article  Google Scholar 

  167. Yaba A, Demir N (2012) The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J Ovarian Res 5(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yousefi S, Perozzo R, Schimid I et al (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory is supported by Centre of Advanced Study, Department of Zoology, Banaras Hindu University, Varanasi-221005, UP, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shail K. Chaube.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosured.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Yadav, P.K., Chaudhary, G.R. et al. Autophagy in hypoxic ovary. Cell. Mol. Life Sci. 76, 3311–3322 (2019). https://doi.org/10.1007/s00018-019-03122-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03122-4

Keywords

Navigation